Short communication

Predictions of bone remodeling around dental implant systems

Hsuan-Yu Chou, John J. Jagodnik, S. Müftü*

Department of Mechanical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA

Accepted 31 January 2008

Abstract

This study presents the implementation of a mathematical bone remodeling algorithm to bone adaptation in the premolar area of the mandible around various dental implant systems, and thus sheds a new perspective to the complex interactions in dental implant mechanics. A two-dimensional, plane strain model of the bone was built from a CT-scan. The effect of implant contour on internal bone remodeling was investigated by considering four dental implant systems with contours similar to commercially available ones and another four with cylindrical and conical cross-sections. The remodeling algorithm predicts non-homogeneous density/elastic modulus distribution; and, implant contour has some effect on how this is distributed. Bone density is predicted to increase on the tips of the threads of the implants, but to decrease inside the grooves. Threadless implants favor to develop a softer bone around their periphery, compared to implant systems that have threads. The overall contour (dimensions and the shape) of an implant affect the bone density redistribution, but the differences between different implant systems are relatively small.

Keywords: Dental implants; Bone remodeling; Load transfer

1. Introduction

Dental implants provide an alternative for treating partial or full edentulism by serving as anchors for full-arch (Braåemark et al., 1983), partial (Jemt, 1986) and single-tooth (Lewis et al., 1988) dental prosthesis. Dental implant treatments have high survival rates (Behneke et al., 2000; Romanos and Nentwig, 2000; Khayat et al., 2001; Mordenfeld et al., 2004). Nevertheless, treatment success is influenced by location of the implant, quantity and density of bone, biomaterial aspects of the implants, and host factors such as loading and smoking (McCracken et al., 2002; Lemons, 2004). Bone–implant contact (BIC), is a measure of osseointegration of an implant. Berglundh et al. (2003) find osseointegration to be a dynamic process with establishment and maintenance phases; while the establishment phase involves continuous interplay between bone resorption and formation, in the maintenance phase osseointegration is secured through continuous adaptation to function. Many studies of implant-to-bone load transfer, in fact model the maintenance phase, and use the criteria that excessively high or inadequately low stress levels in the bone result in pathologic bone loss. A review of the finite-element method in implant dentistry is given by Geng et al. (2001).

Prosthetic attachments can be connected to the implant immediately following surgical placement, or after osseointegration takes place depending on the decision of timing of the loading. Excessive relative motion of the implant–bone interface (micromotion) indicates formation of soft connective tissue rather than a bony interface (Brunski et al., 1979); and, therefore a common healing protocol recommends a healing period on the order of a few months, during which no functional load is applied on the implant. On the other hand, immediate functional loading is possible if micromotion can be prevented during the healing period (Jaffin et al., 2000). Histomorphometric investigations of immediately loaded dental implants in human patients, which were deemed successful from a clinical point of view and based on radiographs, showed upon retrieval that BIC was on the order of 40–75%
A (mechanical) remodeling stimulus is thought to be the primary control variable of this system, which includes sensor, transducer, comparator and feedback functions, and which is influenced by hormonal, metabolic, genetic and site-specific factors. Bone remodeling theories (Cowin, 1993) distinguish between external modeling, where bone is added or removed at the periosteal and endosteal surfaces, and internal remodeling, characterized by changes in apparent bone density (Cowin and Van Buskirk, 1978, 1979; Fyhrie and Carter, 1986; Frost, 1987, Huiskes et al., 1987). Stress, strain, strain energy density and fatigue microdamage have been used as the remodeling stimulus (Cowin and Hagedus, 1976; Carter et al., 1987; Huiskes et al., 1987; Cowin, 1993). In particular, the continuum level strain energy density per apparent mass density U/ρ represents the energy stored at the bone tissue level (Carter et al., 1987; Weinans et al., 1992). Despite successful predictions of cancellous bone architecture (Carter et al., 1989; Beaupré et al., 1990) and changes in bone density around a total hip arthroplasty (Weinans et al., 1993; van Rietbergen et al., 1993), adaptive remodeling has not been applied to implant dentistry. In this communication, a preliminary study of internal remodeling around dental implant systems (DIS) is reported.

