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A Numerical Solution for the 
Transient Displacement of a 
Circumferentially Moving 
Cylindrical Shell 
In magnetic tape recording it is important to control the tape displacement as it is 
transported over guides and recording heads. In this paper a numerical solution is 
presented for the transient motion of a tape that is circumferentially transported. 
The tape may be modelled as a thin cylindrical shell, with "gyroscopic" effects 
arising from the tape transport. Spatial derivatives are discretized with finite dif­
ference approximations, and time derivatives are discretized by Newmark's method. 
The result is a robust computer algorithm that is used in making 3D-transient 
simulations of flexural waves following a radial load. This ability is demonstrated 
to be important for realizing that reflection of the waves from the lateral sides of 
the tape has significant effect on the transient displacement. Results that have been 
previously published on "critical" speeds, wave shapes near a concentrated load 
point, and the dominant period of the load point displacement are further developed. 
A better approximation of the critical tape speed is presented, and the dominant 
period of the load point displacement is found to be dependent on the tape velocity. 

1 Introduction 
In magnetic recording applications, controlling the tape dis­

placement over a read-write head is an important design con­
sideration for the quality of the magnetic signal. This issue is 
especially important in helical scan recording in which a read-
write head travels relative to the tape with high velocity and 
causes intermittent loading on the tape. This loading, in turn, 
causes a transient displacement pattern in the tape. 

Bogy et al. (1974), and Nishida and Hosaka (1984) among 
others, modeled the tape as a cylindrical shell, and computed 
the steady state tape displacements due to a point load. They 
have concluded that above a "critical" speed the wavelength 
of the standing wave is smaller upstream of the load in com­
parison with the wavelength downstream the load. Ono and 
Ebihara (1984) generalized the solution methods for the same 
problem. Sundaram and Benson (1990) solved the transient 
equations of motion, and investigated the displacements in the 
cylindrical shell in response to a point load in space applied 
as a step function in time. Each of these studies represent the 
tape displacement with infinite series that require calculation 
of a great number of modes for convergence. The standing 
wave pattern that is predicted by Bogy et al. (1974), and Nishida 
and Hosaka (1984) were qualitatively and experimentally ver­
ified by Albrecht et al. (1977), Feliss and Talke (1977), and 
Lacey and Talke (1990). 
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There are few analyses for transient displacement in a cir­
cumferentially moving medium. One exception is Wickert and 
Mote (1990) who studied a traveling string (a spatially one 
dimensional tape) and showed that mode shapes are nonsym-
metric when a "gyroscopic" effect is included. This effect 
vanishes when the tape transport velocity is zero. 

In this paper a numerical approach to the solution of tran­
sient motion of a cylindrical shell, that is circumferentially 
transported, is presented. The equations of motion are dis­
cretized by using finite differences in the space domain and 
Newmark's method (Newmark, 1952) in the time domain. This 
numerical procedure proves to be very efficient, thus allowing 
for a detailed investigation of various kinds of loadings. In 
order to make comparisons with the existing literature, a mov­
ing tape's response to a concentrated load is investigated. With 
this method the wave action in the tape is easily followed by 
making time history plots consisting of three-dimensional (3D) 
"wire frame" drawings. This investigation showed that the 
continuous reflection and superposition of waves from the 
lateral edges of the tape contribute significantly to the dis­
placement of the load joint. We were able to find similar results 
as the previous studies, on critical tape speed, and dominant 
period of the displacement at the load point. Moreover, we 
found that this dominant period is a function of the tape 
transport velocity. We also confirmed the dispersive nature of 
the wave behavior, hence making it impossible to observe a 
single wave speed. Nevertheless, our time history plots allow 
for determination of an apparent wave speed. 
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Table 1 Variables and typical values for a magnetic recording appli­
cation 

