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Abstract

In evaluation of the long-term success of a dental implant, the reliability and the stability of the implant–abutment interface plays

a great role. Tapered interference fits provide a reliable connection method between the abutment and the implant. In this work, the

mechanics of the tapered interference fits were analyzed using a closed-form formula and the finite element (FE) method. An

analytical solution, which is used to predict the contact pressure in a straight interference, was modified to predict the contact

pressure in the tapered implant–abutment interface. Elastic–plastic FE analysis was used to simulate the implant and abutment

material behavior. The validity and the applicability of the analytical solution were investigated by comparisons with the FE model

for a range of problem parameters. It was shown that the analytical solution could be used to determine the pull-out force and

loosening-torque with 5–10% error. Detailed analysis of the stress distribution due to tapered interference fit, in a commercially

available, abutment–implant system was carried out. This analysis shows that plastic deformation in the implant limits the increase

in the pull-out force that would have been otherwise predicted by higher interference values.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Dental implant–abutment systems are used as anchors
to support single or multi-unit prostheses for partially or
fully edentulous patients. A dental implant system
consists of an implant that is surgically implanted in
maxilla or mandible, and an abutment that mates with
the implant once the implant successfully osseointe-
grates to the bone. Depending on the specific system
used, an abutment can include a machined connection
mechanism within itself or can be clamped onto the
implant by means of an abutment screw. The dental
prosthesis is then fabricated over the abutment. In
general, the success of the treatment depends on many
factors affecting the bone–implant, implant–abutment
and abutment–prosthesis interfaces (Geng et al., 2001).
In this paper we analyze the mechanics of the tapered
interference fit used in some implant–abutment systems.
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Two types of connection methods involving (a) a
screw, and (b) a tapered interference fit (also called
Morse taper) are commonly used for securing the
abutment to the implant. Fig. 1 shows various implant
systems: designs by Astra (Astra Tech AB, M .olndal,
Sweden) and Nobel Biocare (Nobel Biocare AB,
G .oteborg, Sweden) use a screw; designs by Ankylos
(Degussa Dental, Hanau-Wolfgang, Germany) and ITI
(Institut Straumann AG, Waldenburg, Switzerland) use
a screw with tapered end; and the design by Bicon
(Bicon Inc., Boston, MA, USA) uses solely a tapered
interference fit. For the systems using a screw, the
connection between the implant and the abutment
depends on the screw-preload, which is generated by
applying a predetermined amount of torque during
installation. Designs in which the screw has a large
tapered end essentially work like a tapered interference
fit, and the screw threads do not appear to contribute to
the connection (Schwarz, 2000; Binon et al., 1994; Sutter
et al., 1993). The tapered interference fit relies on the
large contact pressure and resulting frictional resistance,
in the mating region of the implant–abutment interface,
to provide a secure connection.
erved.
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Nomenclature

a inner radii of the cylinder
b outer radii of the cylinder
a1 inner radii of the abutment
b1 outer radii of the abutment
a2 inner radii of the implant
b2 outer radii of the implant
a3 inner radii of the bone
b3 outer radii of the bone
rat top radii of the abutment
rab bottom radii of the abutment
rit inner top radii of inner cylinder
rib inner bottom radii of inner cylinder
Lh depth of hole
Ls length of implant under the hole
La length of abutment
Lc contact length
E Young’s modulus
Et Tangent modulus
Eb Young’s modulus of the bone
eeq equivalent von Mises strain
eu ultimate strain
n Poisson’s ratio
nb Poisson’s ratio of the bone

r radial location
u radial displacement
z position of abutment
z� position of the abutment with no interference
Dz insertion depth
d interference depth
y taper angle
m coefficient of friction
Pc contact pressure
Pi pressure applied to the inner surface of the

cylinder
Po pressure applied to the outer surface of the

cylinder
Pða�iÞ
c Contact pressure in abutment–implant inter-

face
Pði�bÞ
c Contact pressure in implant–bone interface

sY yield stress
seq equivalent von Mises stress
N total normal force acting on the contact area

due to the contact pressure
Nb total normal force acting on the contact area

due to biting forces
Fp pull-out force
Fb resultant axial force due to biting
TL loosening torque

