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RÉSUMÉ. En cet article une solution finie d'élément de l'équation modifiée de Reynolds en 
utilisant les éléments quadrilatéraux isoparamétriques et bilinéaires avec une stratégie 
engrenante adaptative est présentée.  La méthode hydrodynamique modifiée de rigidité 
(Smith, 1995) a été employée pour obtenir une solution couplée de l'équation de galet 
pneumatique avec les équations d'équilibre de glisseur.  L'algorithme engrenant adaptatif 
basé par étiquette de sommet de Cheng et autres (1999) a été également mis en application .  
Le problème est au commencement résolu avec une maille régulière de Fe de quadrilatère.  
L'adaptation de maille (h-amélioration) est basée sur les gradients relatifs de pression dans 
la solution initiale, et sur la géométrie du glisseur.  L'amélioration est mise en application 
sur un élément existant, si préréglez les critères sur le gradient de pression et/ou la géométrie 
de glisseur sont excédés.  La méthode est décrite en détail.  Des exemples sont présentés.   
 
ABSTRACT. In this paper a finite element solution of the modified Reynolds equation using 
isoparametric, bilinear quadrilateral elements with an adaptive meshing strategy is 
presented. The modified hydrodynamic stiffness method (Smith, 1995) was used to obtain a 
coupled solution of the air bearing equation with the slider equilibrium equations. The vertex 
label based adaptive meshing algorithm of Cheng et al. (1999) was also implemented. The 
problem is initially solved with a regular quadrilateral FE mesh. The mesh adaptation (h-
refinement) is based on  the relative pressure gradients in the initial solution, and on the 
geometry of the slider. The refinement is implemented on an existing element, if preset 
criteria on the pressure gradient and/or slider geometry are exceeded.  The method is 
described in detail. Examples are presented. Two types of sliders have been used, namely the 
50% taper flat slider, and the negative air bearing slider.  
MOTS-CLÉS : aérez la lubrification, éléments finis, maille adaptative, interface de tête-disque 
KEYWORDS: air lubrication, finite elements, adaptive mesh, head-disk interface 
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1. Introduction 
 

Today, magnetic hard disk drives (HDD’s) constitute a large portion of digital 
data storage capacity. The overall performance of hard disk drives may appear to 
depend on simple components; however their design and manufacture require 
leading-edge capabilities in device modeling, materials science, photolithography, 
vacuum deposition processes, ion beam etching, reliability testing, mechanical 
design, machining, air bearing design, tribology, and head/disk interface (Mee et al., 
1996, Bhushan, 1996).      
 Magnetic recording requires relative motion between the magnetic media and a 
read-write head (Mee et al.¸ 1996). In a computer HDD a shaped slider, attached to 
a flexible suspension-arm, glides over a rigid cylindrical disk, which rotates at 
rotational rates reaching 10,000 rpm or more. The trailing edge of the slider contains 
a built-in magnetic read-write head (Fig. 1). Different tracks over the magnetic disk 
are addressed by moving the suspension-arm in the radial direction. A small gap 
(hmin) on the order of 5 – 20 nm is maintained between the disk and the slider. The 
size of the gap is dictated by the signal-to-noise ratio of the magnetic recording, 
which deteriorates exponentially with increasing separation between the magnetic 
medium and the read-write head (Mee et al.¸ 1996). Air lubrication between the 
rotating disk and the slider is critical to maintain this gap; a delicate balance is 
established between the suspension preload, air bearing pressure and restoring 
forces due to small perturbations from the equilibrium flying height.  
 The numerical modeling of the pivoted slider bearing provides a means to 
evaluate different configurations without actually having to build them. This 
involves the simultaneous solution of the two dimensional (2D) compressible 
Reynolds Equation (RE) with slip flow correction for the air bearing and the force 
and moment equilibrium equations for the slider. The 2D compressible RE is a non-
linear partial differential equation. Since the analytical solution of the Reynolds 
equation is not possible for a generic slider, a numerical solution is used.  

Different spatial discretization methods have been used for solving the non-
linear, compressible RE for the head-disk interface (HDI) problem. These include 
finite difference (FD) (White et al., 1980, Castelli et al., 1968), finite volume (FV) 
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Figure 1. Schematic description of the pivoted slider bearing at equilibrium. 
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(Wu et al., 2000, Wu et al., 1999) and finite element (FE) methods (Smith et al., 
1995, Wahl, 1994, Garcia-Suarez, 1984, Hendricks, 1988, Kubo et al., 1988, Peng 
et al., 1995). The slider equilibrium position is coupled to the air pressure, also in a 
non-linear manner. The coupling between the two sets of equations can be handled 
by considering the dynamical effects of the system. In that case the squeeze film 
effect for the RE and the translational and rotational inertia effects for the slider 
need to be considered (Tang, 1972, Ono, 1972, White et al., 1980, Miu et al.). The 
steady state flying height can be found by the transient solution approach by running 
the code until steady state conditions are found. Alternatively, the coupled solution 
can be obtained by formulating the problem entirely for steady state (Yamaura et al., 
1990, Choi et al., 1994, Smith et al., 1995, Wahl, 1994). 