Simple Supports 

E Young's Modulus 

v Poisson's ratio 

pa Shell density per unit area 

R Radius of the shell 

c Shell thickness 

% Belt wrap pressure 

Tx Tension per unit length 

Ly Width of the tape 

Lx Length of the tape 

P0 Concentrated load Magnitude 

Ax = Ay Spatial Step 

dt Time Step 

0 Parameter for Newmark's Method 

7 Parameter for Newmark's Method 

2.QxlQ~6Nm 

219.8xl06iV/m3 

4xl09Pa 

0.3 

0.014 kg/m2 

2xl0"2m 

20xl0~6m 

4500Pa 

90/V/m 

6.35xl0~3m 

4Ly or 19I„ 

200 Pa 

1.549xl0_4m 

2xl0~6 s 

1/4 

1/2 

2 Equation of Motion 
The equation governing the radial displacements, w(x, y), 

of a cylindrical shell subject to static radial loading, P(x, y) 
and a constant circumferential tension, Tx, is given by Ti­
moshenko and Gere (1988). The inertial forces, pa Lfw/Dt2, 
can be added to this equation by virtue of d'Alembert's prin­
ciple. Here the material time derivative 

£(0 
Dt dt+Vx 

9G) 
dx (1) 

is used in order to properly account for tape transport effects 
(Wickert and Mote, 1990). In this equation we assume that 
the tape transport is only in the circumferential direction, with 
velocity, Vx. With this adjustment the equation of motion of 
the tape becomes, 

DV 4 w+ (paVl-TJ-j + kw + lpeV, 
dx2 

d2w 

dxdt 

+ P0§ = P(x,^)-f (2) 

The variables of this equation along with nominal values are 
given in Table 1. 

The boundary conditions of the tape are such that it is 
"simply supported" along two lines running across the tape 
and "free" along its lateral edges. See Fig. 1. The boundary 
conditions and the initial conditions are as follows, 

Simply Supported Sides: 

Zero Moment for x = 0, Lx, and 0 < y < Ly 

d2w d V 
D = 0 (3) 

Zero Displacement for x = 0, Lx, and 0 < y < Ly 

w = 0 

Free Edges: 

Zero Moment for y = 0, Ly, and 0 < x < Lx 

(4) 

Fig. 1 The geometry of the tape 

D 
d2w d2w 

(5) 

Zero Equivalent Shear Force for y = 0, Ly, and 0 < x < 

D 
d3w 
dy3 dx^-y 

Initial Conditions: 

Initial Displacement for / = 0 

w(x,y, 0) = w°(x, y) 

Initial Displacement Velocity for t = 0 

dw(x,y, 0) 

dt 
-=v°(x,y) 

(6) 

(7) 

(8) 

Here, w", v" are two spatial functions to be defined. The spatial 
derivatives of Eq. (2) are discretized by using central finite 
difference approximates of the derivatives. As the boundary 
conditions of the problem are independent of time, Eqs. (3-
6) are similarly discretized. This procedure (Timoshenko and 
Woinkowsky-Kreiger, 1987) transforms the continuous Eqs. 
(2-6) to a discretized form in space which can be represented 
in a matrix notation as follows, 

[A]{w) + [G](vj + [M][a) = {P! (9) 

where 

m 
[G] 
[M] 
IP) 
(wl 

gyroscopic terms 
a stiffness matrix 
a matrix that contains the 
a diagonal mass matrix 
a discretized load vector 
a discretized displacement vector 
a discretized velocity vector of w's 
_d{w 

a j is a discretized acceleration vector of w's 

d2{w\ 

dt2 

Equation (9) is discretized in time with equal time steps, At, 
by using a "displacement form" of the Newmark's method 
(Newmark, 1952). In the discretized time domain the current 
time step is indicated by the superscript n, and the next one 
is indicated by n + 1. This method "marches" in the discrete 
time domain by using the following steps; 

(7) Predict displacement and velocity vectors by, 

| w r ' 1 = ( w ) " + A ? M " + ( r - / 3 | A / 2 { a ) " (10) 

' = { v ) " + ( l -7)A?fa)" (ID 
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X5\?J^AAAA^X>A^w^A>C^ftft» 

0.00! 0 

time (s) 

Fig. 2 Transient displacement of the load point (x = LJ2, y0 = Lyl2) 
for a concentrated step load as a function of tape velocities, (0, 50, 90, 
100 m/s), LxILy = 19. Dots indicate steady state deflections. 