Fig. 1. Different implant–abutment attachment methods. Astra and Nobel Biocare use a screw, Ankylos and ITI use a screw with an interference fit

and Bicon uses only-interference fit.
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In-screw type implant–abutment connection mechan-
ism, mechanical complications such as screw loosening
when occlusal loads exceed the preload, or creep
deformation in the screw–implant interface can lead to
clinical complications (Schwarz, 2000). When the
tapered-interference fits are used, the abutment loosen-
ing seems to be less of a problem (M .uft .u and Chapman,
1998; Morgan and Chapman, 1999; Keating, 2001;
Sutter et al., 1993). The free body diagram of the
abutment in Fig. 2 shows that resultant axial force due
to biting is Fb ¼ ðN þ NbÞðm cos y� sin yÞ; where m is the
static friction coefficient, N is the resultant contact force
due to initial interference, Nb is the additional normal
force due to biting and y is the taper angle. The biting
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Fig. 3. (a) The geometry of a tapered interference fit composed of an

outer bone, inner implant and a tapered abutment. (b) The geometry of

a regular interference fit of a solid shaft with an outer diameter of b2
and a hollow shaft of outside diameter b1 and inside diameter a1: (c) A
hollow shaft subjected to inner pressure pi and outer pressure po: The
initial interference between the parts in both (a) and (b) is d:

Fig. 2. Equilibrium of the forces acting on the abutment when an axial

biting force Fb is applied. A normal force due to initial insertion N; a
normal force due to biting Nb; and a tangential force of magnitude

mðN þ NbÞ act on the tapered wall. Note that N and Nb are the

resultants of the axisymmetric reaction forces.
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force acts in the direction of the abutment insertion,
hence aids to secure the connection. This situation is
in direct contrast to implants using screws where the
biting force lowers the pretension in the screw. The
mechanism for the tapered interference fit to become
loose, is the application of a loosening torque TL or a
pull-out force Fp:
Brunski (1999) indicated tensile axial loading could

develop in implants supporting multi-unit splinted
implant restorations and cantilevered prostheses. There-
fore a sufficiently large amount of pull-out force is
necessary for the long-term stability of a dental implant–
abutment system using the tapered interference fit. Later
in this paper, formulas are developed for TL and Fp:
In general, interference fits provide a connection

method between a hub and a shaft without using a third
member such as a key, pin, bolt, or screw. The
connection allows load transmission due to the friction
forces between the mating surfaces where the shaft has a
slightly larger diameter than the hub. The tapered
interference fits are used commonly in engineering
practice such as Morse tapers, used to engage lathe bits
(Sutter et al., 1993). In the medical applications tapered
interference fits are used in total hip prosthesis in
addition to dental implants (Chu et al., 2000).
Mechanics of a cylindrical interference fit is well
understood, and can be found in design text books
(e.g., Shigley and Mischke, 1989). The elastic–plastic
behavior of the cylindrical interference fits has also been
analyzed (Gamer and M .uft .u, 1990). No known analy-
tical solution to the tapered interference fit problem
exists to the best of our knowledge. FE method has been
used to investigate the mechanics of tapered interference
fits in hip implants (e.g., Van Rietbergen et al., 1993;
Viceconti et al., 2000; Chu et al., 2000).
The dependent characteristics of the interference fit,

such as the pull-out and insertion forces and the stress
distribution in the members, depend on the taper angle,
contact length, inner and outer diameters of the
members, depth of insertion, material properties and
coefficient of friction. In this paper the mechanics of a
general tapered interference fit is analyzed. A closed
form formula is derived to predict the contact pressure
between the tapered members, based on plane stress
elasticity. The analytical solution is used to determine
the interrelations between the parameters. The finite
element method is used to verify the validity of the
formula. A detailed analysis of the interference fit in a
Bicon implant is presented including the analytical,
purely elastic and elastic–plastic FE analyses.
2. Materials and methods

2.1. Geometrical considerations

A schematic description of a generic tapered inter-
ference fit of two cylinders, embedded in a cylindrical
bone, is shown in Fig. 3a. The middle cylinder (implant)
has an outer radius b2 and has a tapered hole in the
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center with top and bottom radii rit and rib; respectively.
The depth of the hole is Lh and the total height of the
cylinder is Lh þ Ls: The inner-most part is a truncated
cone representing the abutment, with top and bottom
radii of rat and rab; respectively. The length of the
abutment is La: The taper angle y is the same for both
pieces. A cylindrical coordinate axis is located on the top
of the implant as shown in the figure.
When the abutment is placed in the implant with no

interference, the bottom of the abutment will be located
at z ¼ z� ¼ ðrit � rabÞ=tan y: Application of an external
axial force in +z-direction will cause the abutment to
engage with the implant with an interference fit. An
axial displacement by an amount Dz measured with
respect to z ¼ z�; will cause an interference d ¼ Dz tan y
in the radial direction, as shown in Fig. 3a. The total
length of the contacting interface of the abutment and
the implant then becomes Lc ¼ ðrit � rabÞ=sin yþ
Dz=cos y:

