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ABSTRACT 
The dynamic response of an axially translating continuum subjected to the 

combined effects of a pair of spring supported frictional guides and axial acceleration is 
investigated; such systems are both non-conservative and gyroscopic.  The continuum is 
modeled as a tensioned string translating between two rigid supports with a time dependent 
velocity profile. The equations of motion are derived with the extended Hamilton’s 
principle and discretized in the space domain with the finite element method. The stability 
of the system is analyzed with the Floquet theory for cases where the transport velocity is a 
periodic function of time. Direct time integration using an adaptive step Runge-Kutta 
algorithm is used to verify the results of the Floquet theory. This approach can also be 
employed in the general case of arbitrary time-varying velocity. Results are given in the 
form of time history diagrams and instability point grids for different sets of parameters 
such as the location of the stationary load, the stiffness of the elastic support, and the 
values of initial tension. This work showed that presence of friction adversely affects 
stability, but using non-zero spring stiffness on the guiding force has a stabilizing effect. 
This work also showed that the use of the finite element method and Floquet theory is an 
effective combination to analyze stability in gyroscopic systems with stationary friction 
loads.   
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1. INTRODUCTION 

Dynamics of translating continua has been intensely investigated in the past forty 
years because of the large number of applications that are encountered in mechanical 
systems such as power transmission chains and belts, band saw blades, textile fibers, 
magnetic tapes, paper sheets, thread lines, elevator cables and pipes conveying fluids. 
Excessive vibrations are usually to be avoided in axially travelling structures; in magnetic 
tape drives, for example, they cause imperfections on the magnetic signal and could cause 
damage to the tape, while in band saws they result in poor cutting quality. 

The literature on axially moving continua has been reviewed up to 1978 by Ulsoy, 
Mote and Szymani [1] and more recently by Wickert and Mote [2] who included the work 
done up to 1988. A review on the research specifically regarding the transmission belts 
was given by Abrate, who discussed the effects of parameters such as initial tension, 
transport velocity, bending rigidity, support flexibility and pulley imperfections [3].  

Wickert and Mote investigated the moving load problem applied to monocable 
ropeway systems [4]. Closed-form solutions for axially moving continua subject to 
arbitrary excitation and initial conditions were also derived by using complex modal 
analysis and a Green’s function method [5]. Ulsoy treated a model for the transverse 
vibration of an axially moving beam including elastic coupling between two adjacent spans 
[6]. In these works the axial velocity is taken to be constant and the equations of motion 
have constant coefficients. In many practical applications, however, the vibration transients 
are important and may significantly affect the motion.  

Miranker was the first to derive the equation of motion for an axially accelerating 
string [7]. An approximate solution for an accelerating string driven harmonically at one 
end was later given by Mote who analyzed stability by Laplace transform techniques [8]. 
More recently Pakdemirli, Ulsoy and Ceranoglu applied the Floquet theory to analyze the 
stability of a string moving with a prescribed sinusoidal velocity function [9]. Employing 
the same method, Pakdemirli and Batan analyzed stability for the case with periodic 
constant acceleration-deceleration profile [10]. Pakdemirli and Ulsoy also applied the 
method of multiple scales when the axial velocity of the string is assumed to have small 
harmonic variations about a constant mean velocity [11]. Wickert presented a perturbation 
analysis, following the asymptotic method of Krylov, Bogoliubov and Mitropolsky, for the 
case of a transport velocity varying slowly on the time scale of the natural periods of 
oscillation [12]. Zhu and Guo [13], and Ozkaya and Pakdemirli [14] eventually found 
exact solutions for a string with arbitrary velocity profile through equivalence 
transformations in terms of curvilinear characteristic coordinates. Wickert [15] and Oz and 
Pakdemirli [16] also analyzed stability of accelerating beams and investigated the effect of 
different flexural stiffness values by perturbation techniques. 

In all the studies mentioned above the system is completely conservative and no 
friction is involved. However, in many applications, friction forces generated by 
components such as fixed guides and recording heads could significantly affect the motion 
of the continuum. 

Cheng and Perkins derived exact solutions through separation of variable for an 
axially moving string subject to a dry friction guide, in case of constant transport velocity 
[17]. Zen and Müftü investigated this problem using the finite element method and α-
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method of time integration [18]. Chen considered a stationary load containing parameters 
such as inertia and damping, in addition to dry friction and stiffness [19]. Chakraborty and 
Mallik investigated the response of a beam with a frictional intermediate guide, but again 
the transport velocity is considered to be constant [20]. The problem of an accelerating 
translational continuum subjected to non-conservative forces has not been addressed to the 
best of the authors' knowledge.  

In this paper, the equation of motion is derived with the extended Hamilton’s 
principle, and discretized in the space domain employing a finite element approach. The 
Floquet theory is employed to analyze stability of a frictional, but linear, system with 
periodic transport velocity profile. The results for systems without friction load are 
compared to those given in [9]. The effects of parameters such as stationary load location, 
stiffness of the elastic supports, initial tension and friction force are also investigated with 
respect to stability. Direct time numerical integration, based on a Runge-Kutta algorithm, 
is used to confirm the results of the Floquet theory and can be used in the general case of 
non-linear systems with arbitrary transport velocity.  

 
2. GOVERNING EQUATIONS 

The model is graphically represented in Fig. 1a, where a continuum is axially 
translating between two supports, placed a distance L apart, with a prescribed axial 
velocity ( )V t . First the case with rigid and fixed end supports is considered. The 
continuum is assumed to have negligible bending stiffness, like a string, and it could be 
subjected to a distributed load , which is taken as positive downward. The model is two-
dimensional, therefore only displacements in the x-z plane are considered and defined as u 
and w, respectively. The non-conservative subsystem is represented by two stationary 
friction loads  and , located at 

q

1F 2F x D=  and acting respectively on the top and on the 
bottom of the string. The load system remains in contact with the string due to two pre-
loaded springs; the pre-load values are  and , while the spring stiffnesses are  and 

. The string is subject to the tensions  and  at the left and at the right of the friction 
load, respectively.  

1N 2N 1k

2k 1T 2T

In order to derive the equations of motion for the model described above, 
Hamilton’s Principle has been employed in its extended version including non-
conservative forces [21]. Hamilton’s Principle states that, as a system moves from 
configuration 1 at time  to configuration 2 at time , the path taken is such that: 1t 2t

 (
2

1

0
t

kin pot nc
t

E E W dtδ )− +∫ = , (1) 

where δ denotes the variation,  is the kinetic energy, kinE potE  is the total potential energy 
and  is the work done by non-conservative forces. ncW
  The kinetic energy can be derived by defining a position vector and taking its 
derivative to obtain the velocity of any point in the system. The position vector r after 
deformation of a point initially located at a distance x from the origin can be written as 
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 ( )x u w= + +r i k , (2) 
where i and k are the unit vectors along the x-axis and z-axis respectively. The material 
derivative of the position vector represents the velocity vector v and can be written as 
follows: 
 ( ) ( ), , , ,t x t xV u Vu w Vw= + + + +v i k , (3) 
where a subscripted comma represents partial differentiation, and V  is the longitudinal 
transport velocity. The kinetic energy of the string is given by:  

 ( ) ( )2
, , , ,

02

L

kin t x t xE V u Vu w Vwρ 2
dx⎡ ⎤= + + + +

⎣ ⎦∫ , (4) 

where ρ  is the mass of the string per unit length. The total potential energy is given by: 

 ( )2
1 2

0

1 1 
2 2

L

pot x x DE EA T qw dx k k wε ε⎛ ⎞= + + + +⎜ ⎟
⎝ ⎠∫ 2 . (5) 

where the first term represents the strain energy and the following terms are the potential 
energy of the applied loads such as tension, distributed forces and elastic forces.  is the 
Young’s modulus of the string, 

E
A  is the cross-sectional area, xε  is the axial strain, T  is 

the tension, q  is the distributed load,  and  are the spring stiffnesses and 1k 2k Dw  is the 
vertical string displacement at location x D= . 

