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Abstract
In this investigation three effects are included in a recently developed
scale-dependent multi-asperity model of elastic contact and friction. First, a
Weibull distribution of asperity heights is used, which allows the skew and
kurtosis to be varied, but not independently of each other. Second, the effect
of non-constant radii of curvature of the asperity summits, with the
curvature varying with asperity height, is examined. Finally, the influence of
noncontacting asperities on the normal force and hence on contact and
friction is included. It is noted that the contact and friction model used
(Adams et al 2003 ASME J. Tribol. 125 700–8) includes the effects of
adhesion and scale-dependent friction. It is demonstrated that
positive/negative skew decreases/increases both the friction coefficient and
its dependence on the normal load. The results also indicate that for radii of
curvature that increase/decrease with height, the friction coefficient
increases/decreases as does its dependence on load.

1. Introduction

Contact and friction affect the operation of many machines and
tools that we use every day, as well as some of the most basic
activities in nature. Examples range from belt drives, brakes,
tyres and clutches in automobiles and in other machines; gears,
bearings and seals in a variety of mechanical systems; electrical
contacts in motors; slider–disk interactions in a computer disk
drive; various MEMS devices; robotic manipulator joints;
the motion of a human knee-joint (natural or artificial) and
walking/running.

The frictional force F is the tangential force resisting the
relative motion of two surfaces which are pressed against each
other with a normal force P . Amontons, in 1699, and Coulomb
in 1785, developed our phenomenological understanding of
dry friction between two contacting bodies. Amontons–
Coulomb friction states that the ratio of the friction force
(during sliding) to the normal force is a constant called the
coefficient of kinetic friction. Similarly, the coefficient of static
friction is the ratio of the maximum frictional force F that the
surfaces can sustain, without relative motion, to the normal
force. These friction laws can be summarized by defining the
coefficient of friction µ as

µ = F

P
, (1)

without distinguishing between static and low-speed sliding
friction. Although equation (1) provides an extraordinarily
simple phenomenological friction law, the nature of the
frictional force is not well-understood.

Tabor [2] reviewed the state of understanding of frictional
phenomenon as it existed two decades ago. Friction was
originally thought to be due to the resistance of asperities on
one surface riding over the asperities of the mating surface.
The main criticism of this roughness theory of friction is
that it is a conservative process whereas friction is known
to be dissipative. Nonetheless, the terminology of ‘smooth’
and ‘rough’ to represent frictionless and frictional contact,
respectively, still persists in, for example, many elementary
mechanics textbooks.

The adhesion theory of friction relates roughness to
friction in a different manner [2]. Because real surfaces
always possess some degree of roughness (figure 1), the
contact between two bodies occurs at or near the peaks of
these contacting asperities. Thus, the real area of contact will
generally be much less than the apparent contact area, and the
average normal stress in the real contact area can easily reach
the hardness of the softer material. If each asperity contact
is viewed as a plastic indentation, then the normal contact
stress is constant, and the real area of contact is proportional
to the normal force. Thus, the adhesion theory of friction,
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Figure 1. Contact of a rough surface (lower body) with a flat
surface (upper body).

which gives a frictional force proportional to the real contact
area, also gives the proportionality between the frictional force
and the normal load required for Amontons–Coulomb friction,
i.e. equation (1). However, even in the absence of plastic
deformation, the real area of contact is nearly proportional to
the normal load if the asperities have a statistical distribution
of heights [3] and also leads to equation (1).

Thus, contact modelling is an essential part of any
friction model. It consists of two related steps. First,
the equations representing the contact of a single pair of
asperities are determined. In general, this procedure includes
elastic, elastic–plastic, or completely plastic deformation.
For nanometre scale contacts, the effect of adhesion on the
contact area is also included. Second, the cumulative effect
of individual asperity contacts is determined. Such contact
models are uncoupled and represent surface roughness as a set
of asperities, often with statistically distributed parameters.
The effect of each individual asperity contact is local and
considered separately from the other asperities; the cumulative
effect is the sum of the actions of individual asperities (e.g. the
well-known Greenwood–Williamson model [3]).

