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ABSTRACT

In evaluation of the long-term success of a dental implant, the reliability and the

stability of the implant-abutment interface plays a great role. Tapered interference fits

provide a reliable connection method between the abutment and the implant. In this work,

the mechanics of the tapered interference fits was analyzed using a closed-form formula

and the finite element (FE) method. An analytical solution, which is used to predict the

contact pressure in a straight interference, was modified to predict the contact pressure in

the tapered implant-abutment interface. An elastic-plastic finite element model was used

to simulate the material non-linearity of the implant and abutment material. The validity

and the applicability of the analytical solution were investigated by comparisons with the

FE model for a range of problem parameters. It was shown that the analytical solution

could be used to determine the pull-out force and loosening-torque with 5-10% accuracy.

Detailed analysis of the stress distribution due to tapered interference fit, in a

commercially available, abutment-implant system was carried out. This analysis shows

that plastic deformation in the implant limits the increase in the pull-out force that would

have been otherwise predicted by higher interference values.
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INTRODUCTION

Dental implant-abutment systems are used as anchors to support single or multi-

unit prostheses for partially or fully edentulous patients. A dental implant system consists

of an implant that is surgically implanted in maxilla or mandible, and an abutment that

mates with the implant once the implant successfully osseointegrates to the bone.

Depending on the specific system used, an abutment can include a machined or welded

connection mechanism within itself or can be clamped onto the implant by means of an

abutment screw.  The dental prosthesis is then fabricated over the abutment. In general,

the success of the treatment depends on many factors affecting the bone-implant,

implant-abutment and abutment-prosthesis interfaces (Geng et al., 2001). In this paper we

analyze the mechanics of the tapered interference fit used in some implant-abutment

systems.

Two types of connection methods involving a) a screw, and b) a tapered

interference fit (also called Morse taper) are commonly used for securing the abutment to

the implant. Fig. 1 shows various implant systems: designs by Astra (Astra Tech AB,

Mölndal, Sweden) and Nobel Biocare (Nobel Biocare AB, Göteborg, Sweden) use a

screw; designs by Ankylos (Degussa Dental, Hanau-Wolfgang, Germany) and ITI

(Institut Straumann AG, Waldenburg, Switzerland) use a screw with tapered end; and the

design by Bicon (Bicon Inc., Boston, MA, USA) uses solely a tapered interference fit.

For the systems using a screw, the connection between the implant and the abutment

depends on the screw-preload, which is generated by applying a predetermined amount of

torque during installation. Designs in which the screw has a large tapered end essentially

work like a tapered interference fit, and the screw threads do not appear to contribute to

the connection (Schwartz et al., 2000; Binon et al., 1994; Sutter et al., 1993). The tapered

interference fit relies on the large contact pressure and resulting frictional resistance, in

the mating region of the implant-abutment interface, to provide a secure connection.

In screw type implant-abutment connection mechanism, mechanical

complications such as screw loosening when occlusal loads exceed the preload, or creep

deformation in the screw-implant interface can lead to clinical complications (Schwartz

et al., 2000). When the tapered-interference fits are used, the abutment loosening seems

to be less of a problem (Müftü and Chapman 1997; Morgan and Chapman 1999; Keating,
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2001; Sutter et al. 1993). The free body diagram of the abutment in Fig. 2 shows that

resultant axial force due to biting is ( )( )cos sinb bF N N µ θ θ= + − , where µ  is the static

friction coefficient, N is the resultant contact force due to initial interference, Nb is the

additional normal force due to biting and θ is the taper angle. The biting force acts in the

direction of the abutment insertion, hence aids to secure the connection. This situation is

in direct contrast to implants using screws where the biting force lowers the pretension in

the screw. The mechanism for the tapered interference fit to become loose, is the

application of a loosening torque TL or a pull-out force Fp.

Brunski (1999) indicated tensile axial loading could develop in implants

supporting multi-unit splinted implant restorations and cantilevered prostheses. Therefore

a sufficiently large amount of pull-out force is necessary for the long-term stability of a

dental implant-abutment system using the tapered interference fit. Later in this paper,

formulas are developed for TL and Fp.