Using the non-linear Lagrangian definition of axial strain, 

 ( )2
, ,

1
2x x xu wε = + , (6) 

in Eq (5) and after neglecting the higher order terms, the total potential energy is expressed 
in terms of the two dependent variables  and , as follows: u w

 ( )2 2
, , , 1 2

0

1 1 1
2 2 2

L

pot x x x DE EAu T u w qw dx k k⎡ ⎤⎛ ⎞= + + + + +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦∫ 2w . (7) 

The work done by non-conservative forces is expressed by the following equation 
 ( )1 2nc DW F F= − + u , (8) 
where Du  is the horizontal displacement of the string at x D= . Finally by substituting Eq 
(4), Eq (7) and (8) into Eq (1) leads to the following equations of motion in the x  and  
directions: 

z

 ( )( ) ( ) ( )2
, , , , , 1 21 2tt x xt xx xxu V u Vu V u EAu F F x Dρ δ+ + + + − + + − =� 0 , (9) 

 ( ) ( ) ( )2
, , , , , 1 22 0tt x xt xx xxw Vw Vw V w Tw q k k w x Dρ δ+ + + − + + + − =� , (10) 

where the superscript denotes time derivation and ( )x Dδ −  is the Dirac delta function. 
Thus it is found that the motion is governed by two partial differential equations with time 
dependent coefficients. These are the transport velocity V , its time derivative V , string 
tension T  and frictional forces  and . For a continuum moving between two pulleys, 
one of which is supported by a spring with stiffness k

�

1F 2F
s as shown in Fig. 1b, force 

equilibrium requires that the initial tension in the string T0, the centrifugal force 2Vρ  
acting on the string, the restoring forces developed in the string ,  and in the spring /su AE L
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ksusp be in equilibrium. us and usp are the elongations of the string and the spring, 
respectively. By considering the total elongation due to centrifugal force uc = us + usp along 
with the force balance it can be shown that the tensile force varies according to the 
following relation [22]: 
 2

0T T Vηρ= + , (11) 

where ( )1 1 2sk L EAη = +⎡⎣ ⎤⎦  is a parameter depending on the support system. For constant 
displacement mechanisms, such as the fixed rollers with rigid shafts found in tape drives, 
η  can be taken as 0. When the support rigidity vanishes, as in case of some test equipment 
where the tension is applied by dead-weights, η  is equal to 1. In such a case, the string 
tension depends on velocity, and therefore on time [9]. On the other hand the frictional 
forces depend on the normal force, which is a function of the string displacement at 
location x D=  in the following way: 
 [ ] [ ]1 1 1 2 2 2,           D DF N k w F N k wµ µ= + = − , (12) 
where µ is the dynamic friction coefficient, considered to be the same on both sides of the 
string. It can be noted that this expression for the friction forces constitutes a coupling term 
for the governing equations (9) and (10). 

This system of equations can be simplified for many practical cases where the 
longitudinal wave speed, cl = (EA/ρ)1/2, greatly exceeds the transverse wave speed , c = 
(T/ρ)1/2. For example, in a steel band saw blade with Young’s modulus of 202 GPa, mass 
density of 7800 3kg m , cross sectional dimensions of 2 × 30 mm, and under tension of 26 
kN, the longitudinal wave speed becomes 5100 m/s, while the transverse wave speed 
becomes 75 m/s [15]. Typical transport velocity for a band saw blade is around 50 m/s. In 
magnetic tapes, Young’s modulus is about 5 GPa, mass per unit volume is 1400 3kg m , 
cross sectional dimensions are 8 mm × 12 µm, typical tension is 0.32 N, so the longitudinal 
and the transverse wave speeds are 1890 m/s and 49 m/s respectively, while the transport 
velocity is usually less than 8 m/s [23]. Therefore, in the time scale of transverse motion 
the string can be assumed to stretch in a quasi-static manner [17]. 

Under this assumption the longitudinal inertia term in Eq (9) can be neglected. The 
same equation, after integration with respect to x  and using the constitutive relation, 
 xT EAu=  (13) 
where the higher order, , term is neglected, becomes: 2

, / 2xw

 
( ) ( )

( ) (
1 1 2

1 1 2 1 2 D

T T F F H x D

T N N k k w H x Dµ

= + + −

= + + + − −⎡ ⎤⎣ ⎦ )
)

, (14) 

where (H x D−  is the Heaviside function. Then by substituting Eq (14) into Eq (10) the 
final equation of motion in the transverse direction becomes 
( ) ( ) ( ){ }2

, , , , 1 1 2 1 22tt x xt xx D xxw Vw Vw V w T N N k k w H x D wρ µ+ + + − + + + − −⎡ ⎤⎣ ⎦�
,  

 ( ) ( )1 2 0q k k w x Dδ+ + + − = . (15) 
This is the equation of motion of a tensioned, accelerating string subjected to frictional 
forces at x = D and distributed load q. Eq (15) has time-dependent coefficients due to V = 
V(t), and a non-linearity due to the friction load dependence on the vertical displacement at 
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point x D= ; only in the special case of 1k k2=  the non-linearity vanishes. The first four 
terms of Eq (15) represent inertia terms and are respectively the local, the tangential, the 
Coriolis and the centripetal acceleration. The terms in the curly brackets represent the 
tension load, which depend on the friction force and eventually on the normal and the 
elastic forces, after the simplifications described above. The last two terms represent the 
external loads. The equation of motion is subjected to the following boundary conditions: 
 ( )at 0 :           0, 0,                             0x w t t= = ≥  (16) 
 ( )at :           , 0,                            0x L w L t t= = ≥  (17) 
and to the following initial conditions: 
 ( ) ( )0at 0 :           , 0 ,                                     0t w x w x= = x L< <  (18) 
 ( ) ( ), 0at 0 :           , 0 ,                                    0tt w x w x x= = � L< <  (19) 
  
3. SOLUTION METHODS 

Next a numerical procedure to analyze the governing equation (15)  for the general 
case of time-dependent coefficients is described. In Section 3.1 the finite element method 
is used to discretize the system in the space domain. In Section 3.2 the Floquet theory is 
used to analyze stability in linear systems with periodic coefficients. The procedure to 
implement this method in a computer program is also described. 

3.1 Space Discretization by the Finite Element Method 
The equation of motion is first discretized in the space domain by using the finite 

element method. Traditional variational methods, such as the Galerkin’s method for 
example, are less suitable for this purpose because the stationary load system provokes a 
discontinuity in the displacement function, making it more difficult to select, a priori, an 
approximation function for the whole string.  

