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1. Introduction 

The contact occurring in an RF MEMS microswitch presents an intricate tribological 
environment. When such a switch is closed, the contact bump of the switch is held firmly 
against the drain such that electrical current can flow. If the surfaces are rough, the real contact 
area is comprised of the sum of many individual asperity contact areas. Joule heating due to the 
flow of current causes a temperature distribution near the contact above that of the ambient. 
This resulting thermal-elastic expansion can change the contact area which, in turn, affects the 
contact resistance and Joule heating. Thermal softening can cause reshaping of the contact 
region thereby affecting adhesion and contact failure. Thus, the contact of the microswitch, 
such as that presented in Figure 1, is significantly affected by the thermal, electrical, and 
mechanical domains. 

This report will summarize the theory that governs mechanical contact between two 
surfaces. The electrical and thermal domains, though relevant, will not be presented as they are 
out of the scope of this course (SEE APPENDIX). However, both single and mutli-asperity 
models will be covered, both with and without adhesion. This body of knowledge will form a 
broad and full understanding of micro-tribology in the purely mechanical domain. It should be 
noted that this report will be a starting point for my literature review, and thus the focus of this 
review will be on presenting the pertinent equations. 

 

Figure 1: A thermal-electrical-mechanical coupled-field Contact 

2. Single Asperity Models 
In this section, single asperity models predicting the mechanical behavior of two objects in contact 

will be presented. It is important to note that all of these models assume steady state, linear, elastic, 
isotropic material behavior. 



 

R.P.Hennessy 3 ME-5656 Report 

(2.1) Hertz Contact 

In 1882, on his Christmas break from graduate school, Heinrich Hertz developed a model to 
understand the effects on optical properties of holding force on stacked lenses [1].  

 

Figure 2: (a) Two spheres being pressed against each other (b) A sphere being pressed into a half-space 

Consider a system composed of two spheres being pressed against each other with a force, P, or 
a prescribed interference, δ, as depicted in Figure 2a. The contact spot between the two spheres will be 
a circle of radius a. The normal traction force profile (IE, the normal stress profile on the surfaces of the 
sphere) inside the circular contact area is assumed to be parabolic 

𝑝(𝑟) =  𝑝0 �1 − �
𝑟
𝑎
�
2
�
1 2⁄

 
(1)  

𝑝0 =  �
3𝑃

2𝜋𝑎2
� (2)  

as depicted in Figure 3.  
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Figure 3: Contact spot normal traction profile 

Using this formulation, the contact radius, a, for a prescribed interference, δ,  

𝑎 =  (𝑅𝑒𝛿)1 2⁄  (3)  

Alternately, if a downward contact force, P, is applied to the hemisphere 

𝑎 =  �
3𝑃𝑅𝑒
4𝐸𝑒

�
1 3⁄

=  �
𝑃𝑅𝑒
𝐾
�
1 3⁄

 (4)  

where the effective radius (Re),  and effective modulus (Ee)  are defined respectively as 

𝑅𝑒 =  �
1
𝑅1

+  
1
𝑅2
�
−1

 (5)  

𝐸𝑒 =  �
1 − 𝜈12

𝐸1
+  

1 − 𝜈22

𝐸2
�
−1

 (6)  

𝐾 =  
4
3
𝐸𝑒  (7)  

In Equation (4) above, E is the modulus of elasticity and ν is Poisson’s ratio. The numerical subscripts 
correspond to the component of the contact. Note that the effective radius and effective modulus make 
the schematics of Figure 3a and 3b exactly equivalent. 

Additionally, the amount of holding force necessary to generate a prescribed interference is 
defined as  

𝑃 =  �
4𝐸𝑒𝑅𝑒

1 2⁄

3
�  𝛿3 2⁄  (8)  

In this form, if the interference is viewed as a displacement, the contact can be viewed as a non-linear 
spring with a non-linear spring constant being (4Ee

2Re
2/3).  

Note that this model is purely elastic and does not include surface forces such as adhesion. At 
the micro and nano scales, adhesion forces become extremely important because of scaling effects. 
Essentially there are two types of adhesion to consider: dry adhesion, which results from van der Waals 
forces (attraction and repulsion forces due to molecular interactions), and wet adhesion, which result 
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from meniscus forces. The next four models present ways of calculating the effect of dry adhesion acting 
on a contact. As it will be explained, the characteristics of the contact determine which model to apply. 