In general, interference fits provide a connection method between a hub and a

shaft without using a third member such as a key, pin, bolt, or screw. The connection

allows load transmission due to the friction forces between the mating surfaces where the

shaft has a slightly larger diameter than the hub. The tapered interference fits are used

commonly in engineering practice such as Morse tapers, used to engage lathe bits (Sutter

et al., 1993). In the medical applications tapered interference fits are used in total hip

prosthesis in addition to dental implants (Chu et al. 1999). Mechanics of a cylindrical

interference fit is well understood, and can be found in design text books (e.g., Shigley

and Mischke, 1989). The elastic-plastic behavior of the cylindrical interference fits has

also been analyzed (Gammer and Müftü, 1990). No known analytical solution to the

tapered interference fit problem exists to the best of our knowledge. FE method has been

used to investigate the mechanics of tapered interference fits in hip implants (e.g.,Van

Rietbergen et al., 1993; Viceconti et al., 2000; Chu et al., 2000).

The dependent characteristics of the interference fit, such as the pull-out and

insertion forces and the stress distribution in the members, depend on the taper angle,

contact length, inner and outer diameters of the members, depth of insertion, material

properties and coefficient of friction. In this paper the mechanics of a general tapered

interference fit is analyzed. A closed form formula is derived to predict the contact
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pressure between the tapered members, based on plane stress elasticity. The analytical

solution is used to determine the interrelations between the parameters. The finite

element method is used to verify the validity of the formula. A detailed analysis of the

interference fit in a Bicon implant is presented including the analytical, purely elastic and

elastic-plastic FE analyses.

MATERIALS AND METHODS

Geometrical considerations

A schematic description of a generic tapered interference fit of two cylinders,

embedded in a cylindrical bone, is shown in Fig. 3a. The middle cylinder (implant) has an

outer radius b2 and has a tapered hole in the center with top and bottom radii itr  and ibr ,

respectively. The depth of the hole is Lh and the total height of the cylinder is Lh + Ls. The

inner-most part is a truncated cone representing the abutment, with top and bottom radii

of atr  and abr , respectively. The length of the abutment is La. The taper angle θ is the

same for both pieces.  A cylindrical coordinate axis is located on the top of the implant as

shown in the figure.

When the abutment is placed in the implant with no interference, the bottom of

the abutment will be located at ( ) tan*
it abz z r r θ= = − . Application of an external axial

force in +z-direction will cause the abutment to engage with the implant with an

interference fit. An axial displacement by an amount z∆  measured with respect to *z z= ,

will cause an interference  tanzδ θ= ∆  in the radial direction, as shown in the Fig. 3a.

The total length of the contacting interface of the abutment and the implant then becomes

( ) sin cosc it abL r r zθ θ= − + ∆ .

Analytical Model

The geometry of the tapered interference fit is deceptively simple; but, no known

analytical treatment of this problem exists to the best of our knowledge. In order to

develop a relation for the contact pressure in a tapered interference fit, first we revisit the

formula for calculating the interference conditions of two straight cylinders, depicted in

Fig. 3b. The plain stress solution to a cylinder subjected to an inner pressure Pi and an
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outer pressure Po, as shown in Fig. 3c, is well known (Shigley and Mischke, 1989). The

radial displacement u(r) of such a cylinder is,

2 2 2 2

2 2 2 2

( )1
( ) (1 ) (1 )

( ) ( )
o i i oa b P P Pa P b

u r r
E b a r b a

ν ν
 − −

= − + + − − − 
         a r b≤ ≤ .      (1)

Consider two cylinders whose radii have an initial interference d as shown in Fig.

3b. The inner cylinder has an outer radius b1 and, the outer cylinder has inner and outer

radii of a2 and b2, respectively. The initial interference is, then, 1 2b aδ = − . Once the

cylinders are engaged, the total radial displacement of the interface will be equal to the

initial interference, ( ) ( )1 1 2 2u b u aδ = − . This is the geometric constraint of the

interference. When the interference takes place we get 1 2o i cP P P= =  (see Fig. 3c). The

interference depth d is small when compared to the radii of the cylinders, therefore it can

be assumed that interference occurs at the radius 2 1r a b= = . The contact pressure Pc due

to interference is calculated by combining equation (1) with the geometric constraint as

follows (Shigley and Mischke, 1989),

2 2
2 1

2
1 2

( )
2c

E b b
P

b b
δ −

= .                                                  (2)

Note that equation (2) is valid if the material properties of the mating cylinders are the

same, i.e., 1 2E E E= =  and 1 2ν ν ν= = .