Following the steps explained in [24] the space domain is divided into a finite 
number of elements n, with the displacements, velocities and accelerations at the 1n +  
nodes as degrees of freedom. For each element a linear approximation function is chosen. 
Upon assembly of elements and using matrix notation, the following boundary /initial 
value problem is obtained: 
 + + =Mw Gw Kw f�� � , (20) 
 , (21) 1 10,        0                 0nw w t+= = ≥

 ( ){ } ( ){ }0 0 0 0,     ,           1,..., 1t i t iw x w x i n= == = =w w� � +  (22) 
where the subscript i refers to a nodal location on the discretized domain. 
 In Eq (20) ,  and ( 1)n+w ( 1)n+w� ( 1)n+w��  are the vectors of displacements, velocities and 
accelerations, defined as follows:  

  (23) 
1 1

1 1

,        ,         

n n

w w

w w+ +

⎧ ⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪= = =⎨ ⎬ ⎨ ⎬ ⎨
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭ ⎩ ⎭

w w w
� �

� ��# #
� �

1

1n

w

w +

⎪
⎬

�
#
�
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The consistent mass matrix  and the gyroscopic matrix  are found as 
follows: 

( 1) ( 1)n n+ × +M ( 1) ( 1)n n+ × +G

 ( )

2 1 0 1 1 0
1 4 1 1 0 1

,           
6

1 4 1 1 0 1
0 1 2 0 1

eh V tρ ρ

−

1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢− ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= = ⎥
⎢ ⎥ ⎢ − ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ − − ⎥⎣ ⎦ ⎣

M G% % % % % %

⎦

4

 (24) 

where  is the element length. Note that the subscripts in brackets indicate the size of the 
vectors or matrices. Note that the gyroscopic matrix has a skew symmetric structure. The 
stiffness matrix  consists of four sub-matrices: 

eh

( 1) ( 1)n n+ × +K
 1 2 3= + + +K K K K K  (25) 
where,  

 

( ) ( )

( ) ( )

2

1 2

3 1 1 2

1 1 0 1 1 0
1 0 1 1 2 1

,     
2

1 0 1 1 2 1
0 1 1 0 1

1 1 0
1 2 1

1

1 2 1
0 1 1

e

i
e

V t V t
h

T F F H x D
h

ρ ρ

− −⎡ ⎤ ⎡
⎢ ⎥ ⎢− −⎢ ⎥ ⎢−

= =⎢ ⎥ ⎢
⎢ ⎥ ⎢− −⎢ ⎥ ⎢
⎢ ⎥ ⎢− − −⎣ ⎦ ⎣

−⎡ ⎤
⎢ ⎥− −⎢ ⎥

= + + −⎡ ⎤ ⎢ ⎥⎣ ⎦
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

K K

K

�
% % % % % %

% % %

1

⎤
⎥− ⎥
⎥
⎥− ⎥
⎥⎦ , (26) 

where D  is the node at xi = D. The matrix K4 is defined such that , for all i and j, 

except at the guide location (i = D, j = D) where 
ij4K = 0

4DD
K  = (k1+k2). All of the sub-matrices of 

K have the same dimensions as K. The vector of external loads ( 1)n+f  is found as: 

 {1 2 2 1
2

Teqh }−
=f … . (27) 

The stiffness matrix  derives from four distinct physical effects; the tangential 
acceleration component , the centripetal acceleration component , the tension 
component  and the component  due to the elastic springs. The mass, tension and 
centripetal acceleration matrices are symmetric, while the gyroscopic and the tangential 
acceleration matrices are skew-symmetric. If the mass per unit length is assumed to be 
constant in time, then the mass matrix is also constant, while in general the other matrices 
can be time-dependent. 

K
1K 2K

3K 4K

Eq (20) represents the semi-discrete form of the equation of motion. After the 
application of the boundary conditions (21) the first and the last rows of the matrices in Eq 
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(20) are dropped and the system is reduced to n-1 equations with 3(n-1) degrees of 
freedom. 
 

3.2. Stability Analysis by the Floquet Theory  
When the system is linear and the time-dependent coefficients are periodic, a 

stability analysis can be achieved by the Floquet theory as explained by Nayfeh and Mook 
[26]. By defining  
 1 2,      Z ,          for 1,...,i i i iZ w w i= = =� N  (28) 
where N = n – 1, the canonical form of Eq (20) is obtained as follows: 
 ( )t= +Z P Z Q� , (29) 
where the matrices and the vectors involved are defined as follows: 

 ( )
[ ] [ ]

( ) ( )
[ ]

1 1 1
(2N) (2N)×(2N) (2N)

,      ,      t
t t− − −

⎡ ⎤⎧ ⎫
= = =⎢ ⎥⎨ ⎬ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

0 I 0
Z P Q

M K M G M f
1

2

Z
Z

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

. (30) 

In this study the longitudinal transport velocity V  is allowed to be periodic function of 
time with period T. Therefore, the matrix ( )tP  also varies periodically with period T. The 
vector Q, on the other hand, is assumed to be constant. 

The 2N-dimensional linear system expressed by (29) admits a set of 2N  linearly 
independent solutions ( )iZ t , with i = 1, …, 2N. These solutions constitute the fundamental 
set of solutions. As P(t+T) = P(t), due to the periodic nature of G and K matrices, and as Q 
is constant, it is deduced that ( )iZ t T+ , with i=1,…,2N,  also forms a fundamental set of 
solutions [26]. A constant, nonsingular (monodromy) matrix  establishes the 
relation: 

2 2N N×Φ

 ( ) ( )t T t+ =Z ΦZ . (31) 
The eigenvalues iλ  of the monodromy matrix are the Floquet or characteristic multipliers. 

It is also possible to find a generalized modal matrix B that reduces the matrix Φ  
to the Jordan Canonical form, such that: 
 1− =B ΦB J . (32) 
where J is upper triangular. On its main diagonal there are the eigenvalues of , the terms 
above the repeated eigenvalues are equal to 1 and all the other terms are zeros. 

Φ

If the eigenvalues of  are distinct, then J is diagonal, so in this case we have: Φ
 ( ) ( ) ,       for 1,..., 2n

i i iZ t nT Z t i Nλ+ = =  (33) 
where n is an integer. Consequently as t : →∞

 
( )
( )

0        if 1

      if 1
i

i i

Z t

Z t

λ

λ

→ <

→∞ >
i  (34) 

when 1iλ =  then iZ  is periodic with period T, while for 1iλ = −  iZ  is periodic with period 
2T. 

When  has repeated eigenvalues, then J is simply triangular and it can be 
demonstrated also for this case that the solutions of the system for t  are bounded if, 

Φ
→∞
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and only if, all the Floquet multipliers have modulus smaller or at most equal to one [26]. 
On the other hand, if there exists even just one multiplier with magnitude larger than 1, 
then, there is at least one unbounded solution and the system becomes unstable [26]. The 
stability analysis of the system ultimately depends on the evaluation of the monodromy 
matrix and its eigenvalues. In Appendix A, a comparison of the amplitude growth based on 
the Floquet theory (Eq (33)), and direct time integration is provided. 

The monodromy matrix is obtained numerically. By setting ( )t =Z I , where I2N×2N 
is the identity matrix, it is seen from Eq (31) that ( )t T+ =Z Φ . This means that the 
monodromy matrix Φ  is equal to the matrix of the fundamental set of solutions Z(T), 
when the system is solved with initial conditions Z(0) = I. The monodromy matrix is thus 
established by numerically integrating Eq (29) for one full period, 2N times. A Matlab 
program has been created for this analysis. Some details of this program and evaluation of 
its performance is presented in Appendix B.  

 
4. RESULTS AND DISCUSSION 

In Section 4.1 the Floquet theory is applied to the special case of a travelling string 
with sinusoidal transport velocity and without guiding forces, such as in [9]. The stability 
of the system is investigated for different values of amplitude and frequency of the velocity 
function. In order verify the results of the Floquet theory, time history diagrams of some of 
the cases are obtained through numerical time integration. The effects of frictional guiding 
forces on the stability are investigated in Section 4.2, by varying the friction force 
magnitude, spring stiffness and the load position. 