 

(2.2) Bradley Model 

The Bradley model attempts to find the tensile force between two perfectly-smooth rigid 
spheres from the Leonard-Jones potential [2]. Using the Leonard-Jones potential, the force between two 
atomic planes, F, separated by distance z is expressed as 

𝐹 =  
8Δ𝛾
3𝑧0

��
𝑧
𝑧0
�
−9
− �

𝑧
𝑧0
�
−3
�  (9)  

Where z0 is the equilibrium spacing of atomic planes and  

Δ𝛾 =  𝛾1 + 𝛾2 − 𝛾12  (10)  

is the work of adhesion, and γ is the surface energy. A non-dimensional plot of this relationship is 
presented in Figure 4.  

 

Figure 4: Non-dimensional plot of the Leonard-Jones potential 

For two identical materials, Δγ = 2γ. Using this formulation, the adhesion force between two spheres 
can be calculated as 
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𝐹𝐵𝑟𝑎𝑑𝑙𝑒𝑦 =  
8Δ𝛾𝜋𝑅𝑒

3 ��
1
4
� �

𝑧
𝑧0
�
−8
− �

𝑧
𝑧0
�
−2
� (11)  

The two spheres separate when z = z0, leading to the calculation of a pull-off force 

𝐹Pull−Off,   Bradley =  2𝜋Δ𝛾𝑅𝑒  (12)  

For application purposes, this model is only useful in situations where deformation is negligible. The 
next few models include deformation. 

(2.3) Johnson-Kendall-Roberts (JKR) 

 The JKR model includes elastic deformation and treats the effect of adhesion as surface energy 
only [3]. In this model, adhesive force (attractive tensile forces) are only considered in the contact 
region, and not considered at all in the separation region. Using this formulation, the total energy 
equilibrium equation can be solved. Figure 5 represents a schematic of the resulting contact spot.  

 

Figure 5: Hertz contact spot vs JKR contact spot with 'necking' due to adhesive forces 

For a prescribed contact force 

𝑎 = �
𝑅𝑒
𝐾 �𝑃 + 3𝜋Δ𝛾𝑅𝑒 + (6𝜋Δ𝛾𝑅𝑒𝑃 + (3𝜋Δ𝛾𝑅𝑒)2)1 2⁄ ��

1 3⁄

 (13)  

Alternately, for a prescribed interference 
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𝑎 =  �𝛿𝑅𝑒 + �
8𝜋𝑎Δ𝛾𝑅𝑒2

3𝐾 �
1 2⁄

�
1 2⁄

 
(14)  

𝛿 =
𝑎2

𝑅𝑒
−  �

8𝜋𝑎Δ𝛾
3𝐾

�
1 2⁄

 (15)  

Comparing these Equations 2 and 1, respectively, the additional adhesion terms become apparent. 
Additionally, the pull-off force is  

𝐹Pull−Off,   JKR =  1.5𝜋Δ𝛾𝑅𝑒  (16)  

It is important to note that while all of the other adhesion models discussed in this review allow for the 
existence of a pull-in force, the JKR model does not 

(2.4) Derjaguin-Muller-Toporov (DMT) 

 The DMT model assumes that adhesive tensile stresses exist outside of the contact region (IE, 
tensile forces in the separation region), while the stresses inside the contact region remain identical to 
Hertz (IE, parabolic normal force distribution) [4], as shown in Figure 6.  

 

Figure 6: DMT contact where the dashed lines indicate the regions in which adhesive forces act 

Assuming this stress profile, the contact area for a prescribe contact force is  



 

R.P.Hennessy 8 ME-5656 Report 

𝑎 = �
𝑅𝑒
𝐾

(𝑃 + 2𝜋Δ𝛾𝑅𝑒)�
1 3⁄

 (17)  

𝛿 =
𝐾𝑎3

𝑅𝑒
−  2𝜋Δ𝛾𝑅𝑒 (18)  

while the contact area for a prescribed interference is 

𝑎 = (𝑅𝑒𝛿)1 2⁄  (19)  

Note that Equation 19 is identical to Equation 1; again, this is because the stress profile inside the 
contact is assumed to be identical to that of Hertz contact. Additionally, the pull-off force is 

𝐹Pull−Off,   DMT =  2𝜋Δ𝛾𝑅𝑒  (20)  

 

(2.5) Tabor Parameter 

 The DMT and JKR adhesions theories were the cause of a lot of heated debate because they are 
seemingly in direct contrast with each other [5]. This was not until it was discovered that these theories 
are actually the limit cases of opposing ends of the same behavior spectrum. To distinguish the 
appropriate applications for the JKR and DMT theories, the Tabor parameter, μ, was created 

𝜇 = �
Δ𝛾2𝑅𝑒
𝐸𝑒2𝑧03

�
1 3⁄

 
(21)  

The Tabor parameter is the physical equivalent to the ratio of normal elastic deformation 
caused by adhesion to the spatial range of the adhesion forces [6]. 

