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ABSTRACT Fig. 1 Schematic depiction of the model. Note that the 

simple-support boundary conditions are not shown. A model for two-sided contact of a thin sheet of material, with 
real surfaces on both sides is presented. The model combines 
cylindrical-contact equations, with Euler-Bernoulli beam theory 
to examine the importance of substrate rigidity in two-sided 
contact problems. A finite difference program for solving this 
model is developed. Results for two-sided contact of 
numerically generated surfaces on thin tapes are presented. 
These results demonstrate that substrate rigidity is an important 
stress reducing phenomenon for typical two-side magnetic tape 
contact problems. The effects of tape thickness and tension are 
also explored. Here it is shown that substrate rigidty is an 
important phenomenon for all industrial tape thicknesses and 
tensions, however large thickness values exists for which 
substrate bending is negligible and elastic half-space solutions 
applied to both sides of the tape are adequate.   

 
INTRODUCTION 
Multi-asperity contact models can be categorized as uncoupled 
or completely coupled.  For uncoupled multi-asperity contact 
models, such as Greenwood and Williamson’s [1], the surface 
roughness is represented as a set of asperities, with statistically 
distributed parameters. The total effect is the sum of the actions 
of individual asperities. On the other hand, for the coupled 
contact models the equations of elasticity must be solved for 
the entire body, simultaneously.  

Many authors have used elasticity methods to solve multi-
asperity contact problems [2,3]. Webster and Sayles developed 
a 2D model where, two arbitrarily shaped surfaces are brought 
into contact, and the contact-region is broken up into small 
elements [4]. Pressure on each element is assumed constant. A 
Green’s function is used to relate the pressure on each element 
to the overall displacements of the bodies, which are assumed 
to be a elastic half-spaces. The total force on the each surface is 
found until the two bodies are in equilibrium.  

Recently, several authors have used fast Fourier transforms 
(FFT) to reduce the solution time [5]. Polonsky and Keer [6,7] 
proposed one of the most recent fast Fourier transform solution 
techniques. Peng and Bhushan  [9,10] used quadratic 
programming, variational methods and FFT to solve multi-
asperity layered contact problems.  

Many authors have included the effects of substrate 
deformation in contact problems, however these solutions often 
carry restrictions. All of the above mentioned methods require 
an elastic half space approximation which is only a valid 
approximation for thick substrates.  

In this work, two-sided contact of a thin sheet with two 
rigid punches (Fig. 1) is studied. The model includes the effects 
of substrate’s bending rigidity [11]. Few limitations exist on the 
shapes, properties, and dimensions of the interfering bodies 
(punches) and the substrate surfaces. The substrate can be a 
single material or a composite structure; contact may be single 
sided or two-sided.  

 
FORMULATION 
Consider the beam shown in Fig. 1, subjected to tension T per 
unit width, and contact with the rigid punches on the top and 
bottom as shown. The beam is simply supported on both ends. 
On the top and bottom contact regions, pressure distributions 
pc1 and pc2, will act on the beam, respectively. The beam 
deflection w can be obtained from: 

4 2

c2 c14 2

d w d w
EI - T = p - p

dx dx
                      (1) 

where E is the elastic modulus and I is the moment of area of 
the beam [11].  The rough surfaces for the top and the bottom 
were numerically generated [11]. Contact at each peak was 
treated as a cylindrical contact [12]. Equation (1) was solved 
numerically using Newton’s method, and a contact algorithm as 
described in [11]. 
 
RESULTS 

Effects of beam thickness t and tension T on the overall 
equilibrium were investigated. The parameters used for the 
study are summarized in Table 1. In order to get statistically 
meaningful results thirty different surfaces were generated; and 
results were evaluated for each one separately. This work has 
shown that subsurface stresses and the total energy stored in the 
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system are greatly reduced when bending is considered, for 
typical two-sided contact of magnetic tapes. 

Fig 2. shows tape deflection in the punch regions and the 
contact pressures, t = 10 µm, T = 20 N/m tension.  The tape 
bends around the asperities and stores some strain energy. The 
total strain energy in the system is given by:  

asp asp
total bend axial 1 2E = U +U +U +U                (2) 

where U is the strain energy stored in the beam due to bending 
and longitudinal strains and Uasp is the strain energy stored in 
the asperities, on the top (1) and bottom surfaces (2). Fig. 3 
shows the effect of tape thickness and tension on the total 
potential energy in the system.   

It is shown that when the tape thickness exceeds 90 µm, 
the effects of bending are negligible and the tape may be solved 
using a static solver [11]. Thin tapes should be solved with the 
inclusion of substrate bending, as maximum subsurface stress 
can be reduced by as much as 92% when bending is included. 
Tension changes within a reasonable range are shown to have 
little effect on the bending solution.       
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a)

Fig. 3 Total potential energy per unit width as a           
function of thickness and tension 

Variable  Variable  
Lc1 = Lc2 5 mm E 5 GPa 
L1p = L2p 2.02 mm ν  0.3 

Lb 10 mm T 20, 50, 80 
N/m 

t 10 - 90 µm 1 2δ = δ  10 nm 
Table 1. Parameters used in this work. Note that δ1, δ2 
are the rigid body displacements of the punches toward 

each other. 

b)

Fig. 2 Tape deflection under the punches and the contact 
pressure distribution. 
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