4.1. Stability Analysis of Accelerating Systems without Stationary Load  
 First, the stability of an axially accelerating string with periodic transport velocity 
is investigated using the Floquet theory. This model is a simplified form of the general 
case described in this paper by Eq. (15), without the non-conservative forces ( 0µ = ) , the 
elastic springs (k1 = k2 = 0) and the distributed force (q = 0). The base parameters used in 
this paper, given in Table 1, are from Pakdemirli et al. who used the Galerkin method to 
discretize the equation of motion in the space domain by assuming a series of sinusoidal 
trial functions [9]. The transport velocity is assumed to vary in time according to: 
 ( ) ( )0 0sinV t V tω= , (35) 
where  represents the maximum amplitude of the velocity function and 0V 0ω  is its 
frequency.  

For constant transport speed a buckling instability occurs when the transport 
velocity becomes equal to the wave speed [2]; the corresponding velocity is the critical 
transport velocity . In the case of a string with a flexible support, as shown in Fig. 1b, 

transverse wave speed is 
CRV

( )1/ 2
0c T ρ= ; by using  Eq (11) in Eq (15) the critical transport 

velocity can be shown to be: 
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( )

0

1CR
TV

ρ η
=

−
. (36) 

For the parameter values given in Table 1,  is found to be 92.68 m/s. CRV
 Pakdemirli et al. showed that, by increasing the number of terms of approximation 
in the series from four to eight, more unstable points are found especially at lower 
frequencies [9]. Moreover these points tend to cluster and represent a better defined 
instability region. These results, obtained by taking up to eight terms of approximation, 
also showed the existence of many stable points in the area of the grid even when  
[9]. In Fig. 2, on the other hand, the unstable data points obtained with the finite element 
implementation of the Floquet theory for n = 10 are plotted. In this case all the points in the 
grid when  are predicted to be unstable, with the only exception for the point 
corresponding to  m/s and 

0 CRV V>

0 CRV V>

0 94V = 0 44ω =  rad/s. The differences between the plots given 
in [9] and Fig. 2 are related to the different methods employed for the space discretization, 
which affect in different manners the resulting stiffness of the system. The values of 
the

MAX
λ  for all the unstable points in Fig. 2 are reported in reference [29].  

Direct numerical time integration is employed in order to verify the results of ; and, 

b) moving between two pulleys.  

Fig. 2. A Runge-Kutta algorithm, described in [28], is incorporated in a computer program 
to integrate the governing equation (29). The system is given a small initial perturbation 
described by: 

 
( ) ( )
( )

0

0

sin                 for 1 ,

0                                       for 1 2 ,   
i i e

i i

Z w x A ih L i N

Z w x N i N

π= = − ≤ ≤

= = + ≤ ≤�
 (37) 

where 1 A mµ= . This program is used to obtain the displacement history at any selected 
node of the string. Two sets of ω0 - V0 values were used. The numerical time integration 
for both of these cases has been carried out for 100 periods ( 02T π ω= ). The first 10 
seconds of the time history of the node located at 2x L=  for the parameter set of (36 
rad/s, 80 m/s) is given in Fig. 3, and that of (44 rad/s, 94 m/s) is given in Fig. 4. The 
maximum eigenvalues of these points correspond to λmax = 1.0172 and 1.0000, 
respectively [29]. Thus the first set is expected to be unstable while the second one is 
expected to be stable. 

Figs. 3 and 4 show a good agreement with the predictions of the Floquet theory. 
Indeed, in Fig. 3, where λmax = 1.0172, the displacement of the mid-point experiences a 
periodically increasing amplitude. This confirms the unstable nature of the corresponding 
parameter set, which was already recognized to be unstable by the previous Floquet 
analysis. It is interesting to note that in this case V0 < Vcr. On the other hand, Fig. 4 shows 
the displacement history of the only data point with  that was predicted to be stable 
by the Floquet theory. The plot shows that even after a large number of periods the 
amplitude of oscillation remains bounded, therefore this system is confirmed to be stable.  

0 CRV V>
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4.2. Stability Analysis of Accelerating Systems with Stationary Load 

  In this section the Floquet theory is applied to a system translating with a 
periodically varying transport velocity and subjected to a pair of frictional guiding forces, 
as represented in Fig. 1. The stiffness values of the two springs are assumed to be equal, 
namely , therefore the governing equation is linear and the Floquet theory can still 
be applied. The total friction force 

1k k= 2

21F F+  is assumed to be constant and equal to a certain 
fraction of the initial tension . The transport velocity varies sinusoidally according to Eq 
(35). The tension now is not constant along the entire string span; on the left side of the 
guide location the tension  is given by: 

0T

1T

 2
1 0T T Vηρ= + , (38) 

while the tension  on the right side is derived by the force balance in the x-direction and 
is given by: 

2T

 ( )2 1 1 2T T F F= + + . (39) 
Since the transport velocity is changing direction with period , the friction forces also 
change direction with period  as shown in Fig. 5a and 5b. It is seen that with these 
assumptions the profile of the tension  has a discontinuity at multiples of 

/ 2T
/ 2T

2T 2T  as shown 
in Fig. 5d. 
 

4.2.1 Effect of Friction Force 
The case of ( )1 2 0 0.1F F T+ =  has been analyzed for  - 0V 0ω  combinations 

identical to those of Fig. 2;  is varied between 10 to 94 m/s with a step of 2 m/s, while 0V

0ω  was changed from 10 to 50 rad/s with a step of 2 rad/s. The base parameters given in 
Table 1 are used, in addition to D/L = 0.5, and k1 = k2 = 10 N/m. The monodromy matrix 
was evaluated for each 0V 0ω−  pair, and its eigenvalues, which represent the Floquet 
multipliers of the system, were found. Those systems that have at least one eigenvalue with 
modulus larger than one are unstable and are marked with a circle in the 0V 0ω−  plane.  
The unstable systems are shown in Fig. 6 and the corresponding eigenvalues are reported 
in Table 2, where for each unstable system only the eigenvalue with largest modulus is 
listed. The wave speed in this case is not constant along the string span. The lower wave 
speed is obtained where and when the tension is lower, and this happens on the side of the 
string at the right of the stationary load in the half period when the friction force in Eq (39) 
has a negative sign. In fact during 2T t T< <  the tension  is lower and the critical 
transport speed becomes: 

2T

 
( )

00.9 87.9 m/s,       for 2 ,   
1CR

TV T t
ρ η

= = < < <
−

T D x L<  (40) 

Fig. 6 shows that most of the points with  are unstable; however there are several 
stable data points when  and one stable point when 

0 CRV V>

0 88 m/sV = 0 90 m/sV = . A possible 
explanation of this could be that in these cases the part of the system where the wave speed 
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is lower does not remain under critical conditions for a time long enough to cause 
instability. Considering that the magnitude of the largest eigenvalue is an indication of how 
fast the system becomes unstable (Appendix A), it is worth noting that the instabilities, 
caused by friction, are not as strong as the instabilities that occur when V0 ≥ VCR, as can be 
seen from the eigenvalue magnitudes reported in Table 2.  

A of comparison Fig. 6 and Fig. 2 shows that, when a stationary friction load is 
added to the system, the number of unstable points increases from 97 in Fig. 2 to 311 in 
Fig. 6. This is despite the fact that the friction forces are just 10% of the initial tension . 
In order to investigate whether this is mostly due to the friction force or whether it is the 
effect of the spring forces, the same case is analyzed when the spring stiffnesses are 
negligible, namely . The grid of the unstable systems is shown in Fig. 7 and the 
corresponding eigenvalues are listed in Table 3. In this case there are 357 unstable points 
on the grid, and thus the total number of unstable points is even higher than the case with 
non-zero stiffness springs. It can be deduced that the stability of the system is mainly 
affected by the addition of a stationary friction force, and with small values of friction 
there are unstable points even for small values of amplitude and frequency. The statement 
about the relative weakness of the instability introduced by addition of friction is also valid 
in this case, as shown in Table 3. 