Tabor parameter theory states that for μ values much less than one (stiff solids, small effective 
radius of curvature, weak energy of adhesion), the DMT model is appropriate. Alternately, for μ values 
much greater than one (compliant solids, large effective radius of curvature, large energy of adhesion), 
the JKR model is appropriate. 

 

(2.6) Maugis-Dugdale Model (MD) 

For intermediate values of the Tabor parameter, μ, Maugis [7] approximated the behavior of surface 
interaction using a Dugdale cohesive zone approximation. In this model, Maugis defines an elasticity 
parameter  

𝜆 = 2𝜎0 �
𝑅𝑒

Δ𝛾𝐾2�
1 3⁄

 (22)  

where σ0 is a constant adhesion stress that acts over a range of δt, resulting in the work of adhesion Δγ = 
σ0δt,. By choosing σ0 to equal the minimum adhesion stress for a Lennard-Jones potential (with 
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equilibrium spacing of z0), it follows that δt =0.97z0, making λ=1.1570μ. This leads to a the following 
system of three equations 

1 =
𝜆𝑎2

2 �
𝐾

𝜋𝑅𝑒2Δ𝛾
�
3 2⁄

��𝑚2 − 1 + (𝑚2 − 2) atan�𝑚2 − 1�

+
4𝜆𝑎2

3 �
𝐾

𝜋𝑅𝑒2Δ𝛾
�
1 3⁄

�1 −𝑚 + �𝑚2 − 1 atan�𝑚2 − 1� 

(23)  

𝑃 =
𝐾𝑎3

𝑅
−𝜆𝑎2 �

𝜋Δ𝛾𝐾2

2 �
3 2⁄

��𝑚2 − 1 + 𝑚2 atan�𝑚2 − 1� (24)  

𝛿 =
𝑎2

𝑅
−

4𝜆𝑎
3

�
𝜋Δ𝛾
𝑅𝐾

�
1 3⁄

�𝑚2 − 1 
(25)  

where m = a/c, or the ratio of the contact radius to the cohesive zone radius. In this system of equations, 
if the elasticity parameter, λ, is not known before solving the problem, it must be found by iteratively. 
This makes finding a solution to a given problem cumbersome. However, it is generally agreed that this 
model is generally the best because this model encompasses the entire range of adhesion behavior. 
More specifically, for λ > 5, the JKR model applies, and for λ < 0.1, the DMT model applies. Figure 7 is a 
convenient adhesion map depicting the appropriate property sets in which to use the different adhesion 
models.  

 

Figure 7: An Adhesion map as presented in [8] 
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Additionally, Figure 8 provides a representative plot of force versus displacement for the different 
adhesion models.  

 

Figure 8: Normalized force versus normalized interference for JKR, DMT, and MD adhesion models 

where the normalized values are defined as 

𝑃∗ =
𝑃

𝜋𝑅𝑒Δ𝛾
 (26)  

𝛿∗ =
𝛿

�𝜋
2𝑅𝑒Δ𝛾2
𝐾2 �

1 3⁄  (27)  

 

(2.7) Carpick-Ogletree-Salmeron (COS) 

Because of the cumbersome nature of solving the Maugis system, Carpick, Ogletree, and Salmeron 
(COS) [9] used numerical software and curve fitting to develop a general approximation equation to 
determine the contact area. They showed that the Maugis formulation could be approximated using the 
generalized transition equation 
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𝑎 = 𝑎0(𝛼) �
𝛼 + �1 − 𝑃 𝑃𝑐(𝛼)⁄ �1 2⁄

1 + α
�

2 3⁄

 (28)  

where α is another transition parameter and a0 is the contact area at zero load. The α = 0 case 
corresponds exactly to the DMT formulation, while the α = 1 case corresponds exactly to the JKR 
formulation. The relationship between Maugis’ elasticity parameter, and the COS transition parameter is 
given by 

𝜆 = −0.924 ln(1 − 1.02𝛼) (29)  

Using this model, computation time is greatly reduced which accuracy is retained. The step-by-step 
application process is outlined in the paper. 

3. Multi  Asperity Models 
In this section, multi-asperity models predicting the mechanical behavior of two objects in contact 

will be presented. Again, only steady state, linear, elastic, isotropic material behavior is considered in 
these models. 

