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1. Introduction 

 

Erosive wear of metal surfaces is a difficult process to examine and understand. 

It not only involves a stress system of complex nature, large plastic deformations 

and high strain rates but also involves significant micro structural changes in the 

surface layer. Thus, it is not surprising that though, study on the phenomena of 

erosion has been going since the beginning of the century, still there is no 

universally accepted predictive model or mechanism for erosion. However, a 

number of erosive wear models have been proposed. 

 

The major problem with the models is those that are more rigorously derived 

offer little possibility for experimental validation. In these models, the theoretically 

derived predictions of the erosion rate encompass a large number of parameters, 

both mechanical and physical properties, often experimentally difficult to 

determine under the conditions pertaining to erosion. Simple models tend to 

indicate the primary importance of one or more mechanical properties. However, 

there is again the problem of how to define and measure these properties under 

the stains and strain rates typical to erosion. Due to impossibility to generate the 

conditions, most of the researchers have used properties measured under more 

conventional conditions. 

 

Though there are many aspects to erosion, through this report an attempt has 

been made to review the erosive wear phenomena occurring on metals, by 

studying the works in this field over this long period of time. In the direction to do 

so, various major wear models proposed are studied and compared with each 

other. Then single particle effect and the fluid effect for the erosion are 

discussed. Lastly, the phenomenon of erosion-corrosion is looked upon. 
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ductile specimens at small angle of attack. However, the relationship gives no 

erosion for impact angle of 90°.  

 

To account for these discrepancies of normal impact and for brittle materials, 

Bitter[2][3] suggested a model, stating that this type of erosion comprise of two 

types of wear. One caused by repeated deformation during collision, eventually 

resulting in breaking loose of a piece of material. Other caused by cutting action 

similar to that used by Finnie. 

 

The deformation wear found is given by: 

 

(3) 

 

 

where WD is the erosion in volume loss, M and V are the total mass and  velocity 

of the impinging particle, α is the impact angle, K is a constant calculated from  

mechanical and physical properties and ε represents the energy needed to 

remove unit volume of the material for the body surface. 

 

Cutting wear is given by: 

 

(4) 
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Here, α0 is the angle at which the velocity component or the particle parallel to 

surface becomes zero, WC1 and WC2 are the cutting wear for angle conditions 

given, K1 and C are parameters that depend on the physical properties of the 

surface material, and ρ is cutting wear factor. 

 

From the a Bitter’s model is seen that deformation wear accounts for the erosion 

at 90° in ductile materials and it is this wear that is not accounted by Finnie. Thus 

this model shows that for ductile materials maximum wear occurs at lower impact 

angles and for brittle and higher impact angles near to 90°. 

 

Though Bitter’s model found the erosion at normal angle, the theoretical work is 

exhaustive and intricate, as is accounts for both elastic and plastic properties for 

particle and specimen material. This complexity is removed by Neilson-Gilchrist 

[4] model. This model uses simple cutting and deformation wear constants φ and 

ε compared to four parameters in Bitter’s model. The model is given as: 

 

(7) 

 

(8) 

 

 

where α0 is the angle at which the velocity component or the particle parallel to 

surface becomes zero, W is the erosion produced by mass M of the particles at 

velocity V, and K is the velocity component normal to the surface below which no 

erosion takes place. 

 

Though the number of parameters has been reduced here, the ratio φ/ε is very 

complex to obtain for each material. 
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(11) 

 

In the above equation α is the proportionality constant, W is width of the crater, σ 

is particle density, C and a are parameters dependent on particle shape. 

 

Thus, the given model gives the erosion for particle of any shape. But, the model 

is quite complex involving many parameters. Also, some researchers consider 

that the output does not match with experimental output convincingly. 

 

3. Particle Impact 

 

There are many particle parameters involved for the study of erosive wear by 

particles entrained in liquid jet. Studying the effect of each independently will not 

give good results as they are inter-dependent, but studying them all together is 

almost impossible due to the complexity involved. Some of these are discussed 

below: 

 

3.1 Particle size 

 

It seems obvious that with decrease in erodent particle size, there will be 

decrease in erosion rate. But it accompanies with it significant changes in 

slurry flow conditions and particle motion which can mask the nature of 

particle size effect.[11] 

 

This can be shown that even if the macroscopic properties like jet velocity, 

mass concentration etc. are kept constant and only the size of the particle is 

varied, the experimental conditions will change in a manner uncontrollable. 