If n - 0 then use the initial conditions {w j °, and (v j °. 
(2) Obtain the displacement vector at time n + 1, by solving 

l«]«lw} m (12) 

(5) Calculate the acceleration and velocity vectors at time 
n + 1, by 

a 
, « + i . 1 

0Af 
: ( {w i " + 1 ( .? , l » + 1 W ) " + ' ) 

n+1 

(13) 

( v j " " = [ v ! " + 1 + 7A/(a)" + 1 (14) 

(4) Increment time by At, let n + 1 — «, and go to Step 
1. 

In the preceding [K]eg and {f }eq are given by the following 
expressions, 

(15) 

(16) 

[K]e<,= [[M} + y&tlG] + pAt2[K]] 

[f)^+ 1 = /3A?2(f}" + 1 + [M]{w)n+1-/3A^2[G] 

ISA*1"' 

The intermediate variables (wj, jv) of Step 1, are called 
"predictors," /3 and y are two parameters related to New-
mark's method. Because the equivalent stiffness matrix in Eq. 
(12) does not change with time, the solution requires only one 
"inversion" of this matrix before the time marching scheme 
is initiated. 

By choosing different values for parameters, (3 and y it is 
possible to introduce numerical damping to the solution. In 
general, y controls the numerical damping and consistency of 
the truncation error throughout the solution. With appropriate 
choice of 7, the parameter /3 is used in controlling stability, 
and amplitude and period errors of the solution. A choice of 
0 = 1 / 4 and 7 = 1 / 2 provides an unconditionally stable 
algorithm without any algorithmic damping. On the other hand, 
the case of (3 = 1 and 7 = 3/2 has strong damping charac­
teristics and can be used to quickly bring a transient solution 
to static equilibrium (Hughes, 1987). 

3 Results and Discussion 
We developed a computer program for the solution method 

that is outlined above, and analyzed the tape's response to an 
external loading of the following type, 

P = P0e~ol(x-xo)2e-a^)'o)2H(t) (17) 

where, x„ and y0 mark the centroid of the load, and H(t) is 
the Heaviside step function. The centroid of the load will be 
referred to as the "load point" hereafter. The tape was initially 
in static equilibrium, i.e. w° = 0 and v° = 0. The exponential 
function in Eq. (17) is chosen to approximate a concentrated 
load. The parameter a is adjusted so that the function decays 

to 1 percent of its maximum, within a decay distance of 5 
percent of Ly from the load point. In order to demonstrate 
the applicability of the method we show results for two cases 
with different length-to-width ratios, Lx/Ly = 4 and 19. All 
of the figures in this paper are obtained using the specifications 
given in Table 1. The cases with the smaller Lx/Ly were run 
on a computer workstation. Roughly 20 minutes were required 
to complete 250 time steps. 

In Fig. 2, the transient response of the load point is plotted 
for Vx = 0, 50, 90 and 100 m/s. The load is located at the 
center of the tape, (x0 = Lx/2, y0 = L/2). The length-to-
width ratio is 19. In order to choose the time step we performed 
numerical experiments in the range 0.5 /xs < At < 12.5 jxs, 
on a spatial mesh with Ax = Ay = 1.549 x 10 ~3 m. We chose 
the largest possible time step, At = 2 /^s, that did not cause 
an appreciable difference in the time history of the load point. 

We note from Fig. 2 that at lower tape speeds, the tape 
motion consists of the superposition of several modes with one 
dominant period. For the case of Vx = 0 the dominant period 
is close to 2-K(pJk)ul, which is approximately 50 fis for the 
specifications of this problem. We also note that the displace­
ment of the tape decays within an envelope that asymptotes 
at a finite amplitude. As Eq. (2) does not have a dissipative 
term* the tape displacement will asymptote on a quasi-periodic 
motion around a steady state value. Similar observations were 
also made by Sundaram and Benson (1990). The dots on Fig. 
2 indicate the nondimensional displacements at steady state. 
These values were separately obtained by running the program 
with Newmark parameters ( 3 = 1 and 7 = 3/2. The steady 
state values obtained in this way match the static solution of 
Eq. (2). 