0T

1 2 0k k= =

Next the value of the constant friction force is increased up to 50% of the initial 
tension, namely ( )1 2 0 0.5F F T+ = . The stability has been analyzed for a range of  - 0V 0ω  
combinations where  was changed from 2 to 94 m/s with a step of 2 m/s, while 0V 0ω  was 
changed from 10 to 50 rad/s with a step of 2 rad/s. Again, the base parameters given in 
Table 1 are used, along with D/L = 0.5, and k1 = k2 = 10 N/m. 

The unstable combinations for this case are obtained with Floquet analysis and they 
are shown in Fig. 8. Some of the corresponding Floquet multipliers are reported in Table 4. 
The minimum wave speed for this case still corresponds to the side of the string at the right 
of the stationary load for the half period 2T t T< < . The critical transport speed is then 
given by: 

 
( )

00.5 65.5 m/s,       for 2 ,   
1CR

TV T t
ρ η

= = < < <
−

T D x L<  (41) 

Fig. 8 shows that in this case almost all the points on the grid are unstable, even for small 
values of . Moreover all the parameter combinations with  are unstable. 
Inspection of Table 4, shows that the Floquet multipliers of the cases with  are  
considerably larger as compared to the cases with 

0V 0 CRV V>

0 CRV V>

0 CRV V< . Also note that, while the 
magnitudes of the Floquet multipliers for cases with 0 CRV V<  are smaller, they are, in 
general, greater than their counterparts given in Tables 2 and 3. Thus it is seen that 
increasing the friction force not only renders most of the 0 V0ω −  diagram unstable, but also 
creates stronger instabilities.  

In conclusion, the addition of a stationary frictional load strongly affects the 
stability of the system by reducing the resulting tension  for the half period  2T 2T t< < T . 
This confirms that increasing tension is useful for stability [9]. When the friction force is 
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equal to 10% of the initial tension, the number of unstable points on the grid increases 
three fold. When the friction force is equal to 50% of the initial tension almost all the 
points on the grid are unstable, even with small values of velocity amplitude  and 
frequency 

0V

0ω .  
It was also shown that the number of unstable points decreases when the stiffness 

of the elastic springs is not negligible, so the springs in this case have a beneficial 
stabilizing effect on the system. This result is similar to the findings of Cheng and Perkins, 
which indicate that for a given (constant) axial velocity the natural frequencies increase 
with increasing spring stiffness [17].  

It should be mentioned that, with the exception of the region, where 0 MINV c> , it is 
not possible to recognize, a clear demarcation between stable and unstable regions in the 
results presented in Figures 2 and 6-10. One of two possible explanations for this behavior 
may be that a very large area in the δ ε−  Ince-Strutt diagram [9], [26] is mapped in a very 
small area in the 0V 0ω−  plane, as also mentioned in [9]. In fact, the work of Pakdemirli 
and Ulsoy [11] indicates that the instabilities at lower transport speeds occur at fluctuation 
frequencies that are an order of magnitude higher than those considered in this paper, for 
the non-frictional system with non-zero mean velocities. Also note that the distribution of 
the grid used on the 0V 0ω−  is too sparse to be able to represent well defined stable and 
unstable regions.  

 

4.2.2 Effect of Stationary Load Location 
In order to investigate the effect of the stationary load location, a computer program 

was run for the cases with a friction load located at 0.3D L =  and 0.7D L = . The base 
parameters given in Table 1 are used with k1 = k2 = 10 N/m and ( )1 2 0 0.1F F T+ = . For 
these cases  was changed from 2 to 30 m/s with steps of 2 m/s, while 0V 0ω  was changed 
from 2 to 30 rad/s with steps of 2 rad/s. The unstable points are shown in Fig. 9 and 10. 
The corresponding Floquet multipliers can be found in [29]. The number of unstable points 
is 37 for both cases, but the unstable systems do not correspond to the same combinations 
of  and 0V 0ω .  

5. SUMMARY AND CONCLUSIONS 

The dynamic response of a string with negligible flexural stiffness, translating 
between two fixed supports and subjected to two frictional guides, which remain in 
constant contact with the string due to preloaded elastic supports, is investigated 
numerically using the finite element method and the Floquet theory. The governing 
equations of the system for the transverse and the longitudinal motions were derived with 
the extended Hamilton’s principle.  

First, the stability of a system with sinusoidally varying axial velocity was 
investigated. Numerical results for a case with no friction guides were presented for 
different values of maximum speed  and speed fluctuation frequency0V 0ω . These results 
were then compared to those reported by Pakdemirli et al., who employed the Galerkin’s 
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method to discretize the system in the space domain [9]. The comparison showed that the 
instabilities occurring for systems translating with velocity amplitude  greater than the 
wave speed are better predicted by the finite element discretization than by the Galerkin’s 
method. The time-history diagrams obtained with direct time integration confirmed the 
results of the Floquet theory. These results confirmed that, in general, a system with 
sinusoidally varying transport velocity becomes unstable for cases where the maximum 
velocity V

0V

0 is greater than the critical transport velocity of the non-accelerating system VCR. 
A small number of instabilities occurred when V0 < VCR.  

The Floquet stability analysis was extended to a system with sinusoidally varying 
transport  speed, subjected to stationary frictional guiding forces. The modeling flexibility 
provided by the finite element method is suitable to investigate systems with the frictional 
guides, because the discontinuity introduced by the guides can be modeled in a more 
general fashion. This work showed that when the transport speed varies periodically, the 
friction force introduces more unstable points in the range V0 < VCR  as compared to the 
constant velocity case presented, by Cheng and Perkins [17].  The instabilities induced by 
friction were found to be relatively mild, as compared to those that occur when V0 > VCR.  
It was also found that as the relative magnitude of the friction force increases, almost any 
combination of  and 0V 0ω  in the grid leads to instability. On the other hand, increasing the 
stiffness of the guides reduces the number of unstable points, in the range of velocities and 
oscillation frequencies considered. The guide location did not affect the number of stable 
points, but their distribution on the  - 0V 0ω  plane was affected.  

Future work should include analysis of different type of velocity/acceleration 
profiles, should consider a wider range of frequencies, and should look into wave 
propagation in the string by using direct time integration, in order explain the physical 
nature of the instability introduced by frictional loads. 
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APPENDIX A 

The Floquet theory demonstrates to be a powerful method not only to predict the 
instability of a system, but also to evaluate quantitatively the magnitude of such 
instabilities. Defining as 

MAX
λ the highest modulus of the characteristic multipliers of the 

system, it is expected that the amplitude of oscillation after m periods will grow with a 
factor m

MAX
λ according to: 

 ( ) ( )m
i MAX

w t mT w tλ+ = i  (42) 
In order to verify the amplitude growth rate predicted by Eq (42), the displacement time 
history of the central node for the combination 0 92 m/sV = , 0 48 m/sω =  was evaluated. 
This combination of parameters can be seen to be unstable from Table 2, with maxλ  = 
1.0414. Time integration was carried out for 100m =  periods. The numerically calculated 
amplitude growth is compared to the prediction of Eq (42)  in  Fig. 11, where the relative 
error between numerical values and analytical predictions, for this case, is also shown. The 
figure shows that the error grows quickly up to 40% in the first 50 periods, but after that it 
remains nearly constant. Similar comparisons for the other unstable combinations of Fig. 2 
lead to the same conclusion; initially, the relative error reaches large values and after a 
while it remains constant.  
 This behavior can be explained by remembering that the Floquet theory uses a 
fictitious initial condition set (1st set of ICs) to be equal to the identity matrix, while the 
numerical integration uses the real initial conditions (37). The effect of initial conditions 
can be reduced by applying Eq (42) starting from 50t T= ⋅ , instead of , by using the 
displacement and velocity profiles of the string at this time step as initial conditions (2

