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ransverse vibration of two axially moving beams connected by a
inkler elastic foundation is analyzed analytically. The two

eams are tensioned, translating axially with a common constant
elocity, simply supported at their ends, and of different materials
nd geometry. The natural frequencies and associated mode
hapes are obtained. The natural frequencies of the system are
omposed of two infinite sets describing in-phase and out-of-
hase vibrations. In case the beams are identical, these modes
ecome synchronous and asynchronous, respectively. Divergence
nstability occurs at a critical velocity and a critical tension; and,
ivergence and flutter instabilities coexist at postcritical speeds,
nd divergence instability takes place precritical tensions. The
ffects of the mass, flexural rigidity, and axial tension ratios of the
wo beams are presented. �DOI: 10.1115/1.2732353�

eywords: double beam system, gyroscopic system, translating
eams

Background
Web is a generic name for a thin, flexible continuous material

ound in numerous manufacturing processes. Paper making is one
f the oldest of the industries involved with web handling. In the
aper-making process, paper fibers are mixed with water and this
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pulp slurry is sprayed onto a large, flat, fast-moving wire screen,
sometimes called the paper cloth. As the wire screen translates
along the paper machine, the water drains out, and the fibers bond
together. The pulp is pressed between rolls in order to squeeze out
more water, and it is further dried by heated rollers. The stiffness
of the pulp increases as it is dried along the path of the machine.
The paper is eventually wound into a roll and removed from the
machine. Vibration problems can arise during transport of the
paper-wire system, where excessive vibration could cause the pa-
per to separate from the wire screen prematurely. Dynamic stabil-
ity of axially moving materials depends on the translation speed.
Axially moving materials have been modeled as a string, beam, or
plate �1–5�. In this work, the translating wire/paper system is
modeled as two translating beams connected by an elastic foun-
dation. The elastic foundation is used to represent the capillary
adhesion between the wire and the paper �6�.

Vibration of a translating web is affected by the convective
nature of its transverse acceleration. Dynamics and stability of
such gyroscopic systems have been investigated by many investi-
gators. A recent review is given in Ref. �7�. The eigenvalues of
general discrete gyroscopic systems are purely imaginary, and the
corresponding eigenvectors can be obtained by casting the gov-
erning equations in state-space representation, where the orthogo-
nality of the eigenvectors are confirmed, and the solution can be
established using the expansion theorem �8�. This also applies to
continuous systems �9�. A closed-form solution for axially moving
strings and beams, subjected to arbitrary excitations and initial
conditions, was given by Wickert and Mote �2�. At supercritical
translation speeds, the eigenvalues of the system become complex
and divergence and flutter instabilities coexist.

Vibration of a translating string supported by an elastic founda-
tion was studied by Bhat et al. �10�, Perkins �11�, Wickert �12�,
and Parker �13�. Presence of the elastic foundation does not
change the critical speed predicted by the classical moving thread-
line theory �11�, but the supercritical stability is affected �6�. Vi-
brations of translating string/beam systems guided by a single
spring-loaded guide have been reported in Refs. �14,15�, among
others.

Use of two �or more� nontranslating beams, connected by elas-
tic foundation�s� is common in engineering, and a variety of prob-
lems adopt it as a model. The basic model uses a Winkler foun-
dation, in which the beams are connected through closely spaced,
but noninterconnected linear springs. The fundamental vibration
modes are separated into two groups, where the beams move in
phase and out of phase with respect to each other �16–18�.