Brichi et al. (2001) analyzed the mechanics of a tapered interference fit by

approximating the smooth tapered walls by a series of straight cylinders with changing

radii and diminishing height. By applying the plain stress formula, given in equation (1),

to each cylinder, the contact pressure distribution of the whole conical interface can be

approximated. Fig. 3a shows that the outer radius of the abutment ( )1b z  and the inner

radius of the implant ( )2a z  vary linearly along the axis z as follows,

( ) *
1

2

( ) cos tan   for  0

( ) tan                      for  0
ab c

it h

b z r L z z z z

a z r z z L

θ θ

θ

= + − ≤ ≤ + ∆

= − ≤ ≤
                        (3)

Then, using equations (2) and (3), the contact pressure due to interference of a tapered

interference fit, as a function of the axial distance becomes,
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( )
( )

( )

2 2
2 1

2
1 2

cos

2c

E b b z
P z

b z b

δ θ − = .                                           (4)

The accuracy of this equation is checked, by comparing the results with the FE analysis.

The effect of the bone on the contact pressure in the implant-abutment interface

In practice, the implant and the abutment are surrounded by the bone. In this

section, expressions for the contact pressure in the abutment-implant (a-i) and implant-

bone (i-b) interfaces are developed. In the implant-abutment-bone system, the interface

between the implant and the abutment, at r = r2 ( = b1(z)), has an initial interference δ, and

the interface between the implant and the bone, at r = r3 (= b2), has zero interference.

These conditions are expressed as;

( ) ( )1 2 2 2 2 at u r u r r rδ = − = ,                                                (5)

( ) ( )2 3 3 3 30  at u r u r r r= − = .                                                (6)

By using similar assumptions as given above, the formulas for contact pressure in the

implant-abutment interface ( )a i
cP −  and in the abutment-bone interface ( )i b

cP −  are found

from simultaneous solution of equations (1), (5) and (6) as follows,

 (7)

                         (8)

Note that in these equations as the elastic modulus of the bone approaches zero, ( )a i
cP −

approaches the expression given in equation (4) and that ( )i b
cP −  approaches zero.

Pull-out Force and Torque

The resultant contact force N due to the interference fit is obtained by the

integration of the contact pressure Pc over the contact area along the tapered interface,

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ){ }

2 2 2 2 2 2 2 2
3 2 2 1 1 2 3 2

2 2 2 2 2
1 2 3 2 3 2

1 1 1 1cos
2 1 1 1

b b ba i
c

b b b

E b b b b z E b z b b bE
P

b z b E b b E b b

ν ν ν νδ θ

ν ν ν
−    + + − − + + + − −   =

 + + − + − − 

( ) ( )
( ) ( ){ }

2 2
1 3 2

2 2 2 2 2
2 3 2 3 2

( )

1 1 (1 )( )
i b b

c

b b b

EE b z b b
P

b E b b E b b

δ

ν ν ν
− −

=
 + + − + − − 
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cos

10
2 ( ) ( )

cL

cN b z P z dz
θ

π= ∫ .                                                 (9)

A free body diagram of the assembly would show that the pull-out force Fp is equal to,

(sin cos )pF N θ µ θ= − .                                                 (10)

Thus a closed form for solution for the approximate pull-out force of a tapered

interference fit is obtained by using equations (4), (9) and (10) as follows,

( ) [ ]2 2 2
22

2

3 sin 3 sin (sin cos )cos
3

c
p ab c ab c

E L
F b r L r L

b
π δ

θ θ θ µ θ θ = − − + −  .       (11)

This equation shows that the pull-out force increases linearly with δ and E; and it

increases as ( )3

cL . This result points the importance of a large contact surface in the

abutment-implant interface. The formula also shows that if the taper angle is chosen such

that tanθ µ= , then the pull out force will be equal to zero. Fig. 4 shows the pull out-

force pF , for different implant radius 2b , contact length cL , and taper angle θ  values,

typical for dental implants. Figures 4a, 4c and 4d show that increasing contact length

causes an increase of the pull-out force. Similarly, Figures 4a, 4b and 4c show that

increasing the implant radius 2b  causes the pull out force to increase. Finally, Fig. 4b and