One of the challenging problems with numerical methods is the need to 
represent a continuous domain with a spatially discretized mesh. The FD method 
typically requires a structured mesh and is limited in the choice of mesh refinement 
that it offers. Wu and Bogy presented a FV method with unstructured triangular 
meshing to solve the modified RE. They implemented a three level adaptive 
meshing strategy based on Delaunay triangulation (Wu et al., 1999, Wu et al., 
2000). In general, use of a structured mesh is not required in the FE method. This 
trait is very suitable for local adaptive refinement in regions where the solution 
displays large gradients of the solution parameter or the slider geometry changes 
abruptly. In this paper a finite element solution of the modified RE using 
isoparametric, bilinear quadrilateral elements with an adaptive meshing strategy is 
presented.  
 In this paper the modified hydrodynamic stiffness method (Smith et al., 1995, 
Wahl, 1994) was used to obtain a coupled solution of the air bearing equation with 
the slider equilibrium equations. The adaptive meshing algorithm given by Cheng et 
al. was also implemented (Cheng et al., 1989). A computationally efficient storage 
for the global stiffness matrix and solution methods for the solution involving large 
number of degrees of freedom were investigated and used (Holani, 2002). 
 Here, the problem is initially solved with a regular quadrilateral FE mesh. The 
mesh adaptation (h-refinement) is based on a) the relative pressure gradients in the 
initial solution, and b) the geometry of the slider. The refinement is implemented on 
an existing element, if preset criteria on the pressure gradient and/or slider geometry 
are exceeded.  Such an element is simply divided into smaller ones keeping the 
original element boundaries intact. This approach could result in dangling nodes, 
where an element with mid-side nodes is joined to a linear element with no such 
nodes. In this work, the admissible function algorithm, of Cheng et al. (Cheng et al., 
1989), is implemented to prevent such dangling nodes. This algorithm describes a 
way to subdivide a few adjacent elements apart from the master element, which 
causes the dangling nodes. A bandwidth reduction algorithm has been applied in 
order to keep the bandwidth of the system as small as possible for efficient memory 
management and minimizing computational time (Collins, 1973). 
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2. Governing Equations and Boundary Conditions 
 
2.1.  Reynolds Equation 
 
 The airflow in the head-disk interface (HDI) of a HDD is modeled by using the 
modified Reynolds equation. As the spacing in the HDI is smaller than the 
molecular mean free path (λ) of air, the continuum theory does not apply, and 
rarefaction effects must be considered. To this end the first order slip-flow 
correction was introduced by Burgdorfer (Burgdofer, 1959), and the second order 
slip flow correction by Hsia and Domoto (Hsia et al., 1983). Fukui and Kaneko 
rederived the Reynolds equation based on the Boltzman equation (Fukui et al., 
1988). In standard vector notation, the general form of the two dimensional 
compressible Reynolds equation with slip flow corrections is given as follows: 
 

{ } ( )3. 6 . ( ) 12 ( ),rph Q p V ph ph
t

µ µ ∂
∇ ∇ = ∇ +

∂
                        (1) 

 
where∇  is the gradient operator, p is the air pressure, h is the head-to-disk 
interfacial clearance, ˆ ˆ

x yV V i V j= +  is the disk velocity with the components Vx and 
Vy in the x- and y-directions, respectively, µ is the dynamic viscosity of air, t is time, 
and Qr is the flow rate correction coefficient due to slip-flow. This coefficient 
depends on the Knudsen number Kn = λ/h, and, for different slip-flow models it is 
defined as follows: 
 
   Qr = 1,      classical compressible RE, 
   Qr = 1 + 6Kn,    for 1st order slip-flow correction, 
   Qr = 1 + 6Kn + 6 Kn2,  for 2nd order slip-flow correction, 
   Qr = f(Kn),     for Boltzman Reynolds equation. 
 
The functional dependence of the flow correction for the Boltzman RE is derived by 
Fukui and Kaneko (Fukui et al., 1988, Fukui et al., 1990) and also presented by 
Crone et al. (Crone et al., 1992). In this work the second order slip flow correction 
is considered, however the method developed is valid for all of the cases. Using the 
relation  pλ = paλa for constant temperature (Burgdofer, 1959) the steady state form 
of the second-order modified, compressible RE becomes:  
 

( )3 2 2. 6 6( ) 6 . ( )a a a a
hph p h p p V ph
p

λ λ µ
⎧ ⎫⎡ ⎤⎪ ⎪∇ + + ∇ = ∇⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

           (2) 

 
where λa is the molecular mean free path, and pa is the pressure of air at standard 
ambient conditions. The air pressure is assumed to be ambient p = pa on the outside 
periphery of the slider.  
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2.2. Slider Equilibrium Equations  
 

The HDD slider is attached to a suspension arm which provides three degrees of 
freedom (dof) as shown in Fig. 1; hp is the translational degree of freedom (dof), in 
the direction perpendicular to the disk surface; and α and β are the pitch and the roll 
degrees of rotational freedom, about the y- and x-axes, respectively. The translation 
in the vertical direction is associated with the vertical stiffness kz of the suspension, 
whereas the pitch angle and the roll angles are related to the rotational stiffnesses, kα 
and kβ, respectively. The steady state force and moment balance about the 
“equilibrium” state of the slider yields: 