In multi-asperity models, such as [3], the radii of curvature
of all asperities are assumed to be equal. However, the
curvature is likely to be height dependent due to, for example,
polishing operations in which higher asperities are polished to a
greater extent and, therefore, have larger radii of curvature than
do the shorter asperities. On the other hand, from the point-of-
view of a random surface profile, Whitehouse and Archard [4]
found that higher asperities have smaller curvatures. This
result is a consequence of the assumed randomness of a surface
in which the neighbouring points about a high peak are more
likely to have a height that deviates from the peak height by
a greater amount than would the points near a lower peak.
Extending the work of [4], Onions and Archard [5] found that
such a distribution of asperity curvatures increases the contact
pressures making plastic deformation more likely to occur.

For sufficiently small size contacts, the adhesion force
between the surfaces affects the contact conditions. Various
adhesion models, typically between an elastic sphere and a flat
surface, have been introduced. The model by Johnson, Kendall
and Roberts (JKR) assumes that the attractive intermolecular
surface forces cause elastic deformation beyond that predicted
by the Hertz theory, thereby producing a subsequent increase
of the contact area [6]. The model by Derjaguin, Muller
and Toporov (DMT), on the other hand, accounts for the
adhesive stress outside of the contact area, but assumes that
the contact stress profile remains the same as in the Hertz

theory [7]. Due to the assumptions involved, the JKR/DMT
models are most suitable when the range of surface forces is
small/large compared to the elastic deformations, as pointed
out by Tabor [8]. Another model, introduced by Maugis [9],
describes a continuous transition between the JKR and DMT
models.

Contact and friction models that deal with adhesion
in multi-asperity contacts have also been developed. In
the first of a series of papers Chang, Etsion and Bogy
(CEB) [10] developed an elastic–plastic multi-asperity contact
model for normal loading based on volume conservation of
a plastically deformed asperity control volume. In [11], the
effect of adhesion was included by using the DMT model for
contacting asperities and the Lennard–Jones potential between
noncontacting asperities. Finally, a model for calculating the
coefficient of friction was given in [12]. It assumed that once
plastic yielding is initiated in a pair of contacting asperities, no
further tangential force can be sustained. Fuller and Tabor [13]
developed a theoretical model that used the JKR model of
adhesion along with a Gaussian distribution of asperity heights.

Stanley, Etsion and Bogy (SEB) [14] developed a model
for the adhesion of two rough surfaces, affected by sub-
boundary layer lubrication, in an elastic–plastic multi-asperity
contact. Polycarpou and Etsion [15] used the SEB model to
predict the static friction coefficient. The tangential load was
found using the same procedure as in the CEB model [12]
for solid–solid contact. Kogut and Etsion developed multi-
asperity contact [16] and friction models [17], which included
the effects of plastic deformation. The maximum shear load
that an asperity can sustain is limited by the combined normal
and shear load, which causes the plastic deformation zone to
reach the surface. Thus, the friction analysis [17] predicts
higher friction than the related work in [12].

The previously cited works used a Gaussian distribution
of asperity heights. The effect of asymmetry in the height
distribution has been accounted for by a few authors. Kotwal
and Bhushan [18] modelled this effect and found that there are
load-dependent optimal values of skew and kurtosis, which
minimize the real area of contact. McCool [19] extended
the GW model by using a Weibull distribution of asperity
heights and by including the effect of a surface coating. The
multi-asperity elastic–plastic CEB models were generalized
to include a Weibull distribution by Yu and Polycarpou for
contact [20] and by Yu et al for friction [21]. Skew was found
to greatly affect the relation between the force, contact area and
the number of contacting asperities. Positive/negative skew
decreases/increases the friction coefficient.