Furthermore, from Fig. 2, we observe that the dominant 
period and the mean displacement increases as the velocity of 
the tape is increased. These increases are nonlinear functions 
of velocity, and a very large change is observed near Vx = 100 
m/s. Increasing tape transport velocity has an effect of re­
ducing the effective tape tension, Te/f = Tx - paV\. See Eq. 
(2). At the transport speed, 

(18) 

the effective tape tension vanishes. At tape transport speeds 
above this value Tefj becomes compressive, and the tape be­
comes prone to buckling. However, the shell stiffness, k, acts 
as a spring foundation and prevents the immediate appearance 
of buckling. As the tape transport speed is increased, the in-
plane compression created by the effective tension can no longer 
be counteracted by the resisting effect of the shell stiffness and 
unbounded displacements occur. The speed at which this phe­
nomenon occurs is called the "critical" tape speed. 

We have found that for the parameters used in this paper, 
a small positive change in the transport speed from the value 
Vx= 100 m/s causes the unbounded displacements. This value 
lies between the values calculated by using the approximate 
critical tape speed expressions that are derived by Wickert and 
Mote (1990), (80 m/s), and Sundaram and Benson (1989), (111 
m/s). The difference can be explained as follows; in Wickert 
and Mote (1990), the expression for the critical tape speed is 
derived for an axially moving beam, hence the shell stiffness 
term does not play a role which explains the reason for a lower 
bound approximation. In Sundaram and Benson (1989), on 
the other hand, the expression for the critical tape speed is 
derived for a cylindrical shell that is simply supported on all 
of its sides. In our study the tape is modeled as having two 
free edges, which simulates a structure which would have lesser 
resistance to buckling loads. Therefore, we find it natural to 

' The displacement decay is due to dispersion. 
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Fig. 3 Displacement wave propagation of the tape in response to a 
concentrated step load, Vx = 0 m/s, LJLy = 4, (time in (is—tape motion 
from upper-left to lower right) 

Fig. 4 Displacement wave propagation of the tape in response to a 
concentrated step load, V, = 50 m/s, LJLy = 4, (time in jts—tape motion 
from upper-left to lower right) 

observe a critical tape speed less than that given by Sundaram 
and Benson (1989), and greater than that given by Wickert 
and Mote (1990). 

Figures 3 and 4 show 3D wire frame time history plots of a 
tape with Lx/Ly = 4, and two choices of tape transport velocity, 
Vx = 0 and 50 m/s. In these two figures, the pictures that are 
labeled as t = oo are the steady state displacements obtained 
with /3 = 1 and gamma = 3/2. The rest of the pictures are 
obtained with (3 = 1/4 and 7 = 1/2 and represent the transient 
response. These figures show that load causes displacements 
waves. When Vx = 0, waves propagate radially away from the 
load point, and are symmetrical with respect to the x = Lx/ 
2 line. Due to applied tension, the tent-like shape of the dis­
placed tape has an ellipsoidal "footprint" whose major axis 
is aligned with the tensioned direction. 

The waves that reflect from the free edges travel back toward 
the source. From Figs. 3 and 4, it can be observed that first 
wave reflection from the free edges occurs near time / = 28 
lis. By the time the forward travelling wave front reaches the 
simply supported edge, several side-to-side wave interactions 
have already occurred. We believe that the wave reflection 
from the free edges explains the major reason for the non-
periodic behavior of the load point in Fig. 2. 

Figure 4 demonstrates the effect of the tape transport ve­
locity (Vx = 50 m/s) on the wave profiles. In this figure we 
see that the wavelength of the displacement is larger down­
stream of the load, than upstream of the load. This was also 
predicted by the steady state analysis of Bogy et al. (1974) and 
observed experimentally by Lacey and Talke (1990) among 
other investigators. 