 

( )

( )

0 0
0 0
0 0

ext
Az p

ext
p

extA

p
A

pdA
k dh F

k d p x x dA M
k d M

p y y dA

α α

β β

α
β

⎧ ⎫
⎪ ⎪

⎧ ⎫⎡ ⎤ ⎧ ⎫ ⎪ ⎪
⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪= − −⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭⎣ ⎦ ⎩ ⎭⎪ ⎪−⎪ ⎪
⎩ ⎭

∫

∫

∫

                (3) 

 
where dhp, dα and dβ are the small perturbations in the translational and rotational 
degrees of freedom of the slider about the equilibrium state, a is the area of the foot-
print of the slider, fext is the external normal load including the preload in the slider 
spring and extMα  and extM β  are the external moments acting on the system. for 
notational simplicity eqn (3) is expressed by using the following matrix notation: 
 

Ks du = f(p) - fext                                                  (4) 
 

where the slider dof vector is u = {hp α β}T and the slider stiffness matrix is Ks 
external force vector is fext and the air bearing load vector is f. Note that the f vector 
is a function of air pressure p which in turn is a function of slider position u. Thus, 
Eqn (4) is a non-linear equation. The geometric shape of the slider is given as: 
 

( ) ( ) ( ) ( )0, ,p p ph x y h x x y y h x yα β= + − + − +                    (5) 
 
where h0(x,y) is the slider contour with respect to the reference surface, as shown in 
Fig 1. 
 
2.3. Simultaneous Solution of Slider and Reynolds Equations 
 

The Reynolds equation and the slider equilibrium equations are coupled. In this 
work the slider equilibrium is obtained by using the modified hydrodynamic stiffness 
method (Wahl, 1994) described in Section 2.3.1. The air pressure is obtained by 
solving non-linear RE numerically as described in Section 2.3.2. The slider 
equilibrium and the air pressure are solved iteratively as described in Section 3.6.  
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2.3.1. Solution of the Slider Equilibrium Equations 
 

In the modified hydrodynamic stiffness method (Wahl, 1994), Eqns (2) and (4) 
are solved in an iterative manner. First, Eqn. (4) is linearized by using multivariable 
Taylor series expansion on the air bearing load f(p(u)), which yields (Holani, 2002): 

 
(Ks - Kt

(n))du = f(p)(n) - fext                                         (6)  
 

where Kt
(n) is the tangent (air-bearing) stiffness  matrix and f(p)(n) is the external 

load vector at iteration level n. In general, the tangent stiffness matrix is defined as 
( ) ( )=n n∂ ∂tK f u . In the modified hydrodynamic stiffness approach, however, the 

tangent stiffness matrix is obtained by considering the geometric relation for the 
slider shape given by Eqn (5) and by using the chain rule of differentiation (Wahl, 
1994). Then the tangent stiffness matrix becomes: 
 

( ) ( )

( ) ( ) ( )( )

( ) ( )( )

( )
( )

( ) ( ) ( )

( ) ( ) ( )
2

( ) ( )

n
n

n n n

p p
A A A

n n n

p p p p
A A A

n n

p p p
A A

h
h

p p pdA x x dA y y dA
h h h

p p px x dA x x dA x x y y dA
h h h

p py y dA x x y y dA
h h

∂ ∂⎛ ⎞= =⎜ ⎟∂ ∂⎝ ⎠

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∂ ∂⎛ ⎞ ⎛ ⎞− − −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

t
fK

u

( )
( )

2

.

n

p
A

p y y dA
h

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥∂⎛ ⎞ −⎢ ⎥⎜ ⎟∂⎝ ⎠⎣ ⎦

∫

(6) 

 
Note that all terms of ( )n

tK depend on the pressure gradient ( )( )np h∂ ∂ . An 
expression for this variable is obtained by considering a linear perturbation of the 
modified RE by: 
 

( )nh h ε= −    and    ( )np p εψ= +                             (7) 
 

where 
( )np
h

ψ ∂
=

∂
 and ε is a small perturbation parameter. Neglecting the higher 

order terms ofε , when combining Eqns. (2) and (7) yields: 
 

( ) ( ) ( ) ( )

1 2 3 1 2 3

( ) ( ) ( ) ( )
( ) ( )6 6

n n n n

n n n n
n n

x y

p p p pC C C C C C
x x x x y y y y

h p h pV h V h
x x x y y y

ψ ψψ ψ

ψ ψµ ψ µ ψ

⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − + + −⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭

⎧ ⎫ ⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂
= + − + + −⎨ ⎬ ⎨ ⎬

∂ ∂ ∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭

   (8) 

where 
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( ) ( )
( )

( )

( ) ( ) ( )

( ) ( )

2( ) ( )3 2( )
1 ( ) 2( )

( )3 2 2( ) ( ) ( )
2 ( )

2
2( ) ( ) ( )

3 ( )