In this paper, the transverse vibrations of two translating, ten-
sioned beams interconnected by an elastic foundation are ana-
lyzed. The model represents the coupled behavior of paper trans-
lating with the paper cloth during the paper-making process. The
effects of damping in the foundation and the viscoelastic nature of
paper’s elasticity, which has been shown to be important for mod-
eling the dynamics of paper �19,20� are not included in this work

but should be the subject of future investigations.
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Problem Statement
The system consists of two parallel, slender, prismatic, and ho-
ogeneous beams joined by a Winkler foundation of stiffness k.
he Winkler foundation is a simplified model for the capillary
dhesion forces �6�. Both beams have the same length L between
he two supports, simply supported at their ends, axially translat-
ng with velocity V, and axially tensioned to p1 and p2. The
oupled governing equations of the transverse vibrations of the
ystem are derived using Euler-Bernoulli beam theory and can be
ritten as �e.g., �16��

E1I1
�4w1

�x4 + m1� �2w1

�t2 + 2V
�2w1

�x � t
+ V2�2w1

�x2 � − p1
�2w1

�x2

+ k�w1 − w2� = f1 �1�

E2I2
�4w2

�x4 + m2� �2w2

�t2 + 2V
�2w2

�x � t
+ V2�2w2

�x2 � − p2
�2w2

�x2

+ k�w2 − w1� = f2 �2�

here wj =wj�x , t� are the transverse deflections of the two beams
j=1,2�, x is the spatial coordinate, t is the time, mj are the mass
er unit length, Ej are the Young’s moduli, Ij are the second mo-
ent of areas of the beams, k is the stiffness of the Winkler

oundation, and f j are the external forces per unit length. The
imple support boundary conditions are

w1�0,t� =
�2w1�0,t�

�x2 = 0 and w1�L,t� =
�2w1�L,t�

�x2 = 0 �3�

w2�0,t� =
�2w2�0,t�

�x2 = 0 and w2�L,t� =
�2w2�L,t�

�x2 = 0 �4�

he two governing equations can be written in the following non-
imensional form:

�4W1

�X4 − ��2 − �2�
�2W1

�X2 + 2�
�2W1

�X � T
+

�2W1

�T2 + K�W1 − W2� = F1

�5�

�4W2

�X4 − ��Rs

Rp
��2 − � Rs

Rm
��2� �2W2

�X2 + 2�� Rs

Rm
� �2W2

�T � X

+ � Rs

Rm
� �2W2

�T2 + RsK�W2 − W1� = F2 �6�

ith the nondimensional variables defined as

X =
x

L
; Wj =

wj

L
; T = t� E1I1

m1L4�1/2

; �2 =
p1L2

E1I1
;

K =
kL4

E1I1
; � = V�m1L2

E1I1
�1/2

; Rm =
m1

m2
; Rs =

E1I1

E2I2
; Rp =

p1

p2
;

Rf =
f1

f2
; F1 =

f1L3

E1I1
; F2 =

Rs

Rf
F1; �̄ =

�

� E1I1

m1L4�1/2 �7�

here T is the nondimensional time, �2 is the nondimensional
ension parameter, K is the nondimensional elastic foundation
tiffness, Rm is the mass ratio, Rs is the flexural stiffness ratio, Rp

s the axial load ratio of the beams, �̄ is the nondimensional ei-
envalue, � is the nondimensional axial translation speed, Rf is the
xternal force ratio, and Fi are the nondimensional external forces.
he nondimensional forms of the boundary conditions become

W1�0,T� =
�2W1�0,T�

�X2 = 0 and W1�1,T� =
�2W1�1,T�

�X2 = 0
�8�
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W2�0,T� =
�2W2�0,T�

�X2 = 0 and W2�1,T� =
�2W2�1,T�

�X2 = 0

�9�

3 Natural Frequency Analysis
In order to obtain the natural frequencies and the mode shapes

of the system, the homogenous form of Eqs. �5� and �6� are con-
sidered. The response of beam 2 is expressed in terms of the
response of the beam 1, from Eq. �5� as follows:

W2 =
1

K
� �4W1

�X4 − ��2 − �2�
�2W1

�X2 + 2�
�2W1

�X � T
+

�2W1

�T2 + KW1�
�10�

Equations �5� and �6� are then combined into a single eighth-order
partial differential equation