The scale dependence of the friction stress for single
asperity contacts has recently been investigated by Hurtado
and Kim (HK) [22, 23]. They presented a micromechanical
dislocation model of frictional slip between two asperities for
a wide range of contact radii. According to the HK model, if the
contact radius ‘a’ is smaller than a critical value, the asperities
slide past each other in a concurrent slip process where the
adhesive forces are responsible for the shear stress; hence, the
shear stress remains at a high constant value. On the other hand,
if the contact radius is greater than that critical value, the shear
stress decreases for increasing values of contact radius until it
reaches a second constant, but lower value. The relationship
between the non-dimensional friction stress (τ̄ = τ/G∗) and
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Figure 2. Relationship between friction stress and contact radius
according to the HK model.

the non-dimensional contact radius (ā = a/b) is approximated
in figure 2. The contact radius ‘a’ is normalized by the Burgers
vector b and the friction stress (τ ) is normalized by the effective
shear modulus G∗ = 2G1G2/(G1 +G2), where G1 and G2 are
the shear moduli of the contacting bodies. It is noted that the
dislocation motion is confined to the interface—the material
behaviour remains elastic.

Adams, Müftü and Mohd Azhar (AMM) [1] developed a
multi-asperity model for contact and friction by incorporating
the adhesion contact model of Maugis and the scale-dependent
HK friction model into a statistical model with a Gaussian
distribution of asperity peaks. The relationship between
the frictional force and the normal load between two rough
surfaces during a slip process was determined. Three key
dimensionless parameters were identified that influence
friction and represent the surface roughness, the friction regime
of the contacts, and the surface energy of adhesion. The friction
coefficient increased as the load decreased. Experiments
for multi-asperity contacts in the low and high normal load
regimes have shown that the friction coefficient depends on
the magnitude of the normal force. In particular, µ increases
with decreasing normal load [24–26] which is qualitatively
consistent with [1, 17].

In this paper, three effects are included in the AMM
scale-dependent contact and friction model [1]. A Weibull
distribution is used, which allows the skew and kurtosis of the
asperity height distribution to be varied, but not independently
of each other [27]. The effect of non-constant radii of curvature
of the asperity summits, with the curvature varying with
asperity height, is examined [28]. Finally, the influence of
noncontacting asperities on the normal force and hence on
contact and friction is included.

2. Multi-asperity contact and friction model

2.1. Asperity contact model

The scale-dependent multi-asperity contact and friction model
developed by Adams et al [1] will be extended to include
asymmetric asperity height distributions. For two real surfaces
separated by a distance d (defined from the mean of asperity

heights) the number of contacting asperities n is

n = N

∫ ∞

d̄

φ̄(z̄) dz̄, (2)

where N is the total number of asperities, σ the standard
deviation of asperity peak heights, z̄ = z/σ is the
dimensionless height coordinate measured from the mean of
asperity heights, φ̄(z̄) is the probability density of asperity
peaks and d̄ = d/σ is the non-dimensional separation between
the two surfaces (figure 1).

The height-dependent asperity radius of curvature is
assumed to be of the form

R′ = Rg(z̄), g(z̄) = 1 + ε tanh(ρz̄), (3)

where R is the average radius of curvature. The choice of
the function g(z̄) is somewhat arbitrarily chosen so that the
asperity radius of curvature varies smoothly between R(1− ε)

and R(1 + ε). For positive ε, higher asperities have larger
radii whereas for negative ε the higher asperities have smaller
radii. For large ρ, the variation in radius with z̄ occurs most
abruptly in a small region surrounding the average asperity
height, whereas for small ρ the variation is more gradual.