4d show that the pull-out force is higher for smaller taper angles. Close inspection of

these figures show that, predicted pull-out force pF  values are relatively large. For

example, from Fig. 4c, the pull out force is predicted to be, Fp = 1700 N, for b2 = 1.5 mm,

θ = 3o, Lc = 2 mm. This value is considerably larger than the tensile load of 200 N, that

can be encountered in one of the implants supporting a full-denture as predicted by

Brunski (1999).

The external torque value, which causes the abutment to become loose is given

by,

( ){ }

cos 2
10

2
2 2 2 2
2 22

2

2 ( ) ( )

cos
sin 2( 3 ) sin 4 sin 4 ( )

4

cL

L c

c
c ab c ab c ab ab

T b z P z dz

E L
L b r L r L r b r

b

θ
πµ

πµ δ θ
θ θ θ

=

 = − − + + − 

∫
.

(12)
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This equation shows that the loosening-torque increases with ( )4

cL . The trends of

dependence of LT  on 2b , cL , and θ  are similar to that of the pF .

Interference fit analysis using the FE method

The finite element method was used, here, to analyze the mechanics of the tapered

interference fit. First, the predictions of the interference fit formula given by equation (4)

were compared to the results of the FE analysis. In this analysis, the material was

assumed to behave elastically. Second, the mechanics of the interference fit in a Bicon

implant-abutment system shown in Table 2, embedded in a cylinder to represent the

bone, was analyzed. In the second analysis, the implant and the abutment were modeled

with bilinear elastic-plastic material properties and large deformation elasticity option.

Ansys ver. 5.7 (Ansys Inc., Houston, Pennsylvania, USA) was used in the

analyses.  The CAD drawings were created in Pro/Engineer 2000i2 (PTC, Needham, MA,

USA). First, the implant and the abutment were assembled without any interference.

Then, in order to obtain different interference values, the abutment was displaced

different z∆ amounts in the axial direction, relative to the implant. This creates

overlapping of the contact boundaries. The assemblies with overlapping boundaries were,

then, imported into Ansys. The abutment-implant system was modeled using

axisymmetric Plane 42 elements. The tapered contact interfaces were simulated by Target

179 and Contact 172 elements.  The implant was constrained in all degrees of freedom at

the bottom face. The contact algorithm of the FE analysis code, then, finds the

equilibrium-state, where the overlap is eliminated.

RESULTS AND CONCLUSIONS

Comparison of tapered interference formula to FE analysis

FE analysis was used to check the validity of equation (4). The length of the solid

part of the implant Ls was kept large, in order to minimize the effect of the fixed

boundary. All materials were assumed to be linear and isotropic with E = 200 GPa, ? =

0.3. Three different Lccos?/b1 values (4, 6, 12) and three different b2/b1 values (3, 4, 5)

were used for each one of the three taper angles θ = 3o, 6o and 9o.
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Fig. 5 shows the comparison of the contact pressure distribution predicted by

equation (4) and the FE analysis, for θ = 9o, Lccos?/b1  = 4, b2/b1 = 5, and δ/b1 = 4×10-4.

The insert on Fig. 5 shows the FE mesh and the contact pressure distribution at the

abutment-implant interface. Fig. 5 shows that the FE analysis predicts stress

concentrations at the ends of the contact interface. The FE analysis and closed-form

results, in general agree well; the contact pressure increases toward the tip (z  = 160 mm)

where the implant is thicker, thus provide more resistance to deformation. However, it is

clear that the closed-form approach, which is based on the plane-stress theory, does not

capture the stress concentrations, particularly near the tip where z  → z*+∆z.

Similar observations are made for the Pc-vs-z comparisons of the other parameter

combinations. The two approaches are compared conveniently, when the pull-out force

Fp and loosening torque TL values are evaluated for both the FE analysis and the closed

form solution. Table 1 shows the Fp and TL for different θ, Lccos?/b1, b2/b1 and δ/b1

values. Here we see that the closed-form formula given by equation (11) underestimates

the FE results between 5.46%-9.26%. Considering the assumptions involved in the

derivation of equation (4), this is a reasonable level of agreement.

