

School of Engineering Technology

METE123 THERMODYNAMICS AIR COMPRESSOR EXPERIMENT

OBJECTIVE: Evaluate the performance of a typical two-stage air compressor.

PROCEDURE

The compressor used in this experiment is an Integersol-Rand type 30 two-stage air compressor. After the engine is running for a sufficient time (approx. 10 minutes), the following reading should be taken:

1. Low pressure cylinder inlet and discharge pressures (P_1 and P_2).
2. Intercooler pressure drop ($P_3 - P_2$).
3. High pressure cylinder discharge pressure P_4 (Tank pressure).
4. Orifice pressure drop ($P_5 - P_8$).
5. Pressure after the orifice.
6. Low pressure cylinder inlet and discharge temperatures. (T_1 and T_2).
7. High pressure cylinder inlet and discharge temperatures (T_3 and T_4).
8. Temperature before and after orifice (T_5 and T_8).
9. Compressor speed.
10. Electric power input.

The high pressure cylinder discharge pressure P_4 starts from 100 psig, and several runs are made by decreasing the tank pressure for each time.

RESULTS & QUESTIONS

1. Calculate the following:

- (a) Air flow rate m
- (b) Electric input power W_e
- (c) Isentropic air work W_a
- (d) Isothermal air work W_i
- (e) Isothermal compressor efficiency (η_i), volumetric efficiency (η_m), and overall mechanical efficiency (η_v)

2. Plot and discuss the following:

- (a) Plot W_e , W_a , W_i , η_i and η_m vs. P_4
- (b) Discuss the characteristic of these curves
- (c) discuss the errors which are concerned in this experiment.

THEORY

1) Air mass flow rate (m), by applying Bernoulli's equation, the air mass flow rate can be determined by:

$$m = 144A_o \left(\frac{2g\Delta P_{58}P_5}{RT_5} \right)^{1/2} 60C_d$$

where:

m = air mass flow rate (lbm/min)

A_o = Orifice area (ft^2), the inside diameter of the orifice is .5 in.

$g = 32.2 \text{ ft/s}^2$

ΔP_{58} = pressure drop across orifice (psi),

P_5 = pressure ahead of orifice (psia)

R = Specific gas constant of air, 53.3 ft-lbf/lbmR

T_5 = temperature ahead of orifice (R)

C_d = Discharge coefficient, 0.6

2) Electric input power, We (BTU/Min)

$$We = KW(3413)/60$$

Where KW = kilowatt usage of compressor. ($1KW = 3413 \text{ BTU/hr}$)

3) Air isentropic work, Wa (BTU / min)

$$Wa = mCp(T2-T1 + T4-T3)$$

Where:

Cp = specific heat (.24 BTU/lbmF)

$T1$ = low pressure cylinder inlet temperature

$T2$ = low pressure cylinder outlet temperature

$T3$ = high pressure cylinder inlet temperature

$T4$ = high pressure cylinder outlet temperature

4. Air Isothermal Work, Wi (BTU/min)

$$Wi = \frac{mRT_1}{776} \ln \frac{P_4}{P_1}$$

Where:

$P1$ = low pressure cylinder inlet pressure (psia)

$P4$ = high pressure cylinder outlet pressure (psia)

5. Isothermal compressor efficiency (η_i).

$$\eta_i = W_i / W_a (100)$$

5. Overall mechanical efficiency (η_m).

$$\eta_m = W_a / W_e (100)$$

Volumetric efficiency of the low pressure cylinder (η_v).

$$\eta_v = m\gamma / PD_1 (100)$$

where:

γ = Specific volume of air ahead of low pressure cylinder.

$$\gamma = RT_1 / 144P_1$$

$$PD_1 \text{ in ft}^3/\text{min} = \pi d_1^2 L N / 4$$

and d_1 is the diameter of the low pressure cylinder (ft) $d_1 = 6$ in., L is stroke of the piston (ft) $L = 4$ in. and N is compressor speed in RPM.