0t =
nd set 

of ICs); Fig. 11 shows that in this case the relative error between analytical predictions and 
numerical values is within 2%, therefore Eq (42) holds very well. The small difference is 
attributed to the numerical round-off errors.  
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APPENDIX B 

One of Matlab’s (version 5.3) built-in ODE solvers, ODE113, has been used to 
evaluate the fundamental set of solutions. This is an implementation of a variable order 
Adam-Bashfort-Moulton method and gives good results when the tolerances are stringent. 
For more information about the algorithm involved, see the Matlab ODE suite by 
Shampine and Reichelt [28]. In the program written for Floquet analysis, (Flo8.m), the 
monodromy matrix is evaluated by direct time integration of the equations of motion over 
one period. It should be noted that one of the factors affecting the time consumption of this 
program is the value of 0ω , as the period T is inversely proportional to the frequency 0ω . 
Therefore, the larger the period T, the longer will be the time to run the programs.  

Another factor is the number of elements used in the solution. It is well known that 
the accuracy of a finite element solution improves by using a larger number of elements. 
However, this is accompanied with an increase in the computational cost. Table 5 gives the 
computational cost of evaluating a single 0V 0ω−  pair, (42 rad/s, 84 m/s), using different 
number of elements (n) with the parameters listed in Table 1. It is seen that a four-fold 
increase of n from 10 to 40 causes 286 fold increase in the time spent to find the Floquet 
multipliers for this pair of 0V 0ω− . This analysis was carried out on a personal computer 
with a Pentium 4 processor with 2.66 GHz, 256 MB RAM, Windows XP operating system 
and Matlab version 5.3.  

The location and number of the unstable points on the 0V 0ω−  grid changes 
depending on n. The effect using 20 elements (n = 20) instead of 10 reported in the paper, 
is presented in Figure 12. This figure is evaluated in the region  m/s and 010 20V≤ ≤

010 20ω≤ ≤  rad/s with increments of 2 for both variables, along with k1 = k2 = 10 N/m, 
D/L = 0.5, T0/(F1+F2) = 0.1. This figure shows that twenty four of the possible sixty points 
are unstable when n = 20.  Comparing this with the twelve unstable points, in the same 
region for  n = 10 (Fig. 6), it can be said that the unstable points cluster, when the number 
of finite elements increase. A similar conclusion was reached by as Pakdemirli et al. using 
the Galerkin method [9].  
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List of Figures 

Fig. 1. Schematics of the system represented by an axially accelerating string, a) moving 
between two fixed supports and subject to a stationary friction load; and, b) moving 
between two pulleys.  

Fig. 2. Results of the Floquet stability analysis for a system without a guiding load. The 
region of data points is made by 010 100V≤ ≤  m/s and 010 50ω≤ ≤  rad/s with step of 

 m/s and 0 2V = 0 2ω =  rad/s. The evaluation is made for the base parameter given in Table 
1. Circles in the plot correspond to unstable data points.  

Fig. 3. Time history diagram of the displacement at the node 2x L=  for a data point 
predicted as unstable by the Floquet theory. V0 = 80 m/s, ω0 = 36 rad/s, 0 § t § 57T, T = 
0.1745 s, λmax = 1.0172. 

Fig. 4. Time history diagrams of the displacement at the node 2x L=  for a data point 
predicted as stable by the Floquet theory. V0 = 94 m/s, ω0 = 44 rad/s, 0 § t § 70T, T = 
0.1428 s, λmax = 1.0000. 

Fig. 5. Transient variation of a) translation velocity V , b) friction forces , c) tension 
,  and d) tension  for an accelerating string with stationary loads. 

1F F+ 2

1T 2T

Fig. 6. The effect of relatively low friction, (F1+F2)/T0 = 0.1, for a system subjected to a 
stationary friction load with at D/L = 0.5. The region of data points is made by 10 §V0§ 94 
m/s and 010 50ω≤ ≤  rad/s with step of 0 2V =  m/s and 0 2ω =  rad/s. The base parameters 
are reported in Table 1. This case also had k1 = k2 =10 N/m. Circles correspond to unstable 
data points. 

Fig. 7. The effect of neglecting the spring stiffness, k1 = k2 = 0, for a system subjected to a 
stationary friction load with (F1+F2)/T0 = 0.1. The parameters are otherwise identical to 
Figure 6. Note that the circles correspond to unstable data points. 

Fig. 8. The effect of high friction load, (F1+F2)/T0 = 0.5, for a system subjected to a 
stationary friction load at D/L = 0.5. The parameters are otherwise identical to Figure 6. 
Circles correspond to unstable data points. 

Fig. 9. The effect of guide location (D/L = 0.3) for system a subjected to a stationary 
friction load with (F1+F2)/T0 = 0.1. The region of data points is made by 2 §V0§ 30 m/s 
and 02 30ω≤ ≤  rad/s with step of 0 2V =  m/s and 0 2ω =  rad/s. The base parameters are 
reported in Table 1. This case also had k1 = k2 =10 N/m. Circles correspond to unstable 
data points. Critical transport speed is VCR = 65.5 m/s. 

Fig. 10. The effect of guide location (D/L = 0.7) for system a subjected to a stationary 
friction load with (F1+F2)/T0 = 0.1. The region of data points is made by 2 §V0§ 30 m/s 
and 02 30ω≤ ≤  rad/s with step of 0 2V =  m/s and 0 2ω =  rad/s. The base parameters are 
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reported in Table 1. This case also had k1 = k2 =10 N/m. Circles correspond to unstable 
data points. Critical transport speed is VCR = 65.5 m/s. 

Fig. 11. Maximum displacement of the node at 2x L=  versus time (expressed in terms of 
number of periods). The (⎯) curve is obtained with Eq (42), while the (−⋅−) curve is 
obtained by numerical integration. Also shown are the relative error values between 
numerical and analytical solutions, when Eq (42) is applied starting from  given 
by the (⋅⋅− −⋅⋅) curve, instead of 

0 50 t = T

0 0t =  given by (−⋅⋅−) curve, in order to minimize the 
effect of the initial conditions. The parameters used in the program are reported in Table 1; 
the 

MAX
λ  value of this case is 1.0414. 

Fig. 12 The unstable points predicted by using 20 elements over a subset of the parameter 
range reported in Figure 6 where n = 10 was used. Circles correspond to unstable data 
points. 
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Table 1. Parameters used in the Floquet stability analysis with a finite element 
discretization. 

Table 2. Floquet multipliers corresponding to the unstable points of Fig. 6, for the 
frequencies in the range of 00 30ω≤ ≤  rad/s. For each data point only the eigenvalue with 
highest modulus is reported. For a complete list of eigenvalues see [29]. Note that the 
boxed values indicate the cases where V0 > VCR = 87.9 m/s. 

Table 3. Floquet multipliers corresponding to the unstable points of Fig. 7 for the 
frequencies in the range of 00 24ω≤ ≤  rad/s. For each data point only the eigenvalue with 
highest modulus is reported. For a complete list of eigenvalues see [29]. Note that the 
boxed values indicate the cases where V0 > VCR = 87.9 m/s. 

Table 4. Floquet multipliers corresponding to the unstable points of Fig. 8, for the 
frequencies in the range of 00 16ω≤ ≤  rad/s. For each data point only the eigenvalue with 
highest modulus is reported. For a complete list of eigenvalues see [29]. Note that the 
boxed values indicate the cases where V0 > VCR  = 65.5 m/s. 