The relation between the normal load P and deformation
u = z−d of two contacting spherical asperities with adhesion
is given by the Maugis model [9]. In that model, a uniform
tensile stress σ0 exists between the contacting asperities in an
annular region just outside the contact zone, a � r � c, where
c is the radial extent of the adhesion zone. The separation
between the two surfaces at r = c is taken to be equal to the
prescribed maximum adhesion distance h. Thus, the work of
adhesion is given by w = σ0h. Non-dimensional relations
among the asperity contact radius (ā = a/b), the asperity
contact force (P̄ = P/Gb2) and the asperity deformation
(ū = u/σ) are obtained based on [9]. Those relations are
written in the form

αb

πβhg(z̄)
[
√

m2 − 1 + (m2 − 2) tan−1
√

m2 − 1]ā2

+
4γ b2

πh2
[(m2 − 1) tan−1

√
m2 − 1 − m + 1]ā − 1 = 0,

(4)

P̄ = 8α

3β(1 − ν)g(z̄)
ā3

− 4γ b

h(1 − ν)
[
√

m2 − 1 + m2 tan−1
√

m2 − 1]ā2, (5)

ū = z̄ − d̄ = 1

β2g(z̄)
ā2 − 2γ b

αβh

√
m2 − 1 ā, (6)

where the non-dimensional adhesion radius (m) and the non-
dimensional Maugis adhesion parameter (λ) are given by

m = c

a
, λ =

(
b

h

) (
9βγ 2

2πα

)1/3

(7)

and typically b/h = 1 is used.
In equations (4)–(6) there are three key parameters α, β

and γ , which are defined as

α =
(σ

R

)1/2
, β = (Rσ)1/2

b
, γ = w

E∗b
. (8)
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A physical interpretation of the parameters α and β is provided
by noting that in a simple vertical scaling of the surface by a
factor k, the standard deviation of asperity heights σ is scaled
by k but the asperity radius of curvature R is scaled by 1/k.
Thus, α is scaled by k, but β remains constant. Hence, α is a
representation of the surface roughness, and is referred to as
the surface roughness parameter. The parameter β describes
the ratio of the contact radius (due to an asperity penetration
equal to σ ) to the Burgers vector length. Thus, small β are
expected to be indicative of nano-scale asperity contacts and
progressively larger values of β correspond to transition and
larger values of the contact radius (figure 2). Therefore, β

is referred to as the friction regime parameter. The surface
energy parameter γ represents the ratio of the adhesive stress to
the product of the composite Young’s modulus and the Burgers
vector.

It is further noted that for the case considered here, in
which one of the surfaces is assumed to be rigid and flat,
G∗ = 2G and the composite Young’s modulus is given
by E∗ = E/(1 − ν2). Furthermore, the isotropy relation
G = E/2(1 + ν) has been used. The simultaneous solution
of equations (4)–(6) gives the relations among m, P̄ , ā and
ū for given values of the surface roughness parameter α, the
friction regime parameter β, the surface energy of adhesion
parameter γ , the ratio (b/h), the Poisson’s ratio (ν) and the
height-dependent radius parameters (ε, ρ).

It is noted that due to adhesion during the unloading
process, asperities may remain in contact even if the asperity
overlap u is negative. This effect has been included by
varying the adhesion radius ratio m to very large values in
equations (4)–(6) when evaluating the force and contact area.
However, when an asperity breaks free of its mating surface
during unloading, its undeformed position may still maintain
it within the distance h in which there is an attractive force of
adhesion. The effect of these attractive forces on the applied
normal force was neglected in [1], but is accounted for here.

Consider an elastic sphere in close proximity to an elastic
half-space. If the minimum separation distance is greater than
the adhesion distance h, then the interaction force vanishes.
However, if the separation distance is less than h, a uniform
tensile stress of magnitude σ0 acts in a circular area of unknown
radius c. The surface normal elastic displacement at the centre
and along the periphery of the circle of interaction for such a
loading are given in [29] by

u = 2σ0c

E∗ , uC = 4σ0c

πE∗ , (9)

respectively. At r = c, the separation after deformation must
be equal to the adhesion separation (h) resulting in

c

R′ =
(

4σ0

πE∗

)
+

√(
4σ0

πE∗

)2

+ 2

(
h − u

R′

)
. (10)

It is noted, however, that this solution is only valid if the elastic
deformation at the centre of the circular area is insufficient to
bring these bodies into contact. The normal force between the
two bodies is given by P = πc2σ0, which becomes

P̄ = −64βγλ3[g(z̄)]2

9(1 − ν)α

[
1 +

√
1 +

9π

16λ3g(z̄)

(
1 − u

h

)]2

.