(3.1) Greenwood and Williamson 

The Greenwood and Williamson [10] model attempts to describe the behavior when two rough 
surfaces come into contact, as depicted in Figure 9a.  This model makes the following assumptions: 

- Contact is between a plane and a nominally flat surface with a large number (N) asperities 
- All of the asperities are locally spherical 
- All asperity summits have the same radius (Re) 
- The asperity height varies randomly, thus the probability of making contact at any given asperity of 

height z is 

prob(𝑧 > 𝑑) = � 𝜙(𝑧)𝑑𝑧
∞

𝑑
 (30)  

where φ(z) is the probability that a particular asperity has a height between z and dz above some 
reference plane and d is the separation between the reference planes of the two contacting 
surfaces, as depicted in Figure 9b. This means that the expected number of contacts n is 

𝑛 = 𝑁� 𝜙(𝑧)𝑑𝑧
∞

𝑑
 (31)  

- All asperity contacts are considered Hertz contacts 
- All asperities are sufficiently separated to be mechanically independent 

Next, a normalized separation is defined as   

ℎ = 𝑑 𝜎�  (32)  

where σ is the standard deviation of the peak height probability density function φ(z). If the ‘apparent’ 
or nominal contact area is Aa, the asperity density can be defined as 
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𝜂 = 𝑁
𝐴𝑎�  (33)  

 

Figure 9: (a) Two rough surfaces in contact (b) Contact of an equivalent rough surface with a smooth plane, only the tallest 
asperities make contact and thus support the entire load – those asperity peaks are shaded in gray 

With these definitions and the aforementioned assumptions, the following relations for total load, P, 
number of contacts, n, real (or ‘True’) contact area, Ar, can be written as 

𝑛 = 𝜂𝐴𝑎𝐹0(ℎ) (34)  

𝐴𝑟 = 𝜋𝜂𝐴𝑎𝑅𝑒𝜎𝐹1(ℎ) (35)  

𝑃 =
4
3
𝜂𝐴𝑎𝐸𝑒𝑅𝑒

1 2⁄ 𝜎3 2⁄ 𝐹3 2⁄ (ℎ) (36)  

where 

𝐹𝑛(ℎ) = 𝑁� (𝑧∗ − ℎ)𝑛𝜙∗(𝑧∗)𝑑𝑧∗
∞

ℎ
 (37)  

In this equation φ*(z*) represents the normalized asperity height distribution. And 

𝑧∗ =
𝑧 − 𝑚
𝜎

 (38)  

Again, z is a variable asperity height with respect to a reference plane, m is the mean of the height 
distribution, and σ is the standard deviation of the height distribution.  
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When the asperity heights follow an exponential distribution (which is a loose approximation of the 
uppermost 25% of asperity heights in a Gaussian distribution) 

𝜙∗(𝑧∗) = 𝑒−𝑧∗ (39)  

the equations for total load, P, number of contacts, n, real contact area, Ar, reduce to  

𝑛 = 𝜂𝐴𝑎𝑒−ℎ (40)  

𝐴𝑟 = 𝜋𝜂𝑅𝑒𝜎𝐴𝑎𝑒−ℎ (41)  

𝑃 = 𝜋1 2⁄ 𝜂𝑅𝑒𝜎𝐴𝑎𝐸𝑒 �𝜎 𝑅𝑒� �
1 2⁄

𝑒−ℎ (42)  

This result is so significant because it shows a direct linear relationship between contact force and real 
contact area as well as contact force and the number of contact spots. Thus the average size of the 
contact spots and the contact pressure are independent of the load. It is extremely important to note 
that this result does not depend on the particular surface model or deformation mode. Rather, this 
result holds for an exponential distribution of asperity heights as long as all of the asperity contacts obey 
the same area / compliance and load / compliance laws! Moreover, these results suggest that the laws 
of Coulomb friction are indeed accurate.   

 This paper goes on to discuss the results from a Gaussian distribution of asperity heights. It turns 
out that these results come out close to those results for an exponential distribution.   

(3.2) Multi-Asperity Models with Adhesion  

Since the pioneering work of Greenwood and Williamson, authors have used the same statistical 
approach to incorporating adhesion into multi-asperity system. For example, Fuller et al in [11] explores 
a multi-asperity model with JKR adhesive contact instead of Hertz contacts. In 1996, Maugis in [12] 
presented a multi-asperity model of the Greenwood and Williamson approach with DMT adhesive 
contacts instead of Hertz contacts. And finally, Morrow et al in [13] created a multi-asperity model using 
Maugid-Dugdale adhesive contact.    