The effect of the bone on the contact pressure in the implant-abutment interface

Equation (7) gives the contact pressure distribution ( )a i
cP −  in the abutment-implant

interface, with the effect of the surrounding bone. This equation shows that three

parameters related to the bone, its elastic modulus Eb, Poisson's ratio νb and outer radius

b3 affect the ( )a i
cP −  distribution. Figures 6a and 6b show the effect of Eb and b3,

respectively. Here it can be seen that a 16-fold increase in Eb causes nearly 10% increase

in the contact pressure. The relation of the contact pressure to the outer radius of the bone

is non-linear, as shown in Fig. 6b, where the contact pressure changes about 3.3%

between b3 = 1 mm and 6 mm, but no appreciable change occurs for thicker bone. These

results show that, the bone does not affect the contact pressure distribution in the

abutment-implant interface more than 10%.
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The FE analysis for Bicon implant-abutment system

The contact pressure and internal stress distribution in a Bicon implant-abutment

system were analyzed using the FE method. Different interference values were obtained

by assembling the implant and the abutment with z∆ = 0.05, 0.1, 0.15, 0.2 and 0.25 mm

in the vertical direction as described above. The bone was approximated by a 15.24 mm

long cylinder with 11.68 mm in diameter, leaving 4.2 mm of bone around the implant,

which is sufficient to eliminate the boundary effects in mesial-distal direction (Teixera et

al. 1998).

All the materials were assumed to be isotropic. Bone was assumed to be linear,

homogenous with Eb = 10 GPa, ?b = 0.3. Full osseointegration was assumed and was

modeled by fixing the implant to the bone. Implant and abutment material were Ti6Al4V

ELI. A bilinear, isotropic hardening model was used in order to simulate the plasticity of

Ti6Al4V ELI.  The material properties of this material are: elastic modulus E = 113.8

GPa; tangent modulus Et = 0.63 GPa; yield stress σY = 960 MPa, ultimate strain εU =

0.08; Poisson's ratio ? = 0.34. The geometric non-linearity was also taken into account by

using the large displacement option in the FE analysis. The results of the FE analysis are

presented using the equivalent von Mises stresse and strain.

Figures 7a−e give the von-Mises stress distributions for ∆z = 0.05 − 0.25 mm, and

Fig. 7f shows the equivalent strain for ∆z = 0.25. Note that the effect of the bone is

considered in the analysis but not shown in these figures. The maximum von Mises stress

for ∆z = 0.05 mm, which occurs near the  bottom of the contact interface, is 692 MPa; the

abutment and the implant both deform elastically. The stresses in the implant are higher

than the abutment, as the latter is a stiffer due to its solid geometry. Plastic deformation

starts at 0.1 mm insertion depth in the implant, near the top and the bottom of the contact

area. This is consistent with the stress concentrations mentioned in the previous section.

The rest of the implant and the abutment are elastically deformed. For ∆z values greater

than 0.1 mm, the plastic deformation spreads to the other regions of implant. A small

region of plastic deformation in the abutment can be seen at ∆z = 0.15 mm, which spreads

deeper into the abutment at higher ∆z values. Even at the highest level of abutment

insertion considered here, the outer periphery of the implant remains elastic. The
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equivalent stress distribution at this level is shown in Fig. 7e for ∆z = 0.25 mm. The

equivalent strain distribution for the same ∆z value is shown in Fig. 7f, which shows that

except for the tip of the implant the strain level is less than 0.03. The largest equivalent

strain occurs also at the tip of the implant and it is greater than the ultimate strain for this

material 0.08.

The contact pressure distribution ( )a i
cP − at the abutment-implant interface of the

Bicon system, evaluated by the FE method, were compared to the results of equation (7).

The outside of the Bicon implant has fins as shown in Fig. 1. The results presented in Fig.

8, were calculated for the inner, (b2 = 1.14) and outer radii, (b2 = 1.75) of the fins,

separately. An equivalent implant radius (b2 = 1.51) was taken to be the radii of the

cylinder with a height of contact length that has the same cross-sectional area as the

implant area along the contact length.