(11)

An expression for the total non-dimensional normal force
acting on the nominal contact area (including both contacting
and noncontacting asperities) is obtained by integrating the
normal force on individual asperities, resulting in the total
normal force (P̄T):

P̄T = N

∫ ∞

d̄−h̄

P̄ φ̄(z̄) dz̄ (12)

where h̄ = h/σ . Thus, equation (12) has been modified to
account for the forces exerted by noncontacting asperities by
including equation (11) for values of z̄ greater than d̄ − h̄

but less than the value of z̄ which causes the asperity to
separate from the surface. For values of λ > 0.655, any
asperity that separates will return to its undeformed position
outside the Maugis range of adhesion. Thus, no correction for
noncontacting asperities is needed for those cases.

2.2. Asperity friction model

Although adhesion affects the relationship between the normal
force and the contact radius, it does not affect the relation
between the frictional force and contact radius. From
figure 2, the dimensionless shear stress is a function of the
dimensionless contact radius and is approximated by

ln τ̄ =




ln τ̄1, ā < ā1,

M ln ā + B, ā1 < ā < ā2,

ln τ̄2, ā2 < ā,

(13)

where the left and right limits of region 2 are (ā1, τ̄1) and
(ā2, τ̄2), respectively. The constants of equation (13) are
given by

M = − ln(τ̄1/τ̄2)

ln(ā2/ā1)
,

B = ln τ̄1 ln ā2 − ln τ̄2 ln ā1

ln(ā2/ā1)
,

(14)

where M and B are, respectively, the slope and y-intercept of
the line in region 2 of the log–log plot of figure 2. The frictional
force F acting on a single asperity can be determined from
equation (13) by using F = πa2τ resulting in

F

G∗b2
=




τ̄1ā
2, ā < ā1,

eBāM+2, ā1 < ā < ā2,

τ̄2ā
2, ā2 < ā.

(15)

The total dimensionless shear force F̄T acting on the
nominal contact area can be calculated by integrating the shear
forces acting on each asperity against the probability density
function, i.e.

F̄T = FT

Gb2
= N

∫ ∞

d̄−h̄

F̄ φ(z̄) dz̄, F̄ = F

Gb2
(16)

in which the frictional force vanishes for noncontacting
asperities. It is noted that for values of the applied tangential
force FT less than that given by equation (16), the distribution
of tangential and normal forces among the asperities may
cause some asperities to slip while others continue to stick.
However, when FT reaches the value given in equation (16) all
contacting asperities will slide resulting in global slip. Thus,
the coefficient of friction µ for two real surfaces separated by a
distance d̄, can be obtained from equations (1), (12) and (16).
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2.3. Asperity height distributions

In [1], a Gaussian distribution of asperity heights was
assumed, i.e.

φ̄(z̄) = 1

(2π)1/2
exp

(−z̄2

2

)
. (17)

In this paper, we investigate the effect of asymmetry by using
a Weibull function, i.e.

φ (ẑ) = ωẑω−1

ηω
e−(ẑ/η)ω , ẑ > 0, (18)

to represent the asperity height distribution. For this two-
parameter Weibull function the mean (zM), standard deviation
of asperity heights (σ ), skew (S) and kurtosis (K) are given in
terms of the two Weibull parameters (ω,η) [30].

