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ABSTRACT 

The dynamic response of an axially translating continuum 
subjected to the combined effects of a pair of spring supported 
frictional guides and axial acceleration is investigated; such 
systems are both non-conservative and gyroscopic.  The 
continuum is modeled as a tensioned string translating between 
two rigid supports with a time dependent velocity profile. The 
equations of motion are derived with the extended Hamilton’s 
principle and discretized in the space domain with the finite 
element method. The stability of the system is analyzed with 
the Floquet theory for cases where the transport velocity is a 
periodic function of time. Direct time integration using an 
adaptive step Runge-Kutta algorithm is used to verify the 
results of the Floquet theory. Results are given in the form of 
time history diagrams and instability point grids for different 
sets of parameters such as the location of the stationary load, 
the stiffness of the elastic support, and the values of initial 
tension. This work showed that presence of friction adversely 
affects stability, but using non-zero spring stiffness on the 
guiding force has a stabilizing effect.  

Fig. 1 Schematic description of the traveling string. 

 
INTRODUCTION 

Dynamics of translating continua has been investigated in 
the past forty years because of the large number of applications 
that are encountered in mechanical systems such as power 
transmission chains and belts, band saw blades, textile fibers, 
magnetic tapes, paper sheets, thread lines, elevator cables and 
pipes conveying fluids [1]. Excessive vibrations are usually to 
be avoided in axially travelling structures; in magnetic tape 
drives, for example, they cause imperfections on the magnetic 
signal,while in band saws they result in poor cutting quality.  

Miranker was the first to derive the equation of motion for 
an axially accelerating string [2]. An approximate solution for 
an accelerating string driven harmonically at one end was later 
given by Mote [3]. More recently Pakdemirli et al. applied the 
Floquet theory to analyze the stability of a string moving with a 
prescribed sinusoidal velocity function [4]; Pakdemirli and 
Batan analyzed stability for the case with periodic constant 
acceleration-deceleration profile [5]. Pakdemirli and Ulsoy 
applied the method of multiple scales when the axial velocity of 
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the string is assumed to have small harmonic variations about a 
constant mean velocity [6].  

No friction is involved in the studies mentioned above. 
Cheng and Perkins derived exact solutions through separation 
of variable for an axially moving string subject to a dry friction 
guide, in case of constant transport velocity [7]. Zen and Müftü 
investigated this problem using the finite element method and 
α-method of time integration [8].  

 
FORMULATION 

For a continuum moving between two pulleys, one of 
which is supported by a spring with stiffness ks, the equation of 
motion is given by the following equations: 
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where ρ is the is the mass of the string per unit length, V(t) = 
V0sin(ω0t), is the time dependent string transport velocity, µ is 
the dynamic friction coefficient, δ is the Dirac delta function, H  
Heaviside step function, T0 is the initial string tension, η = 
[1+ksL/EA]-1 and the other parameters  are defined on Fig. 1. 
The stability of the system is analyzed with the Floquet theory 
for cases where the transport velocity is a periodic function of 
time. Direct time integration using an adaptive step Runge-
Kutta algorithm is used to verify the results of the Floquet 
theory. Results are given in the form of time history diagrams 
and instability point grids for different sets of parameters such 
as the location of the stationary load, the stiffness of the elastic 
support, and the values of initial tension [9]. 
 
RESULTS 
The effects of friction and guiding forces on the stability of a 
tensioned, traveling string is investigated by Floquet analysis 
[9].  The analysis is carried-out for the transport speed 
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magnitudes that are in the range 10 § V0 § 100 m/s and for the 
speed fluctuation frequencies in the range 10 § ω0 § 100 rad/s. 
The evaluation is made for the base parameter given in Table 1. 
The results are presented in ω0 – V0 plots in Fig. 2, where black 
circles correspond to unstable data points. These plots show 
that, when the frictional guide is introduced (Figs. 2b,c), the 
system becomes unstable at many more points as compared to 
the non-guided system (Fig. 2a). The frictional instabilities are 
weaker than the buckling instabilities which occur when the 
string is translating faster than the critical speed Vcr = (T0 / ρ(1-
η) )1/2 [9]. Nevertheless, the number of unstable points increase 
with increasing µ. 

An interesting observation in Fig 2a, for the non-guided 
string, is the presence of unstable points even for V < Vcr and 
again presence of stable points for V < Vcr . This effect is due to 
the transient nature of the translation speed. The transient 
displacement of the middle point of the string is plotted in Fig. 
3 for two of these points and confirm the predictions of the 
Floquet theory.  
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a) V0 = 80 m/s, ω0 = 36 rad/s, λmax = 1.0172. 

VCR = 65.5 m/s 
b) ( )1 2 0 0.1F F T+ = , k1 = k2 = 10 N/m 

Time, t (s) 
b) V0 = 94 m/s, ω0 = 44 rad/s, λmax = 1.0000. 

Fig. 3 Transient response of two ω0-V0 combinations from 
Fig 2a. 

c) ( )1 2 0 0.5F F T+ = , k1 = k2 = 10 N/m 

Fig. 2.  Effect of friction on stability of the accelerating 
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string. Black dots indicate unstable combinations.  

L (m) 0T  (N) ρ  (kg/m) η  

0.3681 76.22 4.032e-2 0.78 

Table 1. Base parameters used in the paper. 