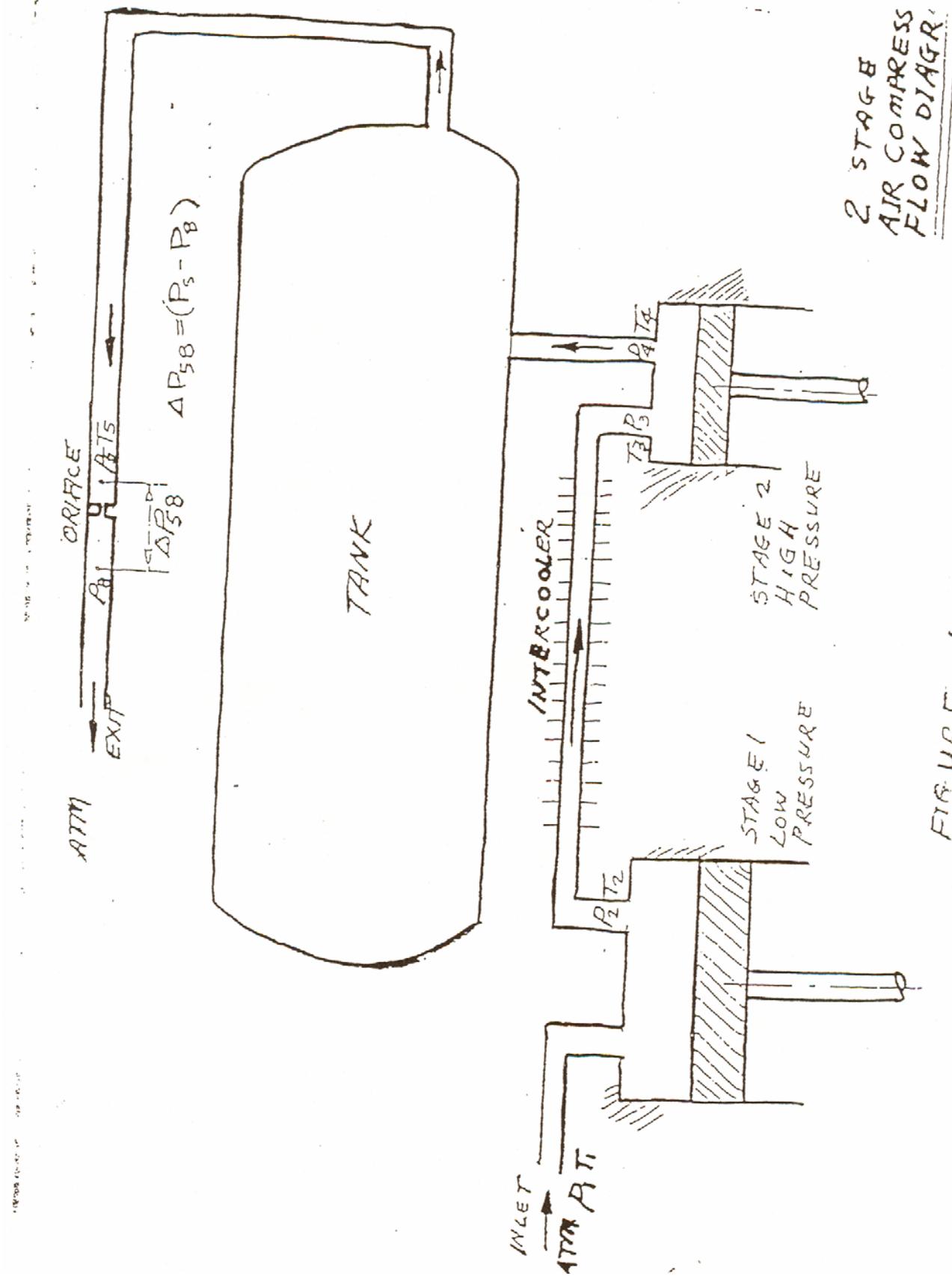


FIG. 110