The Weibull distribution variable (ẑ) is then shifted by

z = ẑ − zM, zM = ηB1, Bn = �
(

1 +
n

ω

)
, (19)

where � is the gamma function, so that z = 0 corresponds
to the mean of asperity heights. Furthermore, using the non-
dimensional variable (z̄ = z/σ)

φ̄(z̄) = ωCω z̄ω−1e−(Cz̄)ω , C = (B2 − B1
2)1/2 (20)

is obtained. Note that this form of the Weibull distribution
depends on only one parameter (ω) and that z̄ = 0 corresponds
to the mean of asperity heights. The skew, standard deviation
and kurtosis are given by

S̄ = B3 − 3B2B1 + 2B3
1

C3
,

σ = ηC,

K̄ = B4 − 4B3B1 + 6B2B
2
1 − 3B4

1

C4
,

(21)

respectively. It follows that these non-dimensional quantities
also depend only on the parameter ω. As ω is varied, both the
skew and kurtosis change. However, it is not possible to change
the skew without also changing the kurtosis, as indicated by
equation (21).

3. Results and discussion

In figure 3 we show the effect of noncontacting asperities
on the friction coefficient. For a given applied force, the
adhesive force on these asperities serves to increase the contact
force and hence increase the contact area and frictional force,
thereby giving a larger friction coefficient. As discussed
previously, for λ > 0.655 the effect of noncontacting
asperities vanishes. Figure 3 shows results with and without
noncontacting asperities for α = 0.01, γ = 0.001 and with
β = 1000 (λ = 0.523) as well as with β = 500 (λ = 0.415).
These cases represent the lowest values of λ used in [1].
The maximum effect on the friction coefficient is 2.1% for
λ = 0.523 and 3.8% for λ = 0.415. As was explained
above, this maximum difference corresponds to the smallest
applied load.

Results have been obtained for the friction coefficient
as a function of the normal load, for various values of the
skew (S̄) and the three key parameters (α, β, γ ) defined in

100 101 102 103 104 105

Nondimensional Normal Force (PT/NGb2)

with noncontacting asperities
with out noncontacting asperities

β = 1000

β = 500

3.0

2.5

2.0

1.5

1.0

0.5

0.0

C
o

e
ff

ic
ie

n
t 

o
f 

F
ri
ct

io
n

, 
µ

Figure 3. Effect of noncontacting asperities on the friction
coefficient for α = 0.01, γ = 0.001 and with β = 1000 (λ = 0.523)
and β = 500 (λ = 0.415).
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Figure 4. Coefficient of friction versus normal load for various
skews and α = 0.01, β = 1000, γ = 0.001.

the AMM model. Figure 4 shows the effect of skew for
the default values (α = 0.01, β = 1000, γ = 0.001) used
in [1]. Positive/negative skew is seen to decrease/increase
both the friction coefficient as well as its variation with
normal load. This result is due to negative skew causing
more asperities to be above the mean of asperity heights
than below. Correspondingly, there is less of a variation
in height distribution for the z > 0 portion than for z <

0. The more lightly loaded the contact, the larger is the
fraction of the Weibull distribution that is in contact. Thus,
the asymmetry in the height distribution causes the surface
to appear as if its roughness is reduced for lightly loaded
contacts.

Figures 5–7 show similar results for a lower value of the
surface roughness parameter (α = 0.006), for a lower value
of the friction regime parameter (β = 500) and for a higher
value of the adhesion parameter (γ = 0.002), respectively.
The smoother surface shows a greater effect of skew than the
rougher one. This result may be expected based on the previous
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Figure 5. Coefficient of friction versus normal load for various
skews and α = 0.006, β = 1000, γ = 0.001.
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Figure 6. Coefficient of friction versus normal load for various
skews and α = 0.01, β = 500, γ = 0.001.

Nondimensional Normal Force (PT/NGb2)

C
o

ef
fic

ie
n

to
fF

ri
ct

io
n

,µ

10-2 100 102 104 106 1080.0

0.5

1.0

1.5

2.0

2.5

3.0

S=1
S=0.5
S=0
S=-0.5
S=-1
Gaussian

Figure 7. Coefficient of friction versus normal load for various
skews and α = 0.01, β = 1000, γ = 0.002.