2. Theory

Most bone remodeling theories assume that bone strives to keep a homeostatic stimulus (K). The rate of change of the apparent density of bone mass (ρ) is based on the difference between the remodeling stimulus (S) and K (Huiskes et al., 1987):

\[
\frac{d\rho}{dt} = \begin{cases}
A_t[S - K(1 + s)]^2 & \text{if } S \leq K(1 + s), \\
0 & \text{if } K(1 - s) < S < K(1 + s), \\
A_t[S - K(1 - s)]^3 & \text{if } S \leq K(1 - s),
\end{cases}
\]

where A_t and A_f are remodeling rate constants for resorption and formation, respectively, t is time and s is the width of the dead zone. The thresholds of bone remodeling are $K(1 + s)$ and $K(1 - s)$. Any remodeling stimulus in the dead (lazy) zone does not induce bone remodeling. Otherwise, bone hardens according to Eq. (1a) and resorbs according to (1c). The remodeling stimulus S is chosen as

\[
S(x, y, t) = \frac{U(x, y, t)}{\rho(x, y, t)},
\]

where U is strain energy density and ρ is bone density. Carter and Hayes (1977) show that elastic modulus is related to apparent bone density and to the strain rate $\dot{\varepsilon}$ as follows:

\[
E = C\dot{\varepsilon}^{0.06} \rho^{3},
\]

where $C = 3.790$. The unit of the elastic modulus E is GPa if ρ is in kg/m3. Eq. (1) is solved by forward Euler time.

![Finite-element model of full abutment–implant–bone system. Fine mesh is applied near the interface of bone and implant. Occlusal load of 100 N is applied on the abutment at an angle of 11° and pressure of 500 kPa is applied on the surface of the cortical bone.](image-url)
integration:

\[
\rho_m^{(j)} = \begin{cases}
\rho_m^{(j-1)} + A\Delta t[S_m^{(j-1)} - K(1+s)]^2 & \text{if } S_m^{(j-1)} \geq K(1+s), \\
0 & \text{if } K(1-s) < S_m^{(j-1)} < K(1+s), \\
\rho_m^{(j-1)} + A\Delta t[S_m^{(j-1)} - K(1-s)]^2 & \text{if } S_m^{(j-1)} \leq K(1-s),
\end{cases}
\]

where \(j \) is the time step and \(m \) is mesh node location. Here, \(A_t = A_i = A \) is assumed, and \(A\Delta t \) is treated as a single-time integration parameter. Strain energy density and remodeling stimulus are computed by using the finite-element program ANSYS (Canonsburg, PA) and its APDL programming facility. Convergence is achieved when remodeling stimuli of all bone elements fall into the dead zone. In this work the effect of strain rate is neglected, and the algorithm is restricted to the range \(1 \text{kPa} \leq E \leq 13 \text{ GPa} \).

3. Methods

A two-dimensional bone contour of the mandibular premolar region obtained form a CT-scan was assigned 1 mm thick outer cortical layer (\(E = 13 \text{ GPa} \)). The model was discretized using Plane42 elements, with the plane strain option. A fine mesh was applied in the vicinity of the bone–implant interface (Fig. 1). On average, the number of elements for the implant systems, cortical bone, and internal bone region were 2800, 1000, and 9000, respectively. All materials were assumed linear-elastic, homogenous, and isotropic. Elastic modulus (\(E \)) and Poisson’s ratio (\(v \)) are 113.8 GPa and 0.3 (Lemons and Dietsh-Misch, 1999), respectively, for titanium implant system. Poisson’s ratio of the bone is 0.3 (Martin et al., 1998). The first group of implants (Fig. 2) includes four DIS, which are similar to four commercially available implant systems (Chou, 2007). The second group of implants (Fig. 3) includes four simple geometric shapes: a...

Fig. 2. Four commercially available dental implant systems: (a) DIS-1, Ankylos; (b) DIS-2, Bicon; (c) DIS-3, ITI; and (d) DIS-4, Nobel Biocare. All dimensions are shown in mm.

Fig. 3. Dimensions of four hypothetic implants in mm.

straight cylinder, a straight cylinder with rounded end, a truncated cone, and a truncated cone with rounded end.

In this study, we consider the short range \((F_O) \) and long range \((P_L) \) external loads on the system (Fig. 1). Mastication force was modeled as a concentrated force, \(F_O = 100 \text{ N} \), applied on the abutment, in the buccal-lingual plane (BL plane) at 11\(^\circ\) (Graf, 1975). The long range force \(P_L \) is applied on the outer periphery of the cortical bone, to simulate the effect of mandibular flexure (Hobkirk and Schwab, 1991).

The parameters of the model are \(K, s, A\Delta t, \) and \(P_L \). These parameters were determined based on extensive numerical experiments as described by Chou (2007). The parameters were varied until realistic-looking bone density distributions were predicted by the model. The values used in this work were thus chosen as \(K = 25 \text{ N m kg}^{-1}, s = 0.65, P_L = 500 \text{ kN m}, A\Delta t = 5 \times 10^{-3} \text{ (kg m N m)}^{-1} \). The initial internal bone density was assumed to be \(\rho(x,y,0) = 808 \text{ kg m}^{-3} (E = 2.0 \text{ GPa}) \). The mandible is constrained in \(x- \) and \(y- \) directions at the bottom (Fig. 1).

