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ABSTRACT

Driven by the critical needs of biomanufacturing 4.0, we present a probabilistic knowledge graph hybrid model
characterizing complex spatial-temporal causal interdependencies of underlying bioprocessing mechanisms.
It can faithfully capture the important properties, including nonlinear reactions, partially observed state, and
nonstationary dynamics. Given limited process observations, we derive a posterior distribution quantifying
model uncertainty, which can facilitate mechanism learning and support robust process control. To avoid
evaluation of intractable likelihood, Approximate Bayesian Computation sampling with Sequential Monte
Carlo (ABC-SMC) is developed to approximate the posterior distribution. Given high stochastic and model
uncertainties, it is computationally expensive to match process output trajectories. Therefore, we propose
a linear Gaussian dynamic Bayesian network (LG-DBN) auxiliary likelihood-based ABC-SMC algorithm.
Through matching observed and simulated summary statistics, the proposed approach can dramatically
reduce the computation cost and accelerate the posterior approximation convergence.

1 Introduction

The biomanufacturing industry is growing rapidly and it plays a critical role to ensure public health and
support economy. However, biomanufacturing often faces critical challenges, including high complexity, high
variability, and very limited process observations. As new biotherapeutics (e.g., cell/gene therapies) become
more and more personalized, biomanufacturing requires more advanced manufacturing protocols. With cells
(or other living organisms, such as bacteria and yeast) as factories, it involves a complex stochastic decision
process (SDP) with output trajectory dynamics and variations influenced by biological/physical/chemical
(a.k.a. biophysicochemical) reactions occurring at molecular, cellular, and system levels.

In general, there are two main categories of biomanufacturing process modeling methodologies in
the existing literature: mechanistic and data-driven approaches. The ordinary/partial differential equations
(ODE/PDE) mechanistic models are developed based on biophysicochemical mechanisms. They have good
interpretability and show generally higher extrapolation power than data-driven models. However, existing
mechanistic models often fail to rigorously account for uncertainties, i.e., inherent stochasticity and model
uncertainty. For example, batch-to-batch variation, known as a major source of bioprocess uncertainty
(Mockus et al. 2015), is ignored in deterministic mechanistic models. Therefore, mechanistic models
may not fit well with the observations from real systems in many situations, which also limits their power
in terms of mechanism learning and optimal/robust/personalized process control to support on-demand
manufacturing. On the other hand, data-driven approaches often use general statistical or machine learning
approaches to capture process patterns observed in data. The prediction accuracy of these models largely
depends on the the size of process data and their interpretability is limited.

Driven by the critical challenges of biomanufacturing and limitations of existing process modeling
methods, we developed probabilistic knowledge graph (KG) hybrid model characterizing the risk- and
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science-based understanding of bioprocess spatiotemporal causal interdependiences (Xie et al. 2022;
Zheng et al. 2021; Zheng et al. 2022). It can leverage the information from existing mechanistic models
between and within each operation unit, as well as facilitating mechanism learning from heterogeneous
data. Zheng et al. (2021) introduced KG-based reinforcement learning (RL) to guide customized decision
making. Since the proposed model-based RL scheme on the Bayesian KG can provide an insightful
prediction on how the effect of inputs propagates through mechanism pathways, impacting on the output
trajectory dynamics and variations, it can find process control policies that are interpretable and robust
against model risk, and overcome the key challenges of biopharmaceutical manufacturing.

Zheng et al. (2022) further generalized this KG hybrid model to capture the important properties of
integrated biomanufacturing processes, including nonlinear reactions, partially observed state, and non-
stationary dynamics. It can faithfully represent and advance the understanding of underlying bioprocessing
mechanisms; for example enabling the inference of metabolic states and cell response to environmental
perturbations. Since the hybrid model involves latent state variables, nonlinear reactions, and time-varying
kinetic coefficients with uncertainty (such as protein/metabolite/cell growth rates and molecular reaction
rates), it is challenging to evaluate the likelihood function and derive a posterior distribution.

A computational Bayesian inference approach, called Approximate Bayesian Computation (ABC), is
used to approximate the posterior distribution for models with intractable likelihoods. It bypasses the
evaluation of likelihood function by simulating model parameters and synthetic data sets, and retaining
the parameter samples such that the associated data set are “similar enough” to the observed data set. For
complex biomanufacturing processes with high stochastic and model uncertainties, it is computationally
challenging to generate simulation trajectories close to real-world observations. Thus, the similarity can
be measured based on summary statistics. Obviously, the choice of statistics is paramount. Recently, there
has been much interest in formalizing an auxiliary likelihood based ABC, which uses a simpler and related
model to derive summary statistics (Gleim and Pigorsch 2013; Martin et al. 2019; Sisson et al. 2018).