Fig. 8 shows stress concentrations at the lower and upper intersection of the

implant and abutment. The analytical solution cannot predict the pressure values in these

regions. The analytical and FE results are close in the central 90% of the contact length.

Since the implant radius is maximum at the bottom of the interface, the finite element

results were well approximated by the upper curve using the largest implant radii,

whereas at the top of the interface, the contact pressure was approximated better by the

lower curve, using the smallest implant radius.

The pull-out force Fp and the loosening torque TL calculated using an equivalent

implant radii for this implant-abutment system as a function of insertion depth ∆z, with

different approaches are shown in Fig. 9. The closed-form formula, given by equation

(7), predicts the pull-out force with 8-9 % error by using the mean radius. If the material

is treated as perfectly elastic, then the Fp and TL values increase linearly as a function of

insertion depth. When the plastic deformation of the material is considered, the pull-out

force and the loosening torque increase non-linearly, and tend to level off. This result

indicates that increasing insertion depth does not necessarily correspond to unbounded

increase in pull-out force or loosening torque values.
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NOMENCLATURE

a: inner radii of the cylinder

b: outer radii of the cylinder

a1: inner radii of the abutment

b1: outer radii of the abutment

a2: inner radii of the implant

b2: outer radii of the implant

a3: inner radii of the bone

b3: outer radii of the bone

rat: top radii of the abutment

rab: bottom radii of the abutment

rit: inner top radii of inner cylinder

rib: inner bottom radii of inner cylinder

Lh: depth of hole

Ls: length of implant under the hole

La: length of abutment

Lc: contact length

E: Young’s modulus

Et: Tangent modulus

Eb: Young’s modulus of the bone

eeq: equivalent von Mises strain

eu: ultimate strain

?: Poisson’s ratio

?b: Poisson’s ratio of the bone

r: radial location

u: radial displacement

z: position of abutment

z*: position of the abutment with no interference

?z: insertion depth

d: interference depth
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?: taper angle

µ: coefficient of friction

Pc: contact pressure

Pi: pressure applied to the inner surface of the cylinder

Po: pressure applied to the outer surface of the cylinder

( )a i
cP − : Contact pressure in abutment-implant interface

( )i b
cP − : Contact pressure in implant-bone interface

s Y: yield stress

s eq: equivalent von Mises stress

N: total normal force acting on the contact area due to the contact pressure

Nb: total normal force acting on the contact area due to biting forces

Fp: pull-out force

Fb: resultant axial force due to biting

TL: loosening torque
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BICON Size Part Number Length Material

Implant 3.5 mm 260-740-211 11.12 mm Ti6Al-4V ELI

Abutment 4×6.5 mm 0o 260-140-002     N/A Ti6Al-4V ELI

Table 2. The Bicon implant-abutment system used in the FEA of the interference fit

b2/b1  (for d/b1 = 4×10-4, Lccosθ/b1=4)
3 4 5

θ FEA Eqn. (4) % Error FEA Eqn. (4) % Error FEA Eqn. (4) % Error
3o 673 kN 620 kN -7.88 717 kN 663 kN -7.53 733 kN 683 kN -6.82
6 o 572 525 -8.22 610 570 -6.56 632 591 -6.49
9 o 463 431 -6.91 509 477 -6.29 528 498 -5.68

Lccosθ/b1 (for d/b1 = 4×10-4, b2/b1=3)
4 6 12

θ FEA Eqn. (4) % Error FEA Eqn. (4) % Error FEA Eqn. (4) % Error
3 o 673 kN 620 kN -7.88 991 kN 916 kN -7.57 1851 kN 1733 kN -6.37
6 o 572 525 -8.22 817 758 -7.22 1396 1300 -6.88
9 o 463 431 -6.91 647 603 -6.80 1464 1384 -5.46

d/b1 (for b2/b1 = 3, Lccosθ/b1 = 4)
1×10-4 4×10-4 8×10-4

θ FEA Eqn. (4) % Error FEA Eqn. (4) % Error FEA Eqn. (4) % Error
3 o 168 kN 155 kN -7.74 673 kN 620 kN -7.88 1353 kN 1240 kN -8.35
6 o 142 131 -7.75 572 525 -8.22 114 105 -7.89
9 o 116 108 -6.90 463 431 -6.91 950 862 -9.26

Table 1. Comparison of the pull-out force Fp calculated by the closed form solution given by Eqn. (11)
and the results of the FEA, for a tapered interference fit by using b1 = 40 mm, E = 200 GPa, ? = 0.3.