Fig. 4. Iterative changes of elastic modulus distribution around a dental implant. Total number of iteration steps for this case to achieve converged result is 1317. (a–f) represent iteration levels 1,40,100,250,300, and 1317.
Table 1
Iterative changes of average bone density in trabecular section for the case presented in Fig. 4

<table>
<thead>
<tr>
<th>Time step</th>
<th>0</th>
<th>1</th>
<th>40</th>
<th>100</th>
<th>250</th>
<th>300</th>
<th>1317</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ave. density in Tra. Sec., ρ_{ave} (kg/m3)</td>
<td>808</td>
<td>813.22</td>
<td>877.06</td>
<td>909.42</td>
<td>883.12</td>
<td>879.24</td>
<td>875.13</td>
</tr>
<tr>
<td>E (GPa)</td>
<td>1.95</td>
<td>1.99</td>
<td>2.49</td>
<td>2.78</td>
<td>2.55</td>
<td>2.51</td>
<td>2.48</td>
</tr>
<tr>
<td>Ave. remodeling stimulus, S_{ave}</td>
<td>N/A</td>
<td>40.89</td>
<td>27.45</td>
<td>21.39</td>
<td>21.76</td>
<td>21.78</td>
<td>21.79</td>
</tr>
</tbody>
</table>

Elastic modulus is computed according to Eq. (3).

Fig. 5. Elastic moduli distribution of four commercially available implant systems with 100 N occlusal load applied on the implant and $P_L = 500$ kN/m. Note that the algorithm predicts horizontally oriented, high-density bone regions connecting cortical sections, in addition to bone densification and resorption around implants.
4. Results

The iterative change of bone modulus in the internal remodeling region is presented in Fig. 4. The colors from blue to orange indicate the range $1 \leq E \leq 13$ MPa, or cancellous to cortical bone. White represents total bone resorption ($E = 1$ kPa). In the first 100 steps bone gradually develops high modulus regions, with values comparable to cortical bone. After 100 iterations, no significant update takes place except inside the grooves of implants.

![Figure 6](image)

Fig. 6. Elastic moduli distribution of four hypothetic implant systems with 100 N occlusal load applied on the implant and $P_L = 500$ kN/m. Note that the algorithm predicts horizontally oriented, high-density bone regions connecting cortical sections in addition to bone, densification and resorption around implants.
the implant, where bone resorption is significant. Table 1 shows the average bone density increases in earlier iteration steps, where bone formation is more active; and it decreases when bone resorbs inside the grooves. The convergence was reached in 1317 iterations.

The homeostatic bone modulus distributions for DIS-1–4 are presented in Fig. 5, and those for the four simple geometric shapes are presented in Fig. 6. The average bone densities at homeostatic equilibrium are summarized in Table 2. Figs. 5 and 6 show the redistribution of the bone mass. Below the implants, the algorithm predicts horizontally oriented regions of high-density bone, connecting the cortical sections by traversing the BL cross-section. We see four of these regions for DIS-1, three for DIS-3, and -4 and two for DIS-2. Around the apical sections of all implant types, the bone density increases and the high-density regions connect to the cortical bone.

For the smooth surface implant designs (Fig. 6, Table 2), the activity of bone formation is not as prominent as in DIS-1–4, but the overall elastic modulus distribution still shows bone densification. The implant is supported at its apical section by a wider area of hard bone, but, in general, more bone resorption is predicted immediately below the implant (Fig. 6). Bone densification is less pronounced for the implants with smooth surfaces (Fig. 6) along the implant axis, whereas implants in Fig. 5 develop high bone density near tips of the threads. The model predicts shielding of the bone in the grooves from proper stimulation.

5. Discussion

The internal stress distribution in the mandible is affected not only by forces on the teeth, but also by the forces applied on the mandible by the muscles of the masticatory system, due to various opening and closing actions required by chewing, speech, and involuntary jaw motions. Hobkirk and Schwab (1991) have demonstrated, in subjects with edentulous mandibles containing osseointegrated implants, that jaw movement from the rest position results in relative displacement between the linked implants of up to 420 μm and force transmission between the linked implants of up to 16 N.

The internal stress distribution is simulated by the external distributed load P_L (Chou, 2007). This simplification will be improved in our future work, where the internal stress distribution will be calculated from more detailed analyses.

Nevertheless, interesting general observations can be made; including the effect that threads have on bone remodeling, where bone density is predicted to increase on the tips of the threads but to decrease inside the grooves; Threadless implants develop softer bone around their periphery, compared to implant systems that have threads; The overall contour of an implant affects the bone density redistribution. This communication presents the first step toward the complex problem of bone remodeling around DIS, which in the future should be analyzed in vivo experiments and mathematical modeling. Such an approach can then be expected to contribute to our understanding of mechanotransduction, in general, and to design of improved implant systems, in particular.

Conflict of interest

The authors had no conflict of interest in working on or writing this article.

Acknowledgment

This work was supported in part by a research grant provided to Northeastern University by Bicon Dental Implants (Boston, MA).

References