Following the spirit of the auxiliary likelihood-based ABC (Martin et al. 2019), we utilize a linear
Gaussian dynamic Bayesian network (LG-DBN) auxiliary model to derive summary statistics for ABC-
SMC that can accelerate online inference on hybrid models with high fidelity characterizing complex
bioprocessing mechanisms. The proposed DBN auxiliary ABC approach in conjunction with sequential
importance sampling can efficiently approximate hybrid model posterior distribution. Therefore, the key
contributions of this paper: (1) given very limited real world data, we propose DBN auxiliary likelihood-
based ABC-SMC sampling to generate posterior samples of bioprocess hybrid model parameters quantifying
model uncertainty; (2) this simple LG-DBN auxiliary model can capture the critical dynamics and variations
of bioprocess trajectory, ensure the computational efficiency, and enable high quality of inference, which
can facilitate mechanism online learning and support robust process control; and (3) the empirical study
shows that our approach can outperform the original ABC-SMC approach given tight computational budget.

The remainder of the paper is organized as follows. We provide the problem description and summarize
the proposed framework in Section 2. Then, we present a probabilistic KG hybrid model, capturing the
important properties of biomanufacturing processes, and describe ABC for approximating the posterior
distribution of model parameters in Section 3. We derive LG-DBN auxiliary likelihood based summary
statistics, which can facilitate Bayesian inference on hybrid models with high fidelity in Section 4. We
conduct the empirical study on cell therapy manufacturing in Section 5 and conclude the paper in Section 6.

2 Problem Description and Proposed Framework

Driven by the needs of biomanufacturing process online learning, monitoring, and control, we create a
probabilistic KG hybrid model characterizing underlying mechanisms and causal interdependencies between
critical process parameters (CPPs) and critical quality attributes (CQAs). It models how the effect of state
and action at any time t, denoted by {ssst ,aaat}, propagates through mechanism pathways impacting on the
output trajectory dynamics and variations. Here we use cell culture process for illustration. The process
state transition model is denoted by p(ssst+1|ssst ,aaat ;θθθ) where ssst ∈S ⊂ Rd denotes the partially observable
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bioprocess state (i.e., extra- and intra-cellular enzymes, proteins, metabolites, media), aaat ∈A denotes action
(i.e., agitation rate, oxygen/nutrient feeding rates), A is a finite set of actions, and t ∈H ≡{1,2, . . . ,H+1}
denotes the discrete time index. At any time t, the agent observes the state ssst and takes an action aaat . Thus,
given model parameters θθθ , the joint distribution of process trajectory τττ = (sss1,aaa1, . . . ,sssH ,aaaH ,sssH+1) becomes,

p(τττ|θθθ) = p(sss1)
H

∏
t=1

p(ssst+1|ssst ,aaat ;θθθ)p(aaat).

The state transition p(ssst+1|ssst ,aaat ;θθθ) is modeled by a hybrid (mechanistic/statistical) model. Its structure takes
existing mechanistic models as prior. For example, since the key factors influencing process dynamics and
variability in cell culture are induced by cellular metabolisms (O’Brien et al. 2021), the probabilistic state
transition of this KG hybrid model can incorporate cell metabolic networks and account for the variations of
cell behaviors under heterogeneous micro-environments. Given limited historical trajectory observations,
we focus on hybrid model Bayesian inference to support online mechanism learning, monitoring, and
reliable interpretable prediction, accounting for both inherent stochasticity and model uncertainty.

There are key properties in biomanufacturing process, specially for personalized cell/gene therapies,
including (1) partially observed state (ssst) that means only limited proportion of state observable; (2)
stochastic state transition model p(ssst+1|ssst ,aaat ;θθθ) involves high inherent stochasticity; and (3) very limited
and heterogeneous online and offline measurement data. In this paper, the posterior distribution will be
derived to quantify model uncertainty. Due to the nature of biopharmaceutical manufacturing, the stochastic
state transition models p(ssst+1|ssst ,aaat ;θθθ) are highly complex, non-linear, and nonstationary.