2.2. Analytical model

The geometry of the tapered interference fit is
deceptively simple; but no known analytical treatment
of this problem exists to the best of our knowledge. In
order to develop a relation for the contact pressure in a
tapered interference fit, first we revisit the formula for
calculating the interference conditions of two straight
cylinders, depicted in Fig. 3b. The plain stress solution
to a cylinder subjected to an inner pressure Pi and an
outer pressure Po; as shown in Fig. 3c, is well known
(Shigley and Mischke, 1989). The radial displacement
uðrÞ of such a cylinder is

uðrÞ ¼
1

E
�

a2b2ðPo � PiÞ
ðb2 � a2Þr

ð1þ nÞ
�

þ
Pia

2 � Pob2

ðb2 � a2Þ
ð1� nÞr

�
aprpb: ð1Þ

Consider two cylinders whose radii have an initial
interference d as shown in Fig. 3b. The inner cylinder
has an outer radius b1 and the outer cylinder has inner
and outer radii of a2 and b2; respectively. The initial
interference is, then, d ¼ b1 � a2: Once the cylinders are
engaged, the total radial displacement of the interface
will be equal to the initial interference, d ¼ u1ðb1Þ �
u2ða2Þ: This is the geometric constraint of the inter-
ference. When the interference takes place we get Po1 ¼
Pi2 ¼ Pc (see Fig. 3c). The interference depth d is small
when compared to the radii of the cylinders, therefore it
can be assumed that interference occurs at the radius
r ¼ a2 ¼ b1: The contact pressure Pc due to interference
is calculated by combining Eq. (1) with the geometric
constraint as follows (Shigley and Mischke, 1989)

Pc ¼
Edðb22 � b21Þ

2b1b
2
2

: ð2Þ
Note that Eq. (2) is valid if the material properties of the
mating cylinders are the same, i.e., E1 ¼ E2 ¼ E and
n1 ¼ n2 ¼ n:
O’Callaghan et al. (2001) analyzed the mechanics of a

tapered interference fit by approximating the smooth
tapered walls by a series of straight cylinders with
changing radii and diminishing height. By applying the
plain stress formula, given in Eq. (1), to each cylinder,
the contact pressure distribution of the whole conical
interface was approximated. Fig. 3a shows that the
outer radius of the abutment b1ðzÞ and the inner radius
of the implant a2ðzÞ vary linearly along the axis z as
follows:

b1ðzÞ ¼ rab þ ðLc cos y� zÞtan y for 0pzpz� þ Dz

a2ðzÞ ¼ rit � z tan y for 0pzpLh

:

ð3Þ

Then, using Eqs. (2) and (3), the contact pressure due to
interference of a tapered interference fit, as a function of
the axial distance becomes

PcðzÞ ¼
Ed½b22 � b21ðzÞ�cos y

2b1ðzÞb22
: ð4Þ

The accuracy of this equation is checked by comparing
the results with the FE analysis.

2.3. The effect of the bone on the contact pressure

in the implant–abutment interface

In practice, the crestal region of the implant is
surrounded by the cortical bone and the remaining
sections by the trabecular bone. Around the crestal
module of an implant, clinical observations indicate that
some bone loss occurs. Therefore, the cortical bone does
not cover the entire crestal module. In the following, it
has been assumed that the material properties of the
bone that surround the implant along its entire length is
uniform, isotropic and no bone loss exists around the
crestal module.
These assumptions can be relaxed easily, which will

result in more complicated closed form formulas. The
effect of the material properties of the bone on the
contact pressure in the abutment–implant interface is
shown to be small later in the paper.
In this section, expressions for the contact pressure in