6 6

6 6

6
3 12

n n
n

a a a an n

n
n n n

a a a a n

a an n n
a an

h hC h p p
p p

hC p h p h p
p

p
C p h p h

p

λ λ

λ λ

λ
λ

= + −

= + +

= + +

                       (9) 

 
with the boundary condition ψ  = 0 on the boundary. A finite element formulation 
of Eqn (8) is obtained by using the Galerkin finite element method (Zienkiewicz et 
al., 2000). In this work quadratic elements with bilinear shape functions are used in 
an isoparametric formulation. The finite element form of Eqn. (8) is expressed in 
matrix notation as follows: 
 

( ) ( ) (e)
ψ e e

ψ =k rψ                                               (10) 
 

where 
4 4

( )e
ψ ×

k  is the element stiffness matrix for pressure gradient calculations, 

{ }( )
1 2 3 4

Te ψ ψ ψ ψ=ψ  is the vector for pressure gradients at element nodes 

and 
4×1

e)
p
(r  is the right hand side vector. The details of the element stiffness matrix and 

the right hand side vector are given in Appendix 1. Note that the superscript 
indicating the iteration level (n) is omitted from Eqn (10) for notational simplicity. 
The element stiffness matrix and the right hand side vector of each element are 
assembled into a global system of equations. This yields the following matrix 
equation: 
 

) ( ) ( ) n n n
ψ ψ=(K RΨ                                            (11) 

 
where ( )

n nd d

n
ψ ×

K  is the global stiffness matrix for pressure gradient calculations, 1dn ×Ψ  

is the global degrees of freedom for pressure gradients, 
1

( )
nd

n
ψ ×

R  is the global right 

hand side vector and nd is the total number of dofs. Solving Eqn (11) yields the 
pressure gradient ψ (n) = (∂p/∂h)(n) at each node. Substituting Ψ(n) into Eqn (6) 
yields the simplified air-bearing coupling matrix. The solution algorithm is 
described in Section 3.6. 
 
2.3.2. Solution the Modified Reynolds Equation 
 
 In addition to finding the pressure gradients, the coupling algorithm also requires 
calculation of the pressure value p at each node. As the modified RE (2) is non-
linear, the solution is obtained iteratively: 
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( 1) ( ) ( )m m m
i i ip p dp+ = +  for i = 1,…, nd                                           (12) 

 
where m is the iteration level for the pressure calculations. The pressure correction 

vector for the entire solution domain { }( ) ( ) ( )
1 1 2 ...

d d

T(m) m m m
n ndp dp dp× =dP  is 

obtained by finite element method. Eqn (2) is linearized substituting (12) into (2) 
and neglecting terms that are non-linear in ( )m

idp . The Galerkin method is used to 
obtain the weak form of the linearized equation. The finite element method is 
implemented by using isoparametric, bilinear quadrilateral elements. The element 
stiffness equations are symbolically represented as follows: 
 

( ) ( ) ( ) e e e
p p=k dp r                                             (13) 

 
where 

4 4

( )e
p ×

k  is the element stiffness matrix for pressure calculations, 

{ }( )
1 2 3 4

Te dp dp dp dp=dp  is the nodal degree of freedom vector for 

incremental change in pressure and 
4×1

e)
p
(r  is the right hand side vector. The details of 

( )e
pk  and e)

p
(r  are given in Appendix 2. Assembly of the element stiffness matrices 

and application of ambient pressure boundary conditions around the outer periphery 
of the slider results in the global stiffness equations: 
 

) ( ) ( )m m m
p p=(K  dP R                                          (14) 

 
where ( )

n nd d

m
p ×

K  is the global tangent stiffness matrix for air pressure and 
1

( )
nd

m
p ×

R  is the 

global right hand side vector. Solving Eqn (14) yields the change in pressure dp at 
each node. The pressure for each node is obtained iteratively as described in Section 
3.6.  
 
3. Adaptive Subdivision of the Finite Element Mesh 
 
 The accuracy of the finite element solution depends on the mesh density. In 
particular, for the solution of the Reynolds equation, a high mesh density is required 
in regions of large pressure gradients. The cost of analysis becomes prohibitively 
expensive if the number of elements in the mesh is too large. In general, it may not 
be possible to know the exact locations and/or levels of the pressure gradients 
except for regions of large height discontinuity on the slider surface (Wu et al., 
1999, Wu et al., 2000). In order to bring some flexibility to creating the finite 
element mesh the vertex label based adaptive meshing strategy for quadrilateral 
elements introduced by Cheng et al. (Cheng et al., 1989) is adopted in this work.  
 The adaptive meshing algorithm, described next, uses the pressure gradient as 
the metric for making subdivision decisions. A pressure gradient metric is calculated 
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for each element and then distributed to the each node (called vertex hereafter) of 
the element. In the vertex label assignment scheme of Cheng et al. (Cheng et al., 
1989), subdivision decisions are based on the labels assigned on the vertices of the 
mesh rather than the subdivision levels assigned to elements. This method ensures 
conformity of the subdivided mesh, where a conforming mesh is defined as a mesh 
where any two elements either share two pints and one edge, or share one point, or 
have no edges or points in common. This method prevents creation of dangling 
nodes that are not attached to another node, and ensures creation of reasonably 
shaped elements. 
 