2.1 Hybrid Modeling for Biomanufacturing Process with Partially Observed State

At any time step t, the process state ssst is composed of observable and latent state variables, i.e., ssst = (xxxt ,zzzt)
with xxxt ∈Sx and latent state variables zzzt ∈Sz, where Sx ⊂ Rdx and Sz ⊂ Rdz with S = Sx×Sz and
d = dx +dz. Denote the partially observed state trajectory as τττx ≡ (xxx1,aaa1, . . . ,xxxH ,aaaH ,xxxH+1). Given model
parameters θθθ , by integrating out the latent states (zzz1, . . . ,zzzH+1), the likelihood of observation τττx becomes,

p(τττx|θθθ) =
∫
· · ·
∫

p(τττ|θθθ)dzzz1 · · ·dzzzH+1.

To support bioprocess mechanism learning and decision making, this hybrid model characterizes the risk-
and science-based understanding of underlying mechanisms and spatial-temporal causal interdependencies
of CPPs/CQAs. It can connect heterogeneous online and offline measurements to infer unobservable state
(such as assessing underlying metabolic state that determines cell product functional properties), support
process monitoring, and facilitate real-time release.

Therefore, we model the bioprocess state transition with a hybrid model. Given the existing ODE-based
mechanistic model, dsss/dt = fff (sss,aaa;φφφ) , by using the finite difference approximation for derivatives, i.e.,
dsss≈ ∆ssst = ssst+1−ssst , and dt ≈ ∆t, we construct the hybrid model for state transition,

xxxt+1 = xxxt +∆t · fff x(xxxt ,zzzt ,aaat ;φφφ)+eeex
t+1 and zzzt+1 = zzzt +∆t · fff z(xxxt ,zzzt ,aaat ;φφφ)+eeez

t+1

with unknown kinetic coefficients φφφ ∈Rdφ (e.g., cell growth and inhibition rates). The function structures of
fff x(·) and fff z(·) are the parts of fff (·) associated to the observable state output xxxt+1 and the latent state output
zzzt+1. By applying the central limit theorem, the residual terms, accounting for inherent stochasticity and
other factors, are modeled by multivariate Gaussian distributions eeex

t+1 ∼N (0,V x) and eeez
t+1 ∼N (0,V z)

with zero means and covariance matrices V x and V z. Then, the state transition distribution becomes,

xxxt+1|xxxt ,zzzt ,aaat ∼N
(

xxxt +∆t · fff x(xxxt ,zzzt ,aaat),V x
t+1

)
and zzzt+1|xxxt ,zzzt ,aaat ∼N

(
zzzt +∆t · fff z(xxxt ,zzzt ,aaat),V z

t+1

)
.

Therefore, the state transition model specified by parameters θθθ = (φφφ ,V x,V z)> characterizes the bioprocess
dynamics, mechanisms, and inherent stochasticity.
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2.2 Challenges of Hybrid Model Inference Under High Stochasticity and Limited Data

Given limited real-world data with size m, denoted by D = {τττ(i)
x : i = 1,2, . . . ,m}, the model uncertainty

is quantified by a posterior distribution derived through applying the Bayes’ rule,

p(θθθ |D) ∝ p(θθθ)p(D |θθθ) = p(θθθ)
m

∏
i=1

p
(

τττ
(i)
x

∣∣∣θθθ) (1)

where p(θθθ) represents the prior distribution. It is challenging to directly derive or computationally
assess the posterior distribution p(θθθ |D) in eq. (1). First, there could exist large-dimensional latent state
variables zzzt , especially for multi-scale bioprocess model developed to characterizing the cell response to
environmental perturbation. It is computationally expensive to assess the likelihood of each observation,
p(τττ(i)

x |θθθ)=
∫
· · ·
∫

p(τττ(i)|θθθ)dzzz1 · · ·dzzzH+1, especially for biomanufacturing process with optical sensor assisted
online monitoring, i.e., the value of H is large. Second, the mechanistic model fff (sss,aaa;φφφ) can be a nonlinear
function of state sss as well as a nonlinear function of parameters φφφ . The kinetic coefficients can be random
even though we start with fixed values in this paper. For example, the kinetic coefficients (such as cell
growth rate, oxygen/nutrient uptake rates, and metabolic waste excretion rates) can depend on the gene of
seed cells, as well as cell culture environments. They can have batch-to-batch variations. Third, the amount
of real-world process observations can be very limited (especially for personalized bio-drug manufacturing)
even though inherent stochasticity and model complexity can be high. This leads to high model uncertainty.