the abutment–implant (a� i) and implant–bone (i� b)
interfaces are developed. In the implant–abutment–bone
system, the interface between the implant and the
abutment, at r ¼ r2ð¼ b1ðzÞÞ; has an initial interference
d; and the interface between the implant and the bone, at
r ¼ r3ð¼ b2Þ; has zero interference. These conditions are
expressed as

d ¼ u1ðr2Þ � u2ðr2Þ at r ¼ r2; ð5Þ

0 ¼ u2ðr3Þ � u3ðr3Þ at r ¼ r3: ð6Þ
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By using similar assumptions as given above, the
formulas for contact pressure in the abutment–implant
interface Pða�iÞ

c and in the implant–bone interface Pði�bÞ
c

are found from simultaneous solution of Eqs. (1), (5)
and (6) as follows:
Pða�iÞ
c ¼

Ed cos y
2

E½b23ð1þ nbÞ þ b22ð1� nbÞ�ðb22 � b21ðzÞÞ þ Eb½b21ðzÞð1þ nÞ þ b22ð1� nÞ�ðb23 � b22Þ
b1ðzÞb22fE½b23ð1þ nbÞ þ b22ð1� nbÞ� þ Ebð1� nÞðb23 � b22Þg

; ð7Þ
Pði�bÞ
c ¼

EEbdb1ðzÞðb23 � b22Þ
b22fE½b23ð1þ nbÞ þ b22ð1� nbÞ� þ Ebð1� nÞðb23 � b22Þg

: ð8Þ

Note that, in these equations, as the elastic modulus of
the bone approaches zero, Pða�iÞ

c approaches the expres-
sion given in Eq. (4) and that Pði�bÞ

c approaches zero.

2.4. Pull-out force and torque

The resultant contact force N due to the interference
fit is obtained by the integration of the contact pressure
Pc over the contact area along the tapered interface

N ¼ 2p
Z Lc cos y

0

b1ðzÞPcðzÞ dz: ð9Þ

A free body diagram of the assembly would show that
the pull-out force Fp is equal to

Fp ¼ �Nðsin y� m cos yÞ: ð10Þ

When we neglect the presence of the bone, a relatively
simple closed form solution for the approximate pull-
out force of a tapered interference fit is obtained by
using Eqs. (4), (9) and (10) as follows:

Fp ¼ �
pEdLc

3b22
½3ðb22 � r2abÞ � Lc sin y

� ½3rab þ Lc sin y��ðsin y� m cos yÞcos2y: ð11Þ

The effect of the bone on the pull-out force could be
evaluated by replacing Eq. (4) with Eq. (7) in this
derivation. Eq. (11) shows that there are seven indepen-
dent parameters that affect the pull-out force; these are
E; Lc; b2; rab; d; y; m: The pull-out force increases linearly
with d and E; and it increases as ðLcÞ

3: This result points
the importance of a large contact surface in the
abutment–implant interface. The formula also shows
that if the taper angle is chosen such that tan y ¼ m; then
the pull-out force will be equal to zero. The pull-out
force in Eq. (11) can be considered as a design metric. In
principle, the pull-out force could be optimized for all
seven parameters. In this paper we have not performed
these calculations. However, in Fig. 4, we plot the effects
of Lc; y and b2 on the pull-out force for values typical
for dental implant systems.
Fig. 4 shows the pull-out force Fp; for different
implant radius b2; contact length Lc; and taper angle y
values, typical for dental implants. Figs. 4a, c and d
show that increasing contact length causes an increase of
the pull-out force. Similarly, Figs. 4a–c show that
increasing the implant radius b2 causes the pull-out
force to increase. Finally, Figs. 4b and d show that the
pull-out force is higher for smaller taper angles. Close
inspection of these figures show that predicted pull-out
force Fp values are relatively large. For example, from
Fig. 4c, the pull-out force is predicted to be,
Fp ¼ 1700N, for b2 ¼ 1:5mm, y ¼ 3�; Lc ¼ 2mm. This
value is considerably larger than the tensile load of
200N, that can be encountered in one of the implants
supporting a full-denture as predicted by Brunski
(1999).
The external torque value, which causes the abutment

to become loose is given by

TL ¼ 2pm
Z Lc cos y

0

b21ðzÞPcðzÞ dz

¼
pmEdLc cos

2y
4b22

fLc sin y½2ðb22 � 3r2abÞ

� Lc sin yð4rab þ Lc sin yÞ� þ 4rabðb22 � r2abÞg: ð12Þ

This equation shows that the loosening-torque increases
with ðLcÞ

4: The trends of dependence of TL on b2; Lc;
and y are similar to that of the Fp:
It should be noted that, other factors could affect

loosening of the abutment, such as fatigue failure of the
asperities in the contact interface, or reduction of the
effective friction coefficient due to presence of some
liquids.