3.1. Element Level Subdivision Label Assignment 
 

Two factors are considered in making a decision about the subdivision 
level of a given element. The first is the pressure gradient of the element, and the 
second is whether the element is located over a step of the slider (Holani, 2002).  

Let P be the regular quadrilateral mesh, and V and F be the sets of vertices 
and elements of P, respectively. Consider an element f ∈ F: the element level 
subdivision label assignment, S is indicated by S(f). The function S can be zero or 
any integer number, (i.e., S: F →  { }0N ∪  where N is the set of all positive 
integers.)  
 
3.1.1. Pressure Gradient Based Subdivision Level, S1(f) 
 

The element subdivision assignment S1 is an integer value based on the pressure 
gradient of a given element and the maximum value among all the elements. For 
each element, f, two element subdivision levels indicated by S1x and S1y are 
calculated in the x- and y-directions as follows: 
 
 
 
 
 
 
 
 
where Rlow and Rhigh are the lower and upper limits of the pressures gradient ratios 
and I { }( )0N∈ ∪  is an integer value indicating the level of subdivisions. As the 
pressure gradient ratio approaches 1 the value of I should be increased to ensure 
finer refinement. In the implementation, the pressure gradient of each element is 
checked and an approporiate class number Ci is assigned for each element. The 
refinement classes Ci used in this work are given in Table 1. The refinement level 
assignments are typically higher for higher classes. For example, a choice could be 
C1 = C2 = C3 = 0, C4 = 1 and C5 = 2. For a given element the maximum of the two 
refinement levels is used: 

( )
elem mesh

1
max max

if   then  = low high x
dp dpR R S f I
dx dx

⎧ ⎫ ⎧ ⎫≤ ≤⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

( )
elem mesh

1
max max

if   then  = low high y
dp dpR R S f
dy dy

I⎧ ⎫ ⎧ ⎫
≤ ≤⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭
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S1(f) = max (S1x, S1y)                                             (15) 
 

 
3.1.2. Step Height Based Subdivision Level, S2(f) 
 

It is extremely important to refine the mesh locally along all of the edges where 
there is an abrupt change in the height, as this condition causes very large changes 
in pressure in the vicinity of such edges. It is also important that these refinements 
be made at the maximum level among the ones mentioned in Section 3.1.1, so that 
they do not cause any convergence problems. Then the step height based 
subdivision assignment around the outer periphery of a geometric step is carried out 
by using the S2 function: 

 
S2(f) = max (S1(f))                                             (16) 

 
3.1.3. Effective Adaptation Criterion, S(f) 
 

The effective adaptation criterion is defined as follows: 
 

  S(f) = max (S1(f), S2(f)).                                        (17) 
 

It may look odd for a moment, to take the maximum among the two again, where S2 
is already the maximum of the two. However, note that this criterion is only used for 
the elements associated with edges of the geometry. For all other elements the S2(f) 
= 0 (Holani, 2002).  
 
3.2. Vertex Label Assignment 
 
 Once the element label assignment is made for all elements, the vertex label 
assignment can be made for all vertices v (v ∈ V) of the mesh. The vertex label 
assignment is indicated by the function L(v). The vertex label assignment is done in 

lowR  highR  
Refinement 

Class,  
Ci 

1×10-4 5×10-4 1 
5×10-4 5×10-3 2 
5×10-3 2.5×10-1 3 

2.5×10-1 8.5×10-1 4 
8.5×10-1 1 5 

 
Table 1. Limits of the element level, pressure gradient based, adaptation 
criterion used in Section 3.1.1. 
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such a way that for each vertex v, the vertex label L(v), is the maximum of the 
element labels surrounding that vertex (Cheng et al., 1989). Thus each vertex is 
assigned either a zero or a positive integer label, (i.e. L: V →  { }0N ∪ .) A vertex 
label assignment, L, of P with respect to S is a function defined as: 
L(v) = max(S(f) | f ∈ F and v is the vertex of f).  
 In addition to this, to ensure conformity requirements of the mesh an admissible 
label assignment G(v) is defined (Cheng et al., 1989). This assignment, described in 
Section 3.4, prevents creation of dangling nodes and ensures geometrically well 
shaped elements.  
 
3.3. Element Subdivision 
 

After each vertex is assigned a label the mesh subdivision takes place based on 
two subdivisions procedures: the balanced subdivision and the unbalanced 
subdivision (Cheng et al., 1989).  

 
3.3.1. Balanced Subdivision 
 

Consider a four-noded quadrilateral element f, with vertices v1, v2, v3  and v4, 
indicated by f = v1 v2 v3 v4. The balanced subdivision is performed on a four-noded 
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a) Balanced Subdivision 
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Figure 2. a) Balanced and b) unbalanced subdivision of an element. 