Comparison of Fig. 3 to Fig. 4 shows that the wave front 
travelling toward the support on the downstream side of the 

tape has a shorter travel time when the tape transport speed 
is increased. However, numerical simulations showed that de­
termination of the wave speed is not straight forward. As the 
governing equation is dispersive in nature (Kevorkian, 1990), 
wave fronts with small wavelengths reach the simply supported 
boundaries in a shorter time than the ones with longer wave­
lengths. We are able to visually detect only a simple dominant 
wave front by looking at Figs 3-6. 

Figures 5 and 6 show the wave propagation on the longer 
tape, Lx/Ly = 19, at its middle cross section in the>>-direction, 
y = Ly/2. The tape transport velocities are Vx = 50 and 100 
m/s. In these figures the whole length, Lx, of the tape is shown 
on the horizontal axis. The vertical axes are magnified 5.9 x 
106 times in Fig. 5 and 1.5 x 106 times in Fig. 6. As in previous 
figures, these also show that the wavelength of the displacement 
is larger downstream of the load. For both velocity cases the 
displacement near the load point becomes nearly constant 
within 800 us after the application of the load. The same 
observation can be made on the 3D wire frame pictures as 
well. 

Figures 5 and 6 help to better understand the behavior of 
the waves that are reflected from the simply supported bound­
aries. A type of "Doppler effect" is observed as the waves 
that are reflected from the simply supported boundary at the 
right travel back toward the load point with smaller wave­
lengths. Waves that reflect from the left-side boundary acquire 
larger wavelengths. Comparing the behavior upstream of the 
load in Figs. 5 and 6 it is seen that, when the tape transport 
speed is close to critical, little energy reaches the left-hand 
boundary through backward travelling waves. As the govern­
ing Eq. (2) is dispersive, we expect short wavelength, high speed 
waves to reach the left-hand side support. In fact, the picture 
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Fig. 5 Wave action at the y = LJ2 cross-section in response to a 
concentrated step load, VK = 50 m/s, LJLy = 19 (tape movement from 
left to right) 

labeled t = 736 /xs in Fig. 6 shows a reflection of minute 
amplitude. 

4 Conclusions 
We produced an efficient numerical method for the solution 

of the transient displacements of a cylindrical shell. The equa­
tions of motion include the "gyroscopic" term. The method 
involves finite differences in the spatial domain and Newmark's 
method in the time domain. Due to the computing efficiency 
it is easy to obtain the time history of the wave action in 3D 
plots. We considered the fact that the tape has finite width, 
and studied its influence on the displacement behavior in re­
sponse to a localized step load. This enabled us to show that 
the wave front that propagates in the width (or axial) direction 
has a substantial effect on the displacement behavior of the 
load point. As this wave is reflected from the free edge, it 
contributes to the displacement amplitude of the load point 
which eventually settles into an envelope over time. We con­
cluded that the reason for the irregular load point displace­
ments within this envelope is the continuous superposition of 
many waves that reflect from the free lateral edges of the tape. 
We confirmed the observations in Sundaram and Benson (1990) 
that the load point displacement, however irregular looking, 
has a dominant period, which is approximated to 2-w(pa/k)xn 

for Vx = 0. This period is found to increase with increasing 
tape transport speed. 

We also observed a critical tape transport speed that was 
predicted by other investigators. However, since we modeled 
the lateral sides of the tape as free edges, we were able to 
evaluate the critical tape transport speed closer to its actual 
value than predicted by alternative models with different 
boundary conditions. 

The general behavior of the wavelength that we found (short 
waves lengths upstream of the load and larger ones down­
stream) compares qualitatively with prior analysis for steady 
state systems. Moreover, we observed that the waves generated 

Fig. 6 Wave action at the y = Lyl2 cross-section in response to a 
concentrated step load, Vx = 100 m/s, LJLy = 1 9 (tape movement from 
left to right) 

by the localized load that we used are dispersive and only an 
apparent wave front can be detected. We also found that the 
tape displacement settles to a near steady state shape with small 
reflected waves superimposed onto this. 

Currently the authors are working on parameter studies of 
this problem (Muftii and Benson, 1993), as well as coupling 
this method with a Reynolds equation solver, in order to reach 
a fully coupled transient solution to the air lubricated foil 
bearing problem (Gross, 1980). 
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