For example, as the particle size is reduced, liquid drag on the particles 

becomes increasingly dominant so that small particles more completely 

conform to the movement of the bathing liquid that the large particles. This 
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4. Fluid Effects 

 

The effect of particle on the impinging surface carried by a fluid depends greatly 

on the fluid flow. The fluid factors which affect erosion are state of flow (laminar 

or turbulent), velocity, temperature and chemical and physical properties. These 

factors change the dynamic conditions of the particle approaching the surface 

which in turn affect the wear in manner discussed below. Thus, it can be said that 

for accurate study of erosion by solid particle, the fluid motion should be studied 

accurately. As is it this fluid motion which eventually determines impact angle, 

velocity, flux, interference, fragmentation etc. 

 

Flows wherein suspended particles interact are not limited to the situations 

involving direct physical contact of the particles. Situations arise in which even 

though, while they do not collide, the particles are sufficiently numerous to affect 

one another through collective influence through the fluid. The question of 

averaging arise in relation to continuum (Eulerian) formulations of two phase flow 

transport equations or discrete (Lagrangian) theoretical descriptions of particle 

laden flows. In this respect we can relate our consideration with the CFD model 

used by Min-Hua Wang, Cunkui Huang and Nandakumar for particle tracking and 

turbulence dispersion [25]. 

 

4.1 Particle Tracking 

 

Lagrangian particle tracking is used to calculate the trajectory by integrating 

the force balance on the particle that relates the rate of velocity change 

 

(22) 

 

where, Mp is the particle mass and F is the overall force on the particle 

including drag force FD, added mass force FA, and buoyant force FB. Drag 

force is the major component of the force on the particle and is given as: 

BADp FFFF
dt

du
M 
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(23) 

 

where 

 

(24) 

 

here CD is the coefficient of discharge, Re is Reynolds’s number, d is the 

diameter of the particle, μ and ρ are the density and viscosity of continuous 

phase and VR is the relative velocity of two phase. 

The added mass is given by: 

 

(25) 

 

and the buoyant force is  

 

(26) 

 

where ρP is particle density and g is acceleration due to gravity. 

4.2 Turbulence Dispersion 

 

The effect of turbulence on the particle trajectories have been accounted for 

in model by Gosman and Loannides[17]. The turbulence of the particle 

motion is introduced due to interaction of particle with random motion of 

turbulent fluid eddies. The characteristic lifetime of an eddy is given by: 

 

(27) 
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And the eddy length is given as: 

 

(28) 

 

where, cμ is turbulence model constant. k, ε are predicted quantities. 

 

5. Erosion-corrosion 

 

Erosion-corrosion of materials in slurry environments is a complex phenomenon, 

which is dependent on a wide range of parameters relating to the tribological 

contact – particle/target properties – and the nature of environment. Erosion may 

enhance corrosion by removal of a passive film ‘additive’ effect as the corrosion 

loss may be readily computed Faraday’s Law. Corrosion may enhance the 

erosion rate through preferential dissolution in a two phase material and this is 

the so called ‘synergetic’ effect. Corrosion may also inhibit erosion through 

formation of a passive film – ‘antagonistic’ effect.  

 

A significant method for understanding the mechanism is through identification of 

regimes of behavior using quantitative techniques. Here the concept of erosion 

corrosion maps comes handy. Such maps identify the regimes of interaction, 

depending on relative contributions of the corrosion and erosion rates and the 

nature of corrosion process i.e. whether active dissolution, where metal 

dissolves, or passivation, where an adherent film forms on the surface. 

 

In the initial work mathematical models were generated combining the effects of 

solid particle erosion with those of aqueous corrosion. The model was created to 

address wide range of variables involved through eight dimensionless groups 

incorporating twelve variables. But there is no point going over this model in 

detail as the prime assumption is that the erosion-corrosion is ‘additive’ and 

neglects the so called ‘synergistic’ effect. 

 



2/3
4/3 k

CIe 
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Here a model by Stack and Jana[23][24] is discussed where the synergistic effect 

is considered. 