Thus, in Section 3, ABC approach is considered to approximate the posterior distribution of hybrid
model with high fidelity that can capture the key features of biomanufacturing processes. Since it is
computationally expensive especially under the situations with high stochastic and model uncertainties,
LG-DBN auxiliary ABC-SMC is used to facilitate the Bayesian inference. This auxiliary model can be
accurate for biomanufacturing process online monitored with optical sensors (i.e., TPE and Raman sensors).

3 Sequential Importance Sampling based Hybrid Model Inference and Algorithm Development

When the assessment of likelihood for any observation is computationally intractable, such as p(τττ(i)
x |θθθ) =∫

· · ·
∫

p(τττ(i)|θθθ)dzzz1 · · ·dzzzH+1 for i = 1,2, . . . ,m, the ABC approach is recommended to approximate the
posterior distribution (Sisson et al. 2018). In the naive ABC implementation, we draw a candidate sample
from the prior θθθ ∼ p(θθθ) and then generate a simulation dataset D? from the hybrid model. If the simulated
dataset D? is “close” to the observed real-world observations D , we accept the sample θθθ ; otherwise reject it.
Thus, we approximate the posterior distribution p(θθθ |D) with p(θθθ |d (D ,D?)≤ h), where d(·) is a distance
metric (e.g., Euclidean distance, likelihood distance) and h is an approximation tolerance level.

However, for any given small tolerance level h, we often face very low accept rate for complex
biomanufacturing processes with high stochastic and model uncertainties. The random discrepancy between
multivariate process trajectories D and D? could be large even when we have the parameter sample θθθ

equal to θθθ c. In addition, given very limited real-world data for the complex hybrid model, the design space
of θθθ and the model uncertainty can be large.

To increase the acceptation rate and ensure the computational efficient generation of samples θθθ with
good approximation on the critical features occurring in the real-world data, we can define the distance
measure d(·) based on selected lower dimensional summary statistics, denoted by η(D). That mean we
accept samples θθθ which lead to the summary statistics of simulated data, denoted by η? = η(D?), close
to the one of observations ηobs = η(D). Thus, the standard ABC framework (Sisson et al. 2018) becomes

pABC(θθθ |ηobs) ∝

∫
1(d(η?,ηobs)≤ h)p(η?|θθθ)p(θθθ)dη

?. (2)

Therefore, as the distance tolerance h gradually decreases, we have

lim
h→0

pABC(θθθ |ηobs) ∝

∫
δηobs(η

?)p(η?|θθθ)p(θθθ)dη
? = p(ηobs|θθθ)p(θθθ) ∝ p(θθθ |ηobs), (3)
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where δX(x) denotes the Dirac measure, defined as δX(x) = 1 if x ∈ X and δX(x) = 0 otherwise.
A good design of ABC summary statistics η should balance complexity v.s. informativeness. If the

summary statistics η are sufficient for θθθ , then p(θθθ |ηobs) will be equivalent to p(θθθ |D). Then, with small
threshold h, the ABC approximate pABC(θθθ |ηobs) in (2) can provide a good approximation of the true
posterior. However, in the most situation, it is challenging to specify the sufficient statistics since the KG
hybrid model is built based on nonlinear mechanistic model and it accounts for the key features including
(1) partially observed state; (2) heterogeneous offline and online measures; (3) nonlinear mechanisms and
dynamics; and (4) batch-to-batch variations on mechanistic coefficients. Thus, in Section 4, we project
the bioprocess hybrid model into linear Gaussian dynamic Bayesian Network (LG-DBN) based auxiliary
model space that has tractable likelihood. We will use the LG-DBN likelihood to derive summary statistics
accelerating the selection of samples θθθ . This LG-DBN can capture the key properties of process dynamics
and variations to support robust and optimal control. Our study also shows that complex KG hybrid models
will asymptotically converge to a LG-DBN model as time interval ∆t becomes “smaller and smaller” by
applying Taylor approximation (Zheng et al. 2021). This LG-DBN approximation holds well for many
cases with online sensor measurements and the biological state of cells does not change quickly.