�8W1

�X8 + A1
�6W1

�X6 + A2
�6W1

�X5 � T
+ A3

�6W1

�X4 � T2 + A4
�4W1

�X4 + A5
�4W1

�X3 � T

+ A6
�4W1

�X2 � T2 + A7
�4W1

�X � T3 + A8
�4W1

�T4 + A9
�2W1

�X2 + A10
�2W1

�T2

+ A11
�W1

�T
= 0 �11�

The constant coefficients An �n=1, . . . ,11�, given in the Appen-
dix, depend on the system parameters. The eigenfunction for beam
1 is shown to be �1�

�̂1�X� = 	
k=1

8

cke
i�kX �12�

where ck are constant coefficients and �k are the roots of the
characteristic equation of Eq. �11�. This characteristic equation is

obtained by substituting ei�kXe�̄T into Eq. �11�. The eigenfunction
for beam 2 is found by substituting Eq. �12� into Eq. �10�, and
becomes

�̂2�X� = 	
k=1

8

Bkcke
i�kX �13�

with

Bk =
1

K
��k

4 + ��2 − �2��k
2 + 2�i�k�̄ + �̄2 + K� �14�

In order to obtain the eigenvalues for the double-beam system,
boundary conditions, in Eqs. �8� and �9� are evaluated using Eqs.
�12� and �13�. This results in eight homogeneous algebraic equa-
tions, which are represented in matrix form as

D��̄� · c = 0 �15�

where c= 
c1 ,c2 ,c3 , . . . ,c8�T is the coefficient vector and D��̄� is
the matrix of coefficients. In order to have a nontrivial solution,

the determinant of matrix �D��̄�� must be zero. This gives the
characteristic equation of the system. The natural frequencies are
determined from the solution of the characteristic equation. The
mode shapes are then calculated from Eqs. �12� and �13� and
normalized using the real parts of the complex mode shapes with
respect to the symmetric matrix operator A as A�m

R ,�n
R�=�mn �1�.

4 Results and Discussion

4.1 Mode Shapes and Natural Frequencies. The natural fre-
quencies of the translating double-beam system are divided into
two fundamental odd and even sets ��2n−1� and ��2n�, for n
=1,2 , . . . The real and the imaginary parts of the odd-numbered

mode shapes display in-phase deflections, and those of the even-
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umbered mode shapes display out-of-phase deflections. When
he two beams are identical in all respects, the in-phase mode
hapes are anti-symmetric with respect to the midheight, in the
hickness direction, while the out-of-phase mode shapes are sym-

etric. Thus, the in-phase modes of identical beams do not deflect
he elastic foundation, whereas the opposite is true for the out-of-
hase modes. The presence of in-phase and out-of-phase modes is
he result of the coupling of the two beams by the Winkler foun-
ation, and it is observed for nontranslating beam systems �e.g.,
16,18��.

Figure 1 shows the first four modes for the mass ratio Rm � 0.6.
he symmetry and anti-symmetry of the in-phase and out-of-
hase mode shapes, respectively, are distorted as the material
roperties are not identical. This effect is observed for other Rm
alues, as well as Rp and Rs values, and parallelism of the modes
eteriorate further with decreasing values of Rm, Rp, and Rs. For
onidentical traveling beams, both groups of modes shapes are
lways affected by the coupling.

4.2 Effect of Translation Speed on Natural Frequencies.
he effect of the nondimensional translation speed � on the eigen-

alues �̄ of the two identical beams described above are shown in

Fig. 1 First four complex mode shapes for a traveling sy
line… and imaginary parts „dashed line… for K=100, �=5,
ig. 2. Similar to a single, tensioned, simply supported, axially

82 / Vol. 129, JUNE 2007
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moving beam analyzed in Refs. �2,21�,2 the first natural frequency
vanishes at the critical speed �c= ��2+	2�1/2. The eigenvalues for
the double-beam system are purely imaginary for �
�c but be-
come complex for larger values of �. The first natural frequency is
not affected by the presence of the second beam. This result is
expected because the odd-numbered natural frequencies �in phase�
are not affected by the presence of the Winkler foundation for
identical beams. Hence, the onset of divergence instability for the
double-beam system analyzed here is identical to the case of the
single beam, and the elastic stiffness does not alter the divergence
instability.