18

Nobel Biocare Astra Ankylos ITI Bicon

Fig. 1. Different implant-abutment attachment methods. Astra and Nobel Biocare use a
screw, Ankylos and ITI use a screw with an interference fit and Bicon uses only-
interference fit.
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Fig. 2. Equilibrium of the forces acting on the abutment when an axial biting force Fb is
applied. A normal force due to initial insertion N, a normal force due to biting Nb, and a
tangential force of magnitude µ(N+Nb) act on the tapered wall. Note that N and Nb are the
resultants of the axisymmetric reaction forces.
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 µ(N +Nb)
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a2(z)

bone
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Fig. 3. a) The geometry of a tapered interference fit composed of an outer bone, inner implant
and a tapered abutment. b) The geometry of a regular interference fit of a solid shaft with an
outer diameter of b2 and a hollow shaft of outside diameter b1 and inside diameter a1. c) A
hollow shaft subjected to inner pressure pi and outer pressure po. The initial interference
between the parts in both a) and b) is δ.
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 pi
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b) c)

Fig. 3. a) The geometry of a tapered interference fit composed of an outer bone, inner implant and a
tapered abutment. b) The geometry of a regular interference fit of a solid shaft with an outer diameter
of b2 and a hollow shaft of outside diameter b1 and inside diameter a1. c) A hollow shaft subjected to
inner pressure pi and outer pressure po. The initial interference between the parts in both a) and b) is
δ.
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Fig. 4. Variation of the pull-out force pF  with implant radius b2, contact length Lc and

taper angle θ  for rib = 0.7 mm, δ = 8×10-3 and µ = 0.5.
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Axial Location, z (mm)
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Fig. 5. Comparison of the contact stress distribution predicted by equation (4) and the FEM
for θ = 9o, Lc/b1  = 4, b2/b1 = 3, and δ/b1 = 16×10-3. The insert shows the FE mesh used in the
solution and the variation of the contact pressure with respect to the abutment-implant
interface.
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Fig. 6. a) The effect of  bone modulus and b) the effect of bone radius surrounding the implant on the
contact pressure in the abutment-implant interface ( )a i

cP − , calculated by using equation (4).
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a) eqσ  at ∆z = 0.05 mm b) eqσ  at ∆z = 0.1 mm c) eqσ  at ∆z = 0.15 mm

d) eqσ  at ∆z = 0.20 mm e) eqσ  at ∆z = 0.25 mm f) eqε  at ∆z = 0.25 mm

Fig. 7. The von Mises stress distribution for interference depth values of ∆z = 0.05 − 0.25 mm are
given in a)-e). The equivalent von Mises strain for ∆z = 0.25 mm is given in f). The yield stress for
Ti6Al4V ELI is σY = 960 MPa, and the ultimate strain is εU = 0.08. Note that the effect of the
surrounding bone is included in the analysis but not shown in this figure for clarity of
presentation.



26

Insertion Depth, (mm)

P
u

ll-
o

ut
F

or
ce

,
F

p
(N

)

0.05 0.1 0.15 0.2 0.25
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500
Perfectly Elastic Finite Element Solution

Elastic-Plastic Finite Element Solution
Analytical Solution

Axial Location, z (mm)

C
on

ta
ct

P
re

ss
ur

e,
P

c(a
-i

)
(M

P
A

)

0 1 2 3
100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

Finite Element Solution

Anaytical Solution (b2 = 1.14 mm)

Anaytical Solution (b2 = 1.5 mm)

Anaytical Solution (b2 = 1.75 mm)

Fig. 8.  The contact pressure distribution in the abutment implant interface for the Bicon
implant calculated by the FE method for ∆z = 0.1 mm. The results are compared with
the predictions of the closed-form solution given by equation (7) for different implant
outer radii.
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Fig. 9. a) the pull out force and b) the loosening torque for the Bicon implant. The results
represent the closed form solution, elastic FEA and elastic-plastic FEA.