Table 1. Values of the Weibull shape parameter (ω) and
the corresponding dimensionless mean (z̄M), skew (S̄), and
kurtosis (K̄).

Parameter (ω) Mean (z̄M) Skew (S̄) Kurtosis (K̄)

40.74 32.32 −1 4.773
7.493 6.340 −0.5 3.258
3.602 3.243 0.0 2.716
2.216 2.098 0.5 3.028
1.564 1.530 1.0 4.159
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Figure 8. The variations of the friction coefficient with applied
force, for various values of the parameter ε, with
α = 10−2, β = 103, γ = 10−3, ρ = 1/2.

discussion. The effect of a reduction of the friction regime
parameter is to increase friction for the Gaussian distribution.
However, as the skew decreases to the value of −1 the effect of
β on friction decreases. The effect of an increase in the surface
energy parameter is to increase friction for both positive and
negative skew values.

It is noted that the friction results for the Gaussian
distribution do not correspond exactly to the zero skew case of
the Weibull distribution. This difference is because the Weibull
distribution only approximates a Gaussian distribution. For
lightly loaded contacts the difference between these two
distributions in their ‘leading edge’ is sufficient to produce
these discrepancies. The values of the Weibull shape parameter
(ω), the mean (z̄M) the skew (S̄) and kurtosis (K̄) are shown in
table 1.

Figures 8–10 show the variation of the friction coefficient
with the applied force, each for five different values of the
parameter ε (1.0, 0.5, 0, −0.5, −0.95), all with ρ = 0.5,
γ = 10−3 and for different combinations of α and β.
A positive/negative value of ε corresponds to taller asperities
which have a greater/smaller radius of curvature than the
shorter ones. For ε = 1.0, the tallest asperities have twice
the radius as the average, whereas for ε = −0.95 the tallest
asperities have a radius equal to 0.05 of the average. It is
interesting to note that in all three cases shown (figures 8–10),
an ε of −0.95 decreases friction and dramatically reduces the
load-dependence of friction which was predicted in [1] for a
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Figure 9. The variations of the friction coefficient with applied
force, for various values of the parameter ε, with α = 10−2,
β = 5 × 103, γ = 10−3, ρ = 1/2.
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Figure 10. The variations of the friction coefficient with applied
force, for various values of the parameter ε, with α = 3 × 10−2,
β = 103, γ = 10−3, ρ = 1/2.

constant radius of curvature. Similarly, for ε = 1.0, friction
is highest and so is its dependence on normal load. These
results occur because for a given normal force, the contact area
increases monotonically with the radius of curvature. Thus,
a negative ε gives a smaller friction than positive ε. That
trend is less pronounced for larger loads in which a greater
portion of the asperities are in contact. The effect of height-
dependent curvature is less for larger values of the friction
regime parameter (figure 9) and for greater values of the surface
roughness parameter (figure 10). The latter result can be
explained because for a given load the contacting asperities will
have a wider range of curvature for larger rather than smaller
values of α, resulting in an averaging effect. The former effect
is a consequence of the friction stress being less sensitive to
radius in the micro-scale region (large β) than in the nano-scale
regime (small β) of figure 2.

4. Conclusions

Three effects were included in a recently developed scale-
dependent multi-asperity model of elastic contact and friction,
which includes adhesion and scale-dependent friction. First, a
Weibull distribution of asperity heights was used, which allows
the skew and kurtosis to be varied, but not independently of
each other. The results obtained demonstrate that positive/
negative skew decreases/increases both the friction coefficient
and its dependence on the normal load. Second, the effect
of non-constant radii of curvature of the asperity summits,
with the curvature varying with asperity height, was examined.
This effect can be significant. For radii of curvature that
increase/decrease with height, it was found that the friction
coefficient increases/decreases as does its dependence on load.
The effect of noncontacting asperities was found to be small
because the original model [1] includes those asperities that
are in contact only because of the attractive force of adhesion.
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