2.5. Interference fit analysis using the FE method

The FE method was used, here, to analyze the
mechanics of the tapered interference fit. First, the
predictions of the interference fit formula given by
Eq. (4) were compared to the results of the FE analysis.
In this analysis, the material was assumed to behave
elastically. Second, the mechanics of the interference fit
in a Bicon implant–abutment system shown in Table 1,
embedded in a cylinder to represent the bone, was
analyzed. In the second analysis, the implant and the
abutment were modeled with bilinear elastic–plastic
material properties and large deformation elasticity
option.
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Table 1

The Bicon implant–abutment system used in the FEA of the

interference fit

BICON Size Part No. Length Material

Implant 3.5mm 260-740-211 11.12mm Ti6Al-4V ELI

Abutment 4� 6.5mm 0� 260-140-002 N/A Ti6Al-4V ELI

Fig. 4. Variation of the pull-out force Fp with implant radius b2; contact length Lc and taper angle y for rib ¼ 0:7mm, d ¼ 8� 10�3 and m ¼ 0:5:
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Ansys ver. 5.7 (Ansys Inc., Houston, Pennsylvania,
USA) was used in the analyses. The CAD drawings were
created in Pro/Engineer 2000i2 (PTC, Needham, MA,
USA). First, the implant and the abutment were
assembled without any interference. Then, in order to
obtain different interference values, the abutment was
displaced different Dz amounts in the axial direction,
relative to the implant. This creates overlapping of the
contact boundaries. The assemblies with overlapping
boundaries were, then, imported into Ansys. The
abutment–implant system was modeled using axisym-
metric Plane 42 elements. The tapered contact interfaces
were simulated by Target 179 and Contact 172 elements.
The implant was constrained in all degrees of freedom at
the bottom face. The contact algorithm of the FE
analysis code, then, finds the equilibrium-state, where
the overlap is eliminated.
3. Results and conclusions

3.1. Comparison of tapered interference formula to FE

analysis

FE analysis was used to check the validity of Eq. (4).
The length of the solid part of the implant Ls was kept
large, in order to minimize the effect of the fixed
boundary. All materials were assumed to be linear and
isotropic with E ¼ 200GPa, u ¼ 0:3: Three different
Lc cos y=b1 values (4, 6, 12) and three different b2=b1
values (3, 4, 5) were used for each one of the three taper
angles y ¼ 3�; 6� and 9�.
Fig. 5 shows the comparison of the contact pressure

distribution predicted by Eq. (4) and the FE analysis,
for y ¼ 9�; Lc cos y=b1 ¼ 4; b2=b1 ¼ 5; and d=b1 ¼ 4�
10�4: The inset in Fig. 5 shows the FE mesh and the
contact pressure distribution at the abutment–implant
interface. Fig. 5 shows that the FE analysis predicts
stress concentrations at the ends of the contact interface.
The FE analysis and closed-form results, in general
agree well; the contact pressure increases toward the tip
(z ¼ 160mm) where the implant is thicker, thus provides
more resistance to deformation. However, it is clear
that the closed-form approach, which is based on the
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plane-stress theory, does not capture the stress concen-
trations, particularly near the tip where z-z� þ Dz:
Similar observations are made for the Pc vs. z

comparisons of the other parameter combinations. The
two approaches are compared conveniently, when the
pull-out force Fp and loosening torque TL values are
evaluated for both the FE analysis and the closed form
solution. Table 2 shows the Fp and TL for different y;
Lc cos y=b1; b2=b1 and d=b1 values. Here we see that the
Fig. 5. Comparison of the contact stress distribution predicted by

Eq. (4) and the FEM for y ¼ 9�; Lc=b1 ¼ 4; b2=b1 ¼ 3; and d=b1 ¼
16� 10�3: The inset shows the FE mesh used in the solution and the

variation of the contact pressure with respect to the abutment–implant

interface.