4. Conclusion 

In conclusion, this paper reviewed the fundamental theories that govern the mechanics of 
contact with and without adhesion. In the context of microswitch contacts, a single asperity model could 
be taken as either a smooth contact bump contacting a flat surface, or a single asperity of a rough 
contact bump contacting a flat surface. It was shown how these single asperity models were applied into 
multi-asperity models via some simple assumptions and statistical math. By applying models, a better 
understanding of the mechanics of a microswitch contact can be achieved.   
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APPENDIX 

5. Electrical Domain 

(5.1) Constriction Resistance (Maxwell Spreading Resistance) 

In the electrical domain, the contact resistance governs the amount of electric current that 
flows through the contact area. This contact resistance is comprised of two components: effects due to 
imperfect electrical contact (such as resistive contaminant films), and effects due to the converging and 
diverging of current paths through the constriction. Assuming perfect electrical contact, the contact area 
can be modeled as a current constriction. If the contact radius is known and is much larger than the 
electron mean-free-path of the contact material, the contact resistance can be calculated by the 
Maxwell spreading resistance 

Ω𝑀𝑎𝑥𝑤𝑒𝑙𝑙 =  
𝜌1 + 𝜌2

4𝑎
 (43)  

for the constriction resistance between two identical half-spaces. Where ρ1 and ρ2 are the electrical 
resistivities corresponding to the contact components.  

 

Figure 10: Electrical current line through a constriction 

If the contact material is the same for both components of the contact, the Maxwell spreading 
resistance simplifies to 

Ω𝑀𝑎𝑥𝑤𝑒𝑙𝑙 =  
𝜌

2𝑎
 (44)  

(5.2) Constriction Resistance (Sharvin Regime) 

If the contact radius is small compared to the electron mean-free-path of the contact material, 
λ, current is conducted via electrons projected ballistically through the contact without scattering. The 
effective mean free path of the contact can be calculated as 
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λ𝑒 =  
𝜆1 + 𝜆2

2
 (45)  

In this case, the contact resistance is calculated using the Sharvin model. 

Ω𝑆ℎ𝑎𝑟𝑣𝑖𝑛 =  
𝜆𝑒(𝜌1 + 𝜌2)

2𝑎
 (46)  

Note that if the contact material is the same for both the top and bottom of the contact, the effect 
mean-free-path is equal to the mean-free-path of the material, and the Sharvin resistance becomes 

Ω𝑆ℎ𝑎𝑟𝑣𝑖𝑛 =  
𝜆𝜌
𝑎

 (47)  

(5.3) Constriction Resistance (Wexler Regime) 

If the contact radius is comparable to the electron mean-free path of the contact 
material, a transition equation is used to calculate the resistance. Wexler developed the 
following equation 

Ω𝑊𝑒𝑥𝑙𝑒𝑟 = Γ(𝐾) �
𝜌

2𝑎
� +

4𝐾𝜌
3𝜋𝑎

 (48)  

where K = l/a is known as the Knudsen ratio and is used to characterize the constriction.  

 

Figure 11: Plot of gamma versus K 
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(5.4) Holm φ-θ Relation 

 In his book, Holm presents a relationship between the maximum temperature in a contact and 
the applied electrical potential. In order to formulate this relationship, the assumption was made that 
the electrical current lines and the heat transfer lines are coincident. 

� 𝜌𝜆𝑑𝑇
𝑇0+Θ

𝑇0
=
𝑈2

8
 (49)  

where T0 is the bulk temperature far away from the contact, ρ is the electrical resistivity, λ is the thermal 
conductivity, and U is the applied electrical potential. Note that φ is the maximum supertemperature, or 
the maximum temperature measured with respect to the bulk temperature. Additionally, if the material 
properties can be suitably averaged over the given temperature range, Equations 49 reduces to 

𝜌𝜆���Θ =
𝑈2

8
 (50)  

 

6. Thermal Domain 

(6.1) General Heat Conduction Equation 

The general heat conduction equation is 

𝜆∇2𝑇 + ∇𝜆 ∙ ∇𝑇 + �̇� = 𝜌𝑐
𝜕𝑇
𝜕𝑡

 (51)  

However, assuming that we are not concerned with transient behavior, and making the assumption that 
the thermal conductivity is constant, this equation reduces to 

∇2𝑇 +
�̇�
𝜆

= 0 (52)  

This equation governs the heat conduction in a solid body with bulk characteristics. This behavior will be 
the bulk of the contact. 

(6.2) Heat Transfer Constriction 

When there is heat conduction through a constriction, such as a small contact spot, the heat conduction 
behaves much the same way that electric current behaves through a constriction. In fact, equivalent 
heat conduction equations in the form of Equations 44, 47, and 48 can be written for the thermal 
domain.  