12   Revue Européenne des Élément Finis                                          

quadrilateral, f = v1 v2 v3 v4, having at least two non-zero labels assigned to its 
vertices. (Exceptions to this are discussed in Section 3.4). At first this procedure 
generates four sub-quadrilateral elements f1 = q1 q2 q3 q4,   f2 = r1 r2 r3 r4,  f3 = s1 s2 s3 
s4,   f4 = t1 t2 t3 t4 and assigns a label to each of its vertices as shown in Fig. 2a. The 
new vertex assignments are defined as follows (Cheng et al., 1989): 

 
q1 = v1, r2 = v2, s3 = v3, t4 = v4 
q2 = r1 = (v1 + v2)/2,   s2 = r3 = (v2 + v3)/2 
t3 = s4 = (v3 + v4)/2,    t1 = q4 = (v1 + v4)/2 
q3 = r4 = s1 = t2 = (v1 + v2 + v3 + v4)/4 
 
The label assignments for the new vertices are as follows: 
 
L(q1) = max (0, L(v1) – 1); L(r2) = max (0, L(v2) – 1) 
L(s3) = max (0, L(v3) – 1); L(t4) = max (0, L(v4) – 1) 
L(q2) = L(r1) = min (L(q1), L(r2)); L(r3) = L(s2) = min (L(r2), L(s3)) 
L(s4) = L(t3) = min (L(s3), L(t4)); L(t1) = L(q4) = min (L(t4), L(q1)) 
 
   if  ( L(q2) = L(r3) = L(s4) =  L(t1) = 0 )  
    L(q3) = L (r4) = L(s1) = L(t2) = 0 
   else 
   L(q3) = L(r4) = L(s1) = L(t2) = max (L(v)|v ∈{q2, r3, s4, t1}, L(v) > 0 ).  
 
3.3.2. Unbalanced Subdivision 
 

The unbalanced subdivision is performed on a four-noded quadrilateral, f = v1 v2 
v3 v4, having exactly one non-zero label assigned to any one of its vertices (Cheng et 
al., 1989). This procedure generates three sub quadrilaterals f1 = q1 q2 q3 q4, f2 = r1 r2 
r3 r4, f3 = s1 s2 s3 s4, and assigns a label to each of its vertices. For instance if v1 is the 
vertex with the non-zero label then the vertices and the labels are defined as shown 
in Fig. 2b. The new vertices are defined as follows (Cheng et al., 1989): 

 
q1 = v1, r2 = v2, r3 = s3 = v3, s4 = v4 
q2 = r1 = (v1 + v2)/2,   s1 = q4 = (v1 + v4)/2 
s2 = q3 = r4 = (v1 + v2 + v3 + v4)/4 
 
The label assignments for the new vertices are as follows (Cheng et al., 1989): 
 
L(q1) = L(v1) – 1 
L(qi) = L(ri) = L(si) = 0, for i = 2, 3, 4 
 

Refining of elements requires a conforming refinement of the neighboring 
elements if the subdivision levels are not equal. This is done by creating appropriate 
transition elements. The choice of these transition elements could yield bad results, 
if elements with very acute angles are constructed. The reason for this is that in the 
second refinement step elements with sharp angles are spilt up which leads to the 
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creation of elements with even more acute angles. Cheng et al. showed a way to 
overcome this difficulty for structured meshes (Cheng et al., 1989), discussed next.  

 
3.4 Admissible Label Function 
 

A label assignment is non-admissible if it contains one of the four cases shown 
in Fig 3 (Cheng et al., 1989). It can easily be shown that such an assignment in a 
mesh leads to non-conforming elements, which manifest themselves most 
commonly with dangling nodes, i.e. nodes that do not belong to the vertex set of 
some of the adjacent elements. Cheng et al. have devised an admissible function 
construction, which removes such cases without violating the conformity 
requirement (Cheng et al., 1989). Their algorithm is based on a regular quadrilateral 
network whose vertices form an m × n rectangular grid, V = {vi,j| 1 ≤ i ≤ m, 1 ≤ j ≤ 
n}. In case the mesh is not a regular quadrilateral mesh, they suggest using fictitious 
nodes to render it quadrilateral, and to remove the fictitious nodes once the 
algorithm is complete. An element fi,j is defined by four vertices vi ,j v i+1, j v i, j+1 v i+1, 

j+1. 
 The label assignment L on V can be rendered an admissible label assignment G 
by applying the algorithm specified by Cheng et al. (Cheng et al., 1989). First, two 
special functions Lo and Le are defined for use in the algorithm as follows (Cheng et 
al., 1989): 
 

( ),

1  if  is odd
2
0 if  is even
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i j
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i j
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Figure 3. Inadmissible vertex label assignments 
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( ),

1  if  is even
2
0 if  is odd

e i j
i j

L v
i j

⎧ +⎪= ⎨
⎪ +⎩

 

 
The algorithm to construct the admissible label assignment function G is as follows 
(Cheng et al., 1989): 
 

1. Construct Ge 
for each vi, j 
 Ge(vi, j) = max (L, Le(vi, j) )  

for each vi, j such that Ge(vi, j) = 1
2

 

 if Ge(vi, j) > 1
2

 for at least one adjacent vertex of vi, j 

  then Ge(vi, j) = 1 
  else Ge(vi, j) = 0. 