The relationship between erosion and corrosion is defined as: 

(29) 

(30) 

(31) 

 

where Ke is total erosion rate, Kc is total corrosion rate, Kec is overall erosion-

corrosion rate, Keo erosion rate in absence of corrosion, ∆Ke is the change in 

erosion rate due to corrosion, Kco is the corrosion rate in absence of erosion and 

∆Kc is the change in corrosion rate due to erosion. 

 

It is assumed that in active region, there is no enhancement in corrosion due to 

erosion in passive region. Also, the enhancement in corrosion due to successive 

formation and removal of film is significantly greater that the corrosion in absence 

of erosion. Thus in active region: 

 

(32) 

 

(33) 

In passive region: 

ce KK        (34) 

 

(35) 

 

Hence the model gives the values as: 

 
(36) 

 

where k1 is tabulated in , ianet is net anodic current density. 

ceec KKK 

ceoe KKK 

ccoc KKK 

anetc ikK 4
1 10 

eoe KK 

coc KK 

cc KK 
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(37) 

 

where Dp is particle density, c is particle concentration, v is particle velocity, Cp 

specific heat of target, Tm is melting point of target and Hs is static hardness of 

target. 

(38) 

 

where k3 is tabulated in , Df density of passive film and h thickness of passive 

film. 

From the results cited in [22], it is found that flow velocity v is the leading factor 

driving synergistic damage and the next important factor is particle ejection rate. 

But from the results cited in [23], where more intense work is done for 

construction of erosion-corrosion maps for various metals, significant differences 

as seen for different metals. 

Initially Stack and Jana considered the effect of ph and applied potential [23] but 

later it was found and the effect of impact angle was also studied [24]. 

It is seen from the results that the maps for pure metals like Nickel, Copper and 

Aluminium exhibit vast differences compared to Iron. Figure 12, 13. 
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As discussed that erosion-corrosion is a complex phenomenon, especially 

corrosion is highly affect by the materials on which it is acted upon. The 

synergistic effect for some of the materials is very straight forward, like 

preferential dissolution of the γ matrix for high Cr steels, obtained by slow 

solidification process was associated with depletion of Cr from the matrix. This 

resulted in a significant increase in the overall erosion-corrosion rate compared 

with that for same alloy formed by rapid solidification. 

 

Trying to generalize the materials influence:  

In case of passsivating materials, the synergistic effect is mainly attributed due to 

mechanical removal of the protective layer by particle impact.  

In case of actively corroding materials, the specific mechano-chemical effect is 

related to the plasticization of the material, affecting its activity through variations 

in metal density and grain defectivity. 

 

Thus, it can be said that synergism weight loss is mainly dominated by the 

chemical composition of the material and not by its mechanical properties. 

 

7. Open Issues 

 

Though, work related to the field of erosive wear is going since more than half 

century, during which ingenious solutions have been devised for many practical 

erosion problems, however, the fundamental mechanism is yet not fully explored. 

The models may discuss platelet removal mechanisms or cutting and ploughing 

mechanism, but the precise understanding of local deformation and fracture 

process involved is still not completely described. 

 

Even if till date work is considered, every model or result involves assumptions 

for many of the principal factors affecting this complicated phenomenon of 

erosion. Table 2 [8] states principal factors which influence erosion. 
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at the center and lower at the edges. This has infects on the inter-particle 

interference and also the force transfer during the impact at the target 

surface. 

e) Effect of strain-hardening is also neglected, but as more and more particle 

strike the surface, the surface get strain hardened due to plastic deformation 

occurring on the surface. This will result in more particles required to remove 

material from the surface. 

f) It is assumed that the adhesion of the oxide film is constant for all metals 

discussed in erosion-corrosion above. But in practice oxides which from on 

the metallic materials may be porous and adhered loosely with different 

properties for different materials. 

 

No fundamental experimental study of erosion by particle impact has yet been 

successfully done in which the characteristics of turbulence are varied in a 

controlled and systematic manner. Conducting such investigations is 

imperative, as it can provide data necessary for guiding and testing 

mathematical model development that will help predict erosive wear to a great 

extent. 

 

8. Conclusion 

 

To conclude we can re-quote what Wahl and Harstien said in their technical 

paper more than 50 years back, that “In all areas of erosive wear mentioned 

here, there are still considerable contradictions and gaps in our knowledge”.  
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