The first type of instability to occur for both in-phase and out-

of-phase modes is the divergence instability with Im��̄�=0 and

Re��̄��0. For faster translation speeds, flutter occurs for both
beams. This behavior is not altered as compared to the single-
beam case. Moreover, the out-of-phase frequency spectrum be-
haves qualitatively, the same way as the in-phase part. The in-

2Note that the critical speed expression given in Ref. 21 for a traveling Timosh-
enko beam can be shown to be identical to �c given by �2� after letting rotary inertia,

m with nonequal mass densities, Rm=0.6; the real „solid
10, and Rp=Rs=1
ste
�I=0, and shear stiffness G→.

Transactions of the ASME
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hase and out-of-phase frequency curves cluster near the regions
f flutter instability. Therefore, both in-phase and out-of-phase
odes would participate in the system’s response if it is excited

ear these frequencies.

4.3 Effect of Foundation Stiffness on Natural Frequencies.
or coupled beam systems with identical properties, the founda-

ion stiffness K has no effect on the in-phase modes but does
ffect the out-of-phase modes �1,6�. On the other hand, rendering
m, Rs, and Rp values 
1 makes the in-phase frequencies become
lightly dependent on K; and increases the out-of-phase frequen-
ies �1,6�. The increase of the in-phase frequencies, in this case, is
ue to the coupling between the beams, which is felt by both types
f modes when beams are not identical.

4.4 Effect of Axial Tension on Natural Frequencies. Next,
he effects of the non dimensional tension parameter � on the
atural frequencies of the system are investigated in the range 0
��10. The results are shown in Fig. 3, where the natural fre-

uencies are presented for different values of Rm, Rs, and Rp for
he translation velocity of �=5. As before, the base values are
hosen for two identical beams, as Rm=Rs=Rp=1, K=100, unless
therwise noted.

The effect of applying different nondimensional tension ���
alues on the natural frequencies is shown in Fig. 3�a�, for the
ase of identical beams. Figure 3�a� shows that frequencies in-
rease with increasing �, while the values of the natural frequen-
ies for the in-phase and out-of-phase modes remain relatively
lose to each other. An exception occurs near the minimum stabi-

izing tension �cr=3.9, where Im��̄� vanishes and the Re��̄� be-
omes positive. The system displays divergence instability when

�cr. Note that this �cr value is valid for the nondimensional

peed value of �=5.
The effect of nonidentical beam mass is investigated by letting

he mass ratio Rm=0.9. Results are presented in Fig. 3�b�, which
hows that the frequencies of the in-phase modes ��1, �3, �5�
ecrease only slightly, whereas frequencies of the out-of-phase
odes ��2, �4, �6� remain close to the identical beam case given

n Fig. 3�a�.
The effect of bending rigidity ratio, Rs=0.1, is shown in Fig.

�c�. Figure 3�c� shows that the first two in-phase-mode frequen-
ies ��1, �3� are not affected significantly by the reduction in the

ig. 2 Imaginary and real parts of the nondimensional natural
requencies of a system with identical properties, as a function
f translation speed �, K=100, �=10, and Rm=Rs=Rp=1
ondimensional bending rigidity Rs; however, the third in-phase-

ournal of Vibration and Acoustics
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mode frequency ��5� and the out-of-phase-mode frequencies in-
crease, with respect to the case of identical beams. The minimum
stabilizing tension is approximately �cr�2.5.