The basic ABC generates candidate samples from the prior p(θθθ) and uses the accept/reject approach to
keep those samples satisfying the approximation threshold requirement. This can be extremely ineffective
especially for the situations using noninformative prior that has a wide sampling space. The ABC-sequential
Monte Carlo (ABC-SMC) methods derived from the sequential importance sampling (Toni et al. 2009;
Beaumont et al. 2009) can improve the sampling efficiency through generating candidate samples from
updated posterior approximates. In specific, let g denote the index of ABC iterations used to improve the
approximation of the posterior distribution p(θθθ |D). We select a sequence of intermediate target distribution,
denoted by {πg} for g = 1,2, . . . ,G, converging to the posterior p(θθθ |D), i.e.,

πg(θθθ) = p(θθθ)1(d(η?,ηobs)≤ hg) . (4)

Through gradually reducing the tolerance level hg, we can better approximate the posterior distribution
p(θθθ |D). Direct sampling from p(θθθ) and having the accept/reject based on the condition 1(d(η?,ηobs)≤ hg)
in (4) is not simulation efficient. The accept rate can be low as hg becomes smaller and smaller.

Thus, we use the sequential importance sampling (SIS) and select a sequence of proposal distribution,
denoted by {ζg} for g = 1,2, . . . ,G, to improve the sampling efficiency, i.e.,

ζg(θθθ) = 1(πg(θθθ)> 0)
∫

πg−1(θθθ
′)K(θθθ ′,θθθ)dθθθ

′, (5)

where K(θθθ ′,θθθ) is a Markov kernel. The proposal distribution ζg(θθθ) is defined as the perturbed previous
intermediate distribution πg−1 through the perturbation kernel K. After generating N sample particles
from the proposal distribution θθθ n ∼ ζg(θθθ) for n = 1,2, . . . ,N, we weight it by w(g)

n = πg(θθθ n)/ζg(θθθ n). The
condition, 1(πg(θθθ) > 0), in (5) is used to satisfy the importance sampling condition, i.e., {θθθ : πg(θθθ) >
0} ⊂ {θθθ : ζg(θθθ) > 0}. This can avoid the weight becoming infinite, which will lead to high variance on
the SIS estimator. We set the first proposal distribution to be the prior distribution, i.e., ζ1(θθθ) = p(θθθ).

The proposed LG-DBN auxiliary likelihood-based ABC-SMC sampling procedure is summarized in
Algorithm 1. It incorporates an adaptive selection approach on the threshold hg from Toni et al. (2009),
Lenormand et al. (2013), Del Moral et al. (2006). The initial set of parameter samples {θθθ (0)

n }N
n=1 is generated

from the prior distribution p(θθθ) in Step 1. The associated weights {w(0)
n }N

n=1 and distances {q(0)n }N
n=1 are

calculated in Steps 2-3. Considering the impact from stochastic uncertainty, we generate m×L predicted
trajectories, compute the DBN auxiliary based summary statistics η?, and then calculate the distance q(0)n .
The tolerance level hg in any g-th iteration is determined online as the α-quantile of the {q(g)n }N

n=1. The
particles, satisfying this tolerance denoted by {θθθ n}Nα

n=1, constitute the weighted empirical distribution to
approximate the posterior distribution in Steps 5 and 13, where Nα = bαNc. The approximation accuracy
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Algorithm 1: DBN auxiliary based ABC-SMC for hybrid model Bayesian inference.

Input: the prior distribution p(θθθ); the number of particles N; process observations D = {τττ(i)
x }m

i=1;
the perturbation kernel function K(·); the number of particles to keep at each iteration
Nα = bαNc with α ∈ [0,1]; and the minimal acceptance rate paccmin .

Output: posterior distribution approximate p̂(θθθ |D).
for n = 1, . . . ,N do

1. Sample θθθ
(0)
n ∼ p(θθθ);

2. Generate m×L predicted trajectories {τττ?(i)
x }mL

i=1 using θθθ
(0)
n ;

3. Set q(0)n = d(η(τττx),η(τττ?
x)) and w(0)

n = 1;

4. Let h1 be the first α-quantile of q(0) = {q(0)n }N
n=1;

5. Let {(θθθ (1)
n ,w(1)

n ,q(1)n )}= {(θθθ (0)
n ,w(0)

n ,q(0)n )|q(0)n ≤ h1,1≤ n≤ N}, pacc = 1 and g = 2;
while pacc > paccmin do

for n = Nα +1, . . . ,N do

6. Sample θθθ ?
n from θθθ

(g−1)
k with probability w(g−1)

k

∑
Nα
j=1 w(g−1)

j

, 1≤ k ≤ Nα ;