Table 5. Time consumption of the Matlab program that performs the Floquet analysis, for 
different n values, for a single ω0 = 42 rad/s and V0 = 84 m/s. The Matlab Runge-Kutta 
solver ODE113 was used, with relative and absolute error tolerance of 10-8. 
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L 
(m) n 0T  

(N) 
ρ  
(kg/m) q η  

0.3681 10 76.22 4.032e-2 0 0.78 

Table 1. Base parameters used in the paper. 
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0ω  0V  

MAX
λ  0ω  0V  

MAX
λ  0ω 0V  

MAX
λ  0ω  0V  

MAX
λ  

10 24 1.0423E+00 14 82 1.0241E+00 20 30 1.0582E+00 24 88 1.0184E+00 
10 38 1.0255E+00 14 88 1.0320E+00 20 34 1.0482E+00 24 90 3.3928E+00 
10 48 1.0090E+00 14 90 3.7315E+00 20 38 1.0456E+00 24 92 4.6706E+02 
10 62 1.0090E+00 14 92 1.8070E+04 20 48 1.0242E+00 24 94 6.7770E+04 
10 64 1.0257E+00 14 94 7.5544E+07 20 50 1.0244E+00 26 56 1.0294E+00 
10 66 1.0325E+00 16 18 1.0200E+00 20 70 1.0188E+00 26 66 1.0076E+00 
10 76 1.0493E+00 16 22 1.0040E+00 20 84 1.0494E+00 26 72 1.0064E+00 
10 78 1.0135E+00 16 24 1.0746E+00 20 86 1.0320E+00 26 74 1.0213E+00 
10 86 1.0404E+00 16 26 1.0316E+00 20 88 1.0151E+00 26 78 1.0130E+00 
10 90 9.6147E+00 16 28 1.0296E+00 20 90 9.3960E+00 26 88 1.1090E+00 
10 92 1.2491E+04 16 34 1.0422E+00 20 92 8.6111E+01 26 90 1.7571E+00 
10 94 9.1312E+11 16 40 1.0238E+00 20 94 2.4561E+05 26 92 2.1662E+02 
12 12 1.0065E+00 16 46 1.0132E+00 22 18 1.0626E+00 26 94 9.4424E+04 
12 20 1.0176E+00 16 52 1.0520E+00 22 24 1.0327E+00 28 12 1.0277E+00 
12 24 1.0061E+00 16 56 1.0209E+00 22 30 1.0498E+00 28 16 1.0394E+00 
12 44 1.0149E+00 16 66 1.0186E+00 22 36 1.0123E+00 28 26 1.0005E+00 
12 56 1.0173E+00 16 68 1.0050E+00 22 42 1.0420E+00 28 40 1.0151E+00 
12 58 1.0031E+00 16 72 1.0496E+00 22 54 1.0127E+00 28 50 1.0193E+00 
12 62 1.0258E+00 16 74 1.0252E+00 22 56 1.0451E+00 28 62 1.0338E+00 
12 64 1.0230E+00 16 80 1.0145E+00 22 62 1.0107E+00 28 66 1.0438E+00 
12 78 1.0106E+00 16 86 1.0159E+00 22 80 1.0471E+00 28 72 1.0154E+00 
12 88 1.2197E+00 16 88 1.1770E+00 22 84 1.0175E+00 28 74 1.0169E+00 
12 90 5.9184E+00 16 90 2.7075E+00 22 88 1.0106E+00 28 78 1.0255E+00 
12 92 7.7359E+04 16 92 5.8685E+03 22 90 5.8897E+00 28 82 1.0395E+00 
12 94 1.1804E+10 16 94 2.0981E+07 22 92 2.6920E+02 28 84 1.0045E+00 
14 12 1.0333E+00 18 10 1.0160E+00 22 94 4.8278E+04 28 86 1.0078E+00 
14 14 1.0117E+00 18 14 1.0241E+00 24 10 1.0138E+00 28 92 2.3460E+02 
14 16 1.0216E+00 18 18 1.0005E+00 24 14 1.0629E+00 28 94 3.8963E+03 
14 18 1.0118E+00 18 38 1.0225E+00 24 20 1.0325E+00 30 10 1.0098E+00 
14 20 1.0364E+00 18 46 1.0566E+00 24 26 1.0170E+00 30 12 1.0280E+00 
14 22 1.0385E+00 18 54 1.0127E+00 24 32 1.0086E+00 30 20 1.0076E+00 
14 28 1.0258E+00 18 66 1.0371E+00 24 38 1.0041E+00 30 22 1.0090E+00 
14 38 1.0325E+00 18 76 1.0377E+00 24 44 1.0066E+00 30 28 1.0191E+00 
14 40 1.0163E+00 18 84 1.0036E+00 24 48 1.0265E+00 30 30 1.0391E+00 
14 44 1.0430E+00 18 88 1.1455E+00 24 52 1.0545E+00 30 32 1.0100E+00 
14 54 1.0088E+00 18 90 3.5770E+00 24 62 1.0086E+00 30 54 1.0404E+00 
14 56 1.0332E+00 18 92 1.4347E+03 24 68 1.0493E+00 30 58 1.0138E+00 
14 64 1.0074E+00 18 94 1.6117E+06 24 80 1.0182E+00 30 70 1.0086E+00 
14 80 1.0448E+00 20 20 1.0339E+00 24 82 1.0062E+00 30 76 1.0200E+00 

Table 2. Floquet multipliers corresponding to the unstable points of Fig. 6, for the 
frequencies in the range of 00 30ω≤ ≤  rad/s. For each data point only the eigenvalue with 
highest modulus is reported. For a complete list of eigenvalues see [29]. Note that the 
boxed values indicate the cases where V0 > VCR = 87.9 m/s. 
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0ω  0V  