The effect of nonequal tension distribution between the two

Fig. 3 Nondimensional natural frequencies as a function of
the nondimensional axial tension parameter � for K=100 and
�=5
beams is shown in Fig. 3�d�, where the axial load ratio is Rp

JUNE 2007, Vol. 129 / 383
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0.3. The in-phase-mode frequencies are not affected signifi-
antly, whereas the out-of-phase mode frequencies show a large
ncrease for the higher � values with respect to the identical beam
ase �Fig. 3�a��. The minimum stabilizing tension is approxi-
ately �cr�3.
In summary, by increasing the nondimensional tension �, the

verall stiffness of the system increases, causing the natural fre-
uencies of the in-phase and out-of-phase modes to increase. In-
reasing the mass, bending rigidity, and tension of one of the
eams affects the out-of-phase modes and causes their natural
requencies to increase. Out-of-phase modes are affected more
trongly by increasing tension because the system represented by
hese modes is more strongly subjected to the effect of the foun-
ation stiffness.

4.5 Effect of Axial Tension on Critical Speed and Stability.
s discussed in Sec. 4.2, the critical speed �c depends on the axial

ension. Stability regions as a function of nondimensional transla-
ion speed � and nondimensional tension � are presented in Fig. 4,
ith different mass ratios �Rm=1, 0.9, 0.6, 0.3� and K=100, Rs
Rp=1. It is seen that lowering the mass ratio Rm reduces the

table domain. This is expected because lowering the mass ratio
auses the mass of one of the beams to increase. On the other
and, the bending rigidity Rs and axial tension Rp ratios have a
mall effect on the stability regions �6�.

Conclusions
The natural frequencies of an elastically connected, axially

oaded, simply supported, axially translating double-beam system
re composed of two infinite sets, where the odd-numbered fre-
uencies show in-phase and even-numbered frequencies show
ut-of-phase vibrations. Divergence instability occurs at the criti-
al speed �cr, and flutter and divergence instabilities coexist in
ostcritical speeds, with frequencies of the both modes clustering
ear flutter regions. In the case of identical beams, the presence of
he elastic foundation does not affect the critical speed. Lowering
he tension of one of the beams causes divergence instability at the

inimum stabilizing tension �cr. In cases where the stiffness or
xial loading ratios between the beams are nonidentical, the out-
f-phase frequencies are affected more significantly. The stability
egions are obtained as a function of axial tension and critical
peed for different mass ratios. It is found that the critical speeds

ig. 4 Nondimensional transport speed � as a function of non-
imensional axial tension parameter � for K=100 and Rs=Rp
1 and different mass ratios Rm
ould become significantly lower for low mass ratios.

84 / Vol. 129, JUNE 2007

aded 06 Jun 2007 to 129.10.64.137. Redistribution subject to ASME
Acknowledgment
This work was carried out as part of M. Gaith’s graduate work

at Northeastern University.

Appendix
The coefficients of Eq. �11� are

A1 = �1 +
Rs

Rm
��2 − �1 +

Rs

Rp
��2 �A1a�

A2 = 2��1 +
Rs

Rm
� �A1b�

A3 = �1 +
Rs

Rm
� �A1c�

A4 = K�1 + Rs� + � Rs

Rm
�2 −

Rs

Rp
�2���2 − �2� �A1d�

A5 = 2�� Rs

Rm
�2 −

Rs

Rp
�2� + 2�� Rs

Rm
���2 − �2� �A1e�

A6 = � Rs

Rm
�2 −

Rs

Rp
�2� + � Rs

Rm
���2 − �2� + �2��2� Rs

Rm
� �A1f�

A7 = 4�� Rs

Rm
� �A1g�

A8 = � Rs

Rm
� �A1h�

A9 = K� Rs

Rm
�2 −

Rs

Rp
�2� + RsK��2 − �2� �A1i�

A10 = RsK�1 +
1

Rm
� �A1j�

A11 = 2�RsK�1 +
1

Rm
� �A1k�
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