2.   Construct Go 
for each vi, j  
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Figure 4. Admissible label assignment
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 Go(vi, j)  = max (L, Lo(vi, j) ) 

for each vi, j such that Ge(vi, j) = 1
2

 

 if Go(vi, j)  > 1
2

 for at least one adjacent vertex of vi, j 

  then Go(vi, j) = 1 
  else Go(vi, j) = 0. 

3.   Construct G 
               if | 0

oGV  | > | 0
eGV  | 

         then return G = Ge 
         else return G = Go, 
 
where ,

0
e oGV  is the set of vertices vi,j such that Ge,o(vi,j) = 0. Looking at the example, 

shown in Fig. 4, after the vertex label assignment is done, the algorithm assigns 
labels to all the four nodes of only that element. If admissible label assignment is 
performed on this set of labels, it yields another set of labels with more positive 

do k = 1, 2 
 
     if k = 1 set uniform mesh 
 
     if k = 2 then 
        calculate mesh adaptation criteria 
        perform mesh adaptation 
        minimize bandwidth 
        use p and Ψ from k = 1 as initial guess 
     endif 
 
     repeat until  εs < 10-2 
 
         repeat until εp < 10-2 
            Solve ) ( ) ( )m m m

p p=(K  dP R  

                    1) ) ( )m m m+( (P  = P + dP  
         end repeat 
 
       Solve n) (n) (n) ψ =(K RΨ  

   end repeat 
end do

Figure 5. Flowchart for the entire code developed during the course of this work. 
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labels, as shown in the Fig. 4, which on subdivision prevents the creation of the 
dangling nodes. 
 
3.5. Mesh Clean Up and Bandwidth Reduction 

 
Once the subdivision on the mesh is performed with the admissible label 

assignment, the problem of the dangling nodes is taken care of. However, clean up 
is still required on the resultant mesh to maintain the conformity requirement. The 
nodes with more than one node number assignment, as a result of subdivision, need 
to be handled. In this work, when such a node is encountered the program removes 
the higher of the node numbers, decreases the node numbers correspondingly, and 
finally, adjusts the element connectivity matrix. 

The addition of new nodes changes the node numbering scheme and 
consequently the bandwidth of the global stiffness matrix. Bandwidth reduction is 
an important issue as Eqns (11) and (14) are solved by a direct solver. In this work, 
the algorithm proposed by Collins (Collins, 1973) for the bandwidth reduction is 
implemented.  

 
3.6. Adaptive Meshing Strategy 
  

In this work the mesh subdivision is performed in two steps (Holani, 2002). First 
the domain is discretized into a regular rectangular mesh and the coupled solution of 
Eqns (2) and (3) is found. Second, the mesh subdivision assignments, as described 
in Sections 3.1 - 3.4 are performed, and the coupled solution of Eqns. (2) and (3) is 
found for the second time. The algorithm of the method is presented in Fig 5.  
 In either one of the solutions the steady state position for a slider is obtained by 
solving Eqns (4) and (12) iteratively. After choosing an initial solution, the solution 
is repeated in an iterative manner until convergence is achieved. The criterion for 
convergence for both the pressure solution and the slider position, are as follows:  
 

1
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   (19) 

 
where pε  is the error in the pressure distribution, sε  is the error in the slider 

position, and (1)
pε  and (1)

sε  are the error values in the first iteration. Convergence is 
achieved when the following equation is satisfied simultaneously, 

  
, 0.01p sε ε ≤                                               (20) 
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4. Results and Discussion 
 

The numerical design simulator for the head disk interface has been applied to 
two different slider geometries, one of them is a 50% taper-flat, two-rail slider and 
the other is a negative pressure air bearing slider. 
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Figure 7. Comparison of the air pressure distributions under the 50% slider with 
a) Uniform 45 × 45 mesh, and b) with the mesh given in Figure 6a. 
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4.1. 50% Taper-Flat, Two-Rail Slider 
 

The parameters of the taper-flat slider modeled are tabulated in Table 2. The 
initial mesh consists of regular rectangular four noded elements. After adaptation, 
various finite element meshes with different adaptation levels are shown in Fig. 6. 
Fig. 6a shows a mesh initially with 2025 (45×45) nodes, with a maximum 
adaptation level of two, resulting in 8345 nodes and 8153 four noded elements. The 
refinement class assignments for this case were C1 = C2 = 0, C3 = C4 = 1 and C5 = 2. 
Fig. 6b shows a mesh initially with 1225 (35×35) nodes, with a maximum 
adaptation level of three, resulting in 16790 nodes and 16534 four noded elements. 
The refinement class assignments for this case were C1 = C2 = 0, C3 = 1, C4 = 2 and 
C5 = 3.  Observe that the mesh density is high at the trailing edge, and at the 
intersection of the taper with the flat surface. Also the mesh is refined at the steps 
where a large change in slider height is detected. 