7. Perturb the particle to obtain θθθ
(g−1)
n ∼ K(θθθ |θθθ ?

n) = N (θθθ ?
n,∑);

8. Generate m×L predicted trajectories {τττ?(i)
x }mL

i=1 using θθθ
(g−1)
n :

9. Set q(g−1)
n = d(η(τττx),η(τττ?

x));

10. Set w(g−1)
n =

p(θθθ (g−1)
n )1(d(η(τττx),η(τττ?x)≤hg−1)

∑
Nα
j=1

w(g−1)
j

∑
Nα
k=1 w(g−1)

k

K(θθθ
(g−1)
n |θθθ (g−1)

j )

;

11. Set pacc =
1

N−Nα
∑

N
k=Nα+11(q

(g−1)
k ≤ hg−1);

12. Let hg be the first α-quantile of q(g−1) = {q(g−1)
n }N

n=1;
13. Let {(θθθ (g)

n ,w(g)
n ,q(g)n )}= {(θθθ (g−1)

n ,w(g−1)
n ,q(g−1)

n )|q(g−1)
n ≤ hg,1≤ n≤ N} and g = g+1;

14. Return the approximated posterior distribution, p̂(θθθ |D) = 1
∑

Nα

n′=1 w(g−1)
n′

∑
Nα

n=1 w(g−1)
n δ

θθθ
(g−1)
n

(θθθ).

is measured by the corresponding distances {qn}Nα

n=1. Then, N−Nα new particles are drawn from the
proposal distribution ζg(θθθ) in Steps 6-7. The associated weights and distances are calculated in Steps 8-10.
The tolerance level hg and the posterior distribution approximate πg(θθθ) are updated in Steps 12-13. We
repeat Steps 6-13 until the proportion of particles satisfying the tolerance level hg−1 among the N−Nα

new particles is below the pre-specified threshold paccmin . Finally, the ABC-SMC algorithm returns the
weighted empirical distribution, denoted by p̂(θθθ |D), as posterior distribution approximate in Step 14.

4 DBN Auxiliary Likelihood-based Summary Statistics for Distance Measure Development

Motivated by the studies (Martin et al. 2019; Gleim and Pigorsch 2013), in this section, we derive LG-DBN
auxiliary likelihood-based summary statistics for ABC-SMC to capture the crucial features of the bioprocess
trajectory, including dynamics and variations. Given a set of observations D = {τττ(i)

x : i = 1,2, . . . ,m}, we
derive the MLE of LG-DBN auxiliary model, i.e., maximizing the log-likelihood β̂ββ (D) = argmaxβββ `(βββ |D).

Then we use it as the summary statistics η , β̂ββ to calculate the distance measure q≡ d(β̂ββ ,β̂ββ
?
), where β̂ββ

?

is the summary statistics of simulated data. In the following, we first develop the LG-DBN model with
only observable state transition in Section 4.1 and then discuss the parameter estimation in Section 4.2.
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4.1 The development of LG-DBN Auxiliary Model

Let xk
1∼N (µx,k

1 ,(vx,k
1 )2) with k = 1,2 . . . ,d model the variation in the k-th initial observed state. In practice,

to ensure product quality, CPPs are strictly regulated by the specifications of ranges of values. Thus, we
model aaat as a random variable. Let ak

t ∼N (λ x,k
t ,(σ x,k

t )2) with k = 1,2 . . . ,da model the variation in the
k-th action for t = 1,2 . . . ,H. At any time t, LG-DBN auxiliary model has the state transition model,

xxxt+1 = µµµ
x
t+1 +ψψψ

x
t (xxxt −µµµ

x
t )+ψψψ

a
t (aaat −µµµ

a
t )+(V x

t+1)
1
2 ωωω, (6)

where µµµx
t = (µ1

t , . . . ,µ
dx
t ), µµµa

t = (λ 1
t , . . . ,λ

da
t ), ωωω is an dx-dimensional standard normal random vec-

tor, and V x
t+1 = diag

(
(vx,k

t+1)
2
)

is a diagonal covariance matrix. The coefficients ψψψx
t and ψψψa

t mea-
sure the main effects of current observed state xxxt and action aaat on the next observed state xxxt+1. Let
σσσ t = (σ1

t , . . . ,σ
da
t ) and vvvx

t = (vx,1
t , . . . ,vx,dx

t ). Thus, the LG-DBN model, specified by parameters βββ =
(µµµx,µµµa,ψψψx,ψψψa,σσσ ,vvvx) = {(µµµx

t ,µµµ
a
t ,ψψψ

x
t ,ψψψ

a
t ,σσσ t ,vvvx

t )|1≤ t ≤H}, has the joint distribution of bioprocess trajec-
tory: p(τττx) = p(xxx1,aaa1, . . . ,xxxH ,aaaH ,xxxH+1) = p(xxx1)∏