MAX
λ  0ω  0V  

MAX
λ  0ω 0V  

MAX
λ  0ω  0V  

MAX
λ  

10 12 1.0260E+00 12 88 1.0391E+00 16 56 1.0447E+00 20 34 1.0034E+00 
10 18 1.0001E+00 12 90 1.3722E+01 16 60 1.0444E+00 20 36 1.0193E+00 
10 30 1.0270E+00 12 92 1.2197E+05 16 72 1.0060E+00 20 38 1.0319E+00 
10 38 1.0534E+00 12 94 2.4086E+10 16 78 1.0138E+00 20 48 1.0237E+00 
10 50 1.0420E+00 14 18 1.0222E+00 16 82 1.0253E+00 20 50 1.0303E+00 
10 62 1.0182E+00 14 22 1.0254E+00 16 90 3.7456E+00 20 52 1.0150E+00 
10 66 1.0204E+00 14 34 1.0120E+00 16 92 6.9640E+03 20 86 1.0080E+00 
10 72 1.0124E+00 14 36 1.0237E+00 16 94 3.5836E+07 20 90 9.3662E+00 
10 84 1.0055E+00 14 38 1.0381E+00 18 24 1.0443E+00 20 92 1.7220E+02 
10 86 1.0498E+00 14 42 1.0465E+00 18 26 1.0013E+00 20 94 9.8175E+05 
10 88 1.1519E+00 14 44 1.0090E+00 18 34 1.0199E+00 22 20 1.0094E+00 
10 90 1.5967E+01 14 48 1.0169E+00 18 38 1.0136E+00 22 30 1.0511E+00 
10 92 3.5812E+05 14 50 1.0097E+00 18 42 1.0431E+00 22 32 1.0323E+00 
10 94 1.3620E+12 14 58 1.0125E+00 18 44 1.0509E+00 22 36 1.0414E+00 
12 12 1.0393E+00 14 70 1.0466E+00 18 46 1.0420E+00 22 42 1.0550E+00 
12 14 1.0019E+00 14 72 1.0067E+00 18 50 1.0447E+00 22 52 1.0337E+00 
12 20 1.0394E+00 14 74 1.0091E+00 18 56 1.0480E+00 22 56 1.0424E+00 
12 22 1.0067E+00 14 80 1.0081E+00 18 58 1.0454E+00 22 66 1.0063E+00 
12 24 1.0144E+00 14 86 1.0199E+00 18 60 1.0634E+00 22 74 1.0419E+00 
12 30 1.0239E+00 14 88 1.0052E+00 18 62 1.0300E+00 22 80 1.0393E+00 
12 32 1.0100E+00 14 90 2.2195E+00 18 68 1.0515E+00 22 88 1.1714E+00 
12 34 1.0107E+00 14 92 2.0934E+04 18 70 1.0376E+00 22 90 6.6186E+00 
12 42 1.0453E+00 14 94 1.5265E+08 18 86 1.0523E+00 22 92 4.2436E+02 
12 46 1.0065E+00 16 20 1.0383E+00 18 88 1.0412E+00 22 94 1.7049E+04 
12 48 1.0069E+00 16 22 1.0542E+00 18 90 3.4038E+00 24 10 1.0012E+00 
12 70 1.0265E+00 16 28 1.0286E+00 18 92 2.0770E+03 24 12 1.0032E+00 
12 72 1.0623E+00 16 42 1.0283E+00 18 94 2.1541E+06 24 14 1.0196E+00 
12 74 1.0428E+00 16 44 1.0421E+00 20 12 1.0240E+00 24 20 1.0250E+00 
12 78 1.0166E+00 16 50 1.0436E+00 20 30 1.0145E+00 24 22 1.0272E+00 
12 82 1.0146E+00 16 52 1.0350E+00 20 32 1.0265E+00 24 28 1.0098E+00 

Table 3. Floquet multipliers corresponding to the unstable points of Fig. 7 for the 
frequencies in the range of 00 24ω≤ ≤  rad/s. For each data point only the eigenvalue with 
highest modulus is reported. For a complete list of eigenvalues see [29]. Note that the 
boxed values indicate the cases where V0 > VCR = 87.9 m/s. 
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MAX
λ  0ω  0V  

MAX
λ  0ω 0V  

MAX
λ  0ω  0V  

MAX
λ  

10 2 1.0860E+00 10 74 3.8434E+05 12 52 1.0586E+00 14 30 1.0912E+00 
10 4 1.2340E+00 10 76 1.5002E+07 12 54 1.0805E+00 14 32 1.2176E+00 
10 6 1.2221E+00 10 78 1.2028E+09 12 56 1.0591E+00 14 34 1.1151E+00 
10 8 1.2988E+00 10 80 2.1071E+11 12 58 1.0000E+00 14 36 1.0000E+00 
10 10 1.1113E+00 10 82 2.0631E+14 12 60 1.0257E+00 14 38 1.3002E+00 
10 12 1.0000E+00 10 84 6.5683E+16 12 62 1.1267E+00 14 40 1.2101E+00 
10 14 1.1367E+00 10 86 1.0423E+21 12 64 1.1141E+00 14 42 1.0485E+00 
10 16 1.3837E+00 10 88 3.8125E+26 12 66 1.2759E+00 14 44 1.1549E+00 
10 18 1.0000E+00 10 90 3.6562E+31 12 68 3.0678E+01 14 46 1.0085E+00 
10 20 1.1370E+00 10 92 6.7021E+37 12 70 1.3518E+02 14 48 1.3018E+00 
10 22 1.3030E+00 10 94 3.8291E+44 12 72 5.7398E+03 14 50 1.1613E+00 
10 24 1.0834E+00 12 2 1.0485E+00 12 74 3.3990E+04 14 52 1.1444E+00 
10 26 1.0338E+00 12 4 1.1154E+00 12 76 6.8684E+05 14 54 1.3401E+00 
10 28 1.0674E+00 12 6 1.0716E+00 12 78 1.1241E+07 14 56 1.2886E+00 
10 30 1.0977E+00 12 8 1.0554E+00 12 80 8.7549E+09 14 58 1.2307E+00 
10 32 1.3635E+00 12 10 1.1423E+00 12 82 6.1623E+11 14 60 1.2591E+00 
10 34 1.1206E+00 12 12 1.2466E+00 12 84 1.2401E+14 14 62 1.4034E+00 
10 36 1.4036E+00 12 14 1.1439E+00 12 86 7.6000E+17 14 64 1.0720E+00 
10 38 1.0000E+00 12 16 1.2071E+00 12 88 3.9646E+22 14 66 1.2165E+00 
10 40 1.2727E+00 12 18 1.1819E+00 12 90 3.5876E+27 14 68 4.4254E+00 
10 42 1.1301E+00 12 20 1.0000E+00 12 92 4.9336E+31 14 70 4.8127E+01 
10 44 1.3173E+00 12 22 1.0639E+00 12 94 8.6921E+36 14 72 4.5126E+02 
10 46 1.1334E+00 12 24 1.2846E+00 14 2 1.0769E+00 14 74 1.1026E+04 
10 48 1.1602E+00 12 26 1.0000E+00 14 4 1.1969E+00 14 76 6.6852E+05 
10 50 1.0000E+00 12 28 1.3810E+00 14 6 1.1159E+00 14 78 2.6154E+06 
10 52 1.0879E+00 12 30 1.0176E+00 14 8 1.0000E+00 14 80 1.8943E+08 
10 54 1.1195E+00 12 32 1.1004E+00 14 10 1.0000E+00 14 82 3.4127E+10 
10 56 1.1860E+00 12 34 1.0730E+00 14 12 1.3187E+00 14 84 3.3033E+12 
10 58 1.2874E+00 12 36 1.0818E+00 14 14 1.2282E+00 14 86 4.3620E+15 
10 60 1.1254E+00 12 38 1.2281E+00 14 16 1.1604E+00 14 88 1.7193E+20 
10 62 1.1730E+00 12 40 1.0827E+00 14 18 1.2977E+00 14 90 5.2633E+22 
10 64 1.2259E+00 12 42 1.2603E+00 14 20 1.1994E+00 14 92 4.5078E+27 
10 66 1.4097E+00 12 44 1.1989E+00 14 22 1.0262E+00 14 94 1.8190E+31 
10 68 2.0379E+01 12 46 1.2752E+00 14 24 1.1860E+00 16 2 1.1397E+00 
10 70 6.2076E+02 12 48 1.1642E+00 14 26 1.2812E+00 16 4 1.2418E+00 
10 72 6.5981E+03 12 50 1.3784E+00 14 28 1.0000E+00 16 6 1.3497E+00 

Table 4. Floquet multipliers corresponding to the unstable points of Fig. 8, for the 
frequencies in the range of 00 16ω≤ ≤  rad/s. For each data point only the eigenvalue with 
highest modulus is reported. For a complete list of eigenvalues see [29]. Note that the 
boxed values indicate the cases where V0 > VCR  = 65.5 m/s. 
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Number of 
Elements, n Time (s) 

10 203 

20 2731 

30 14007 

40 57995 

Table 5. Time consumption of the Matlab program that performs the Floquet analysis, for 
different n values, for a single ω0 = 42 rad/s and V0 = 84 m/s. The Matlab Runge-Kutta 
solver ODE113 was used, with relative and absolute error tolerance of 10-8. 
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VCR = 92.68 m/s 

Figure 2 
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Figure 7 

VCR = 87.9 m/s 
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Figure 8 

VCR = 65.5 m/s 
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