A typical 2D pressure profile for this air bearing is shown in Fig. 7. The solution 
shows two pressure peaks on each rail, one at the trailing edge of the rail and the 
other at the rail-taper intersection. The pressure profile given in Fig. 7a was 
calculated with an initial mesh of 2025 (45×45) nodes. The mesh size is insufficient 
to resolve the pressure gradients at the trailing edge region.   

 
Parameter  
Slider type 50% taper flat, two-rail 
Length 2.0 mm 
Width 1.6 mm 
Rail width 0.25 mm 
Taper angle 8.7 mrad 
Taper length 0.2 mm 
Preload 35 mN 
Velocity 10 m/s 
Pivot Point, x-coordinate 0.889 mm 
Pivot Point, y-coordinate 0.7746 mm 
Atmospheric Pressure 101300 Pa 
Viscosity 18.34×10-6 N./m2 
Molecular mean free path (Air) 63.5×10-9 m 
Slip flow correction Second order 
Vertical suspension stiffness 18 N/m 
Rotational flexure stiffness (Pitch) 1.0e-6 N/deg 
Rotational flexure stiffness (Roll) 1.0e-6 N/deg 

 
Table 2. Model parameters for the 50% taper flat, two-rail slider bearing. 
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The refined mesh given in Fig. 6a, which has 8345 nodes, was used to obtain the 
results given in Fig. 7b. Observe that the pressure distribution is very smooth with 
the adapted mesh when compared with the one with the initial mesh. This 
refinement is done automatically in the software. 
 
4.2 Negative Pressure Air Bearing Slider 

 
A schematic of a negative pressure slider is shown in Fig. 8. Typical overall 

dimensions of the slider are 1.25 × 1 mm. Areas A, C and E, marked with a 
checkerboard pattern are at the same height level, and they are 4 µm above the 
unmarked white area. The areas B and D, marked with cross-hatched lines, are 200 
nm tall protrusions with respect to areas A, C and E. The pivot point is at the 
geometric center of the slider, other parameters, such as viscosity, velocity, stiffness 
are same those used for taper flat slider, given in Table 2. The pre-load on the slider 
is 35 mN and the inertia effects are neglected.  

The initial mesh consists of regular rectangular four noded elements. Two finite 
element meshes with different adaptation levels are shown in Fig 9. Part-a of this 
figure shows a mesh initially with 6516 (81×81) nodes, with a maximum adaptation 
level of one, resulting in 13505 nodes and 13327 quadrilateral elements. The 
refinement class assignments for this case were C1 = C2 = C3 = 0, C4 = 1 and C5 = 1. 
Fig. 9b shows a mesh initially with 7569 (87×87) nodes, with a maximum 
adaptation level of two, resulting in 15519 nodes and 15338 four noded elements. 
The refinement class assignments for this case were C1 = C2 = C3 = 0 = C4 = 1 and 
C5 = 2. Observe that the mesh density is high at the trailing edge. Also the mesh is 
refined at the steps where a large change in slider height exists. 
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Figure 8. Geometry of the negative pressure air bearing slider 
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Pressure distribution under the negative air bearing slider is shown in Fig. 10. In 
general, three pressure peaks occur, one at the trailing edge of the slider and two at 
the rear ends of the front pads. Fig. 10 shows the 3D pressure distribution for the air 
bearing with an initial mesh of 6561 (81×81) nodes in part-a, and with an adapted 
mesh having 15519 nodes in part-b. Observe that the pressure distribution is very 
smooth with the adaptively refined mesh, when compared with the one with the 
initial mesh.  
 
6. Summary, Conclusions and Future Work 
 

This paper provides a numerical design tool to analyze the head-disk interface 
for magnetic head sliders used in hard disk drives. The finite element method has 
been used discretize modifed Reynolds equation. The hydrodynamic stiffness 
approach has been implemented to improve the solution of the coupled system of air 
lubrication and slider equilibrium equations. An adaptive mesh algorithm is 
implemented to capture the fine aspects of the slider geometry, and regions of high 
pressure gradients. A bandwidth reduction algorithm has been applied for efficient 
memory management and minimizing computational time.  

Two sliders have been analyzed, namely the 50% taper flat slider, and a negative 
air bearing slider. I twas shown that using the adaptive mesh gives more flexibility 
and control over the placement of nodes, and also enables the user to obtain smooth 
pressure contours with considerably less effort. Improvements to this work in the 
future should include a) placement of nodes exactly on the recess boundaries, b) 
implementation of iterative solution scheme, c) implementation of contact pressure 
between the disk and the slider.  
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Appendix 1 
 
Using bilinear shape functions, four point Gauss quadrature, the components of the 
element stiffness matrix for eqn. (10) become,  
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 (A.1) 
and the elements of the right hand side vector for eqn. (10) become, 
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where i, j = 1, 2, 3, 4. In these equations Ni are the bilinear shape functions and J is 
the Jacobian. The operator 2 2x∏  represents four point Gauss quadrature.  
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Appendix 2 
 
Using bilinear shape functions, four point Gauss quadrature, the components of the 
element stiffness matrix for eqn. (13) become,  
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(A.3) 
and the elements of the right hand side vector for eqn. (13) become, 
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where i, j = 1, 2, 3, 4.  
 
  