Table 2

Comparison of the pull-out force Fp calculated by the closed form solution gi

by using b1 ¼ 40mm, E ¼ 200GPa, n ¼ 0:3

3 4

y FEA Eq. (4) % Error FEA Eq.

b2=b1 (for d=b1 ¼ 4� 10�4; Lc cos y=b1 ¼ 4)

3� 673kN 620 kN �7.88 717 kN 663

6� 572 525 �8.22 610 570

9� 463 431 �6.91 509 477

Lc cos y=b1 (for d=b1 ¼ 4� 10�4; b2=b1 ¼ 3)

4 6

3� 673kN 620 kN �7.88 991 kN 916

6� 572 525 �8.22 817 758

9� 463 431 �6.91 647 603

d=b1 (for b2=b1 ¼ 3; Lc cos y=b1 ¼ 4)

1� 10�4 4� 10�4

3� 168kN 155 kN �7.74 673 kN 620

6� 142 131 �7.75 572 525

9� 116 108 �6.90 463 431
closed-form formula given by Eq. (11) underestimates
the FE results between 5.46% and 9.26%. Considering
the assumptions involved in the derivation of Eq. (4),
this is a reasonable level of agreement.
Each one of the stacked cylinders used in the

approximation of the conical interference is modeled
in plane stress conditions. Thus normal and shear
stresses in the axial (or thickness) direction are zero.
The theory given here is capable of generating only
radial and circumferential normal stresses. Due to
symmetry assumption no shear stress develops in the
plane of the cylinders. These assumptions hold to a
certain extent in the regions that are away from the ends
of the conical interference. But the end conditions force
the stresses to become more complicated and the
approximation fails to predict the contact stresses near
the ends.

3.2. The effect of the bone on the contact pressure in the

implant–abutment interface

Eq. (7) gives the contact pressure distribution Pða�iÞ
c in

the abutment–implant interface, with the effect of the
surrounding bone. This equation shows that three
parameters related to the bone, its elastic modulus Eb;
Poisson’s ratio nb and outer radius b3 affect the Pða�iÞ

c

distribution. Figs. 6a and b show the effect of Eb and b3;
respectively. Here it can be seen that a 16-fold increase
in Eb causes nearly 10% increase in the contact pressure.
The relation of the contact pressure to the outer radius
of the bone is non-linear, as shown in Fig. 6b, where the
contact pressure changes about 3.3% between b3 ¼ 1
ven by Eq. (11) and the results of the FEA, for a tapered interference fit

5

(4) % Error FEA Eq. (4) % Error

kN �7.53 733 kN 683kN �6.82
�6.56 632 591 �6.49
�6.29 528 498 �5.68

12

kN �7.57 1851 kN 1733kN �6.37
�7.22 1396 1300 �6.88
�6.80 1464 1384 �5.46

8� 10�4

kN �7.88 1353 kN 1240kN �8.35
�8.22 114 105 �7.89
�6.91 950 862 �9.26
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Fig. 6. (a) The effect of bone modulus and (b) the effect of bone radius

surrounding the implant on the contact pressure in the abutment–

implant interface Pða�iÞ
c ; calculated by using Eq. (4).
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and 6mm, but no appreciable change occurs for thicker
bone. These results show that the bone does not affect
the contact pressure distribution in the abutment–
implant interface more than 10%.

3.3. The FE analysis for Bicon implant–abutment system

The contact pressure and internal stress distribution
in a Bicon implant–abutment system were analyzed
using the FE method. Different interference values were
obtained by assembling the implant and the abutment
with Dz ¼ 0:05; 0.1, 0.15, 0.2 and 0.25mm in the vertical
direction as described above. The bone was approxi-
mated by a 15.24mm long cylinder with 11.68mm in
diameter, leaving 4.2mm of bone around the implant,
which is sufficient to eliminate the boundary effects in
mesial-distal direction (Teixeria et al., 1998).
All the materials were assumed to be isotropic. Bone

was assumed to be a linear, homogenous material with
Eb ¼ 10GPa, nb=0.3. These values are more represen-
tative of the material properties of the cortical bone.
Full osseointegration was assumed in the analysis and it
was modeled by fixing the implant to the bone. Implant
and abutment material were Ti6Al4V ELI. A bilinear,
isotropic hardening model was used in order to simulate
the plasticity of Ti6Al4V ELI. The material properties
of this material are: elastic modulus E ¼ 113:8GPa;
tangent modulus Et ¼ 0:63GPa; yield stress sY ¼
960MPa, ultimate strain eU ¼ 0:08; Poisson’s ratio
n ¼ 0:34: The geometric non-linearity was also taken
into account by using the large displacement option
in the FE analysis. The results of the FE analysis are
presented using the equivalent von Mises stress and
strain.
Figs. 7a–e give the von-Mises stress distributions for

Dz ¼ 0:0520:25mm, and Fig. 7f shows the equivalent
strain for Dz ¼ 0:25: Note that the effect of the bone is
considered in the analysis but not shown in these figures.
The maximum von Mises stress for Dz ¼ 0:05mm,
which occurs near the bottom of the contact interface,
is 692MPa; the abutment and the implant both deform
elastically. The stresses in the implant are higher than
the abutment, as the latter is stiffer due to its solid
geometry. Plastic deformation starts at 0.1mm insertion
depth in the implant, near the top and the bottom of the
contact area. This is consistent with the stress concen-
trations mentioned in the previous section. The rest of
the implant and the abutment are elastically deformed.
For Dz values greater than 0.1mm, the plastic deforma-
tion spreads to the other regions of the implant. A small
region of plastic deformation in the abutment can be
seen at Dz ¼ 0:15mm, which spreads deeper into the
abutment at higher Dz values. Even at the highest level
of abutment insertion considered here, the outer
periphery of the implant remains elastic. The equivalent
stress distribution at this level is shown in Fig. 7e for
Dz ¼ 0:25mm. The equivalent strain distribution for the
same Dz value is shown in Fig. 7f, which shows that,
except for the tip of the implant, the strain level is less
than 0.03. The largest equivalent strain occurs also at
the tip of the implant and it is greater than the ultimate
strain for this material 0.08.
The contact pressure distribution Pða�iÞ

c at the abut-
ment–implant interface of the Bicon system, evaluated
by the FE method, was compared to the results of
Eq. (7). The outside of the Bicon implant has fins as
shown in Fig. 1. The results presented in Fig. 8, were
calculated for the inner, (b2 ¼ 1:14) and outer radii,
(b2 ¼ 1:75) of the fins, separately. An equivalent implant
radius (b2 ¼ 1:51) was taken to be the radii of the
cylinder with a height of contact length that has the
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Fig. 7. The von Mises stress distribution for interference depth values of Dz ¼ 0:0520:25mm are given in (a)–(e). The equivalent von Mises strain for

Dz ¼ 0:25mm is given in (f). The yield stress for Ti6Al4V ELI is sY ¼ 960MPa, and the ultimate strain is eU ¼ 0:08: Note that the effect of the
surrounding bone is included in the analysis but not shown in this figure for clarity of presentation.

Fig. 8. The contact pressure distribution in the abutment–implant

interface for the Bicon implant calculated by the FE method for

Dz ¼ 0:1mm. The results are compared with the predictions of the

closed-form solution given by Eq. (7) for different implant outer radii.
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same cross-sectional area as the implant area along the
contact length.
Fig. 8 shows stress concentrations at the lower and

upper intersection of the implant and abutment. The
analytical solution cannot predict the pressure values in
these regions. The analytical and FE results are close in
the central 90% of the contact length. Since the implant
radius is maximum at the bottom of the interface, the
finite element results were well approximated by the
upper curve using the largest implant radii, whereas at
the top of the interface, the contact pressure was
approximated better by the lower curve, using the
smallest implant radius.
The pull-out force Fp and the loosening torque TL

calculated using an equivalent implant radii for this
implant–abutment system as a function of insertion
depth Dz; with different approaches are shown in Fig. 9.
The closed-form formula, given by Eq. (7), predicts the
pull-out force with 8–9% error by using the mean
radius. If the material is treated as perfectly elastic, then
the Fp and TL values increase linearly as a function of
insertion depth. When the plastic deformation of the
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Fig. 9. (a) The pull-out force and (b) the loosening torque for the

Bicon implant. The results represent the closed form solution, elastic

FEA and elastic–plastic FEA.
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material is considered, the pull-out force and the
loosening torque increase non-linearly, and tend to level
off. Based on elastic and elastic–plastic FE studies,
Fig. 9 indicates that the pull-out force is reduced
approximately 6% at d ¼ 0:15mm and 15% at
d ¼ 0:25mm. This result indicates that increasing
insertion depth does not necessarily correspond to
unbounded increase in pull-out force or loosening
torque values.
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