H
t=1 p(xxxt+1|xxxt ,aaat)p(aaat).

Let µµµτ = [µµµx
1,µµµ

a
1, . . . ,µµµ

x
H ,µµµ

a
H ,µµµ

x
H+1]

>. Following Murphy (2012), we rewrite (6) in the following form

τττx−µµµτ = B(τττx−µµµτ)+Σ
1
2
τ ωωωτ (7)

where ωωωτ is an ((H +1)dx +Hda)-dimensional standard normal random vector, Σ
1
2
τ =

diag
(
vvvx

1,σσσ1, . . . ,vvvx
H ,σσσH ,vvvx

H+1

)
is the diagonal matrix of the conditional standard deviations of ob-

served state and actions, and the coefficient matrix of observed trajectory is written as

B =



0 0 0 0 0 0 · · · 0 0 0 0
0 0 0 0 0 0 · · · 0 0 0 0

ψψψx
1 ψψψa

1 0 0 0 0 · · · 0 0 0 0
0 0 0 0 0 0 · · · 0 0 0 0
0 0 ψψψx

2 ψψψa
2 0 0 · · · 0 0 0 0

0 0 0 0 0 0 · · · 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0 0 0 0 · · · ψψψx
H ψψψa

H 0 0


.

Thus, by rearranging (7) and letting τττx−µµµτ = (I−B)−1Σ
1
2
τ ωωωτ , we have τττx∼N

(
µµµτ ,(I−B)−1Στ(I−B)−>

)
with mean E[τττx] = µµµτ and covariance matrix Cov(τττx−µµµτ) = (I−B)−1Στ(I−B)−>.

4.2 Linear Gaussian Dynamic Bayesian Network based Summary Statistics

Let τ̃ττx ≡ (x̃xx1,ãaa1, . . . ,x̃xxH ,ãaaH ,x̃xxH+1) = τττx−µµµτ , where x̃xxt and ãaat denote centered observable state and decision.
Given m observations D = {τττ(i)

x }m
i=1, the unbiased estimator µ̂µµτ = 1

m ∑
m
i=1 τττ

(i)
x can be easily obtained by

using the fact E[τττx] = µµµτ . The log-likelihood of the centered trajectory observations {τ̃ττ(i)
x }m

i=1 becomes,

max
ψψψx,ψψψa,V

`
(

τ̃ττ
(1)
x , . . . , τ̃ττ(m)

x ;ψψψx,ψψψa,V
)
= max

ψψψx,ψψψa,V
log

m

∏
i=1

p
(

τ̃ττ
(i)
x

)
= max

V1

m

∑
i=1

log p(x̃xx(i)1 )

[
H

∑
t=1

max
σt

m

∑
i=1

log p(ãaa(i)t )

][
H

∑
t=1

max
ψψψx

t ,ψψψ
a
t ,vvvx

t+1

m

∑
i=1

log p(x̃xx(i)t+1|x̃xx
(i)
t ,ãaa(i)t )

]
(8)

Since both initial state x̃xx1 and actions ãaat for t = 1, . . . ,H are normally distributed with mean zero, the MLEs of

their variance are sample covariances: v̂x,k
1 = 1

m ∑
m
i=1

(
x̃k(i)

1

)2
with k = 1,2, . . . ,dx and σ̂ k

t = 1
m ∑

m
i=1

(
ãk(i)

t

)2

with k = 1,2, . . . ,da. In addition, at any time t, we have the log likelihood of a sample τ̃ττ
(i)
x

log p(x̃xx(i)t+1|x̃xx
(i)
t ,ãaa(i)t ) ∝−m

2
log |V x

t+1|−
1
2

(
x̃xx(i)t+1−ψψψ

x
t x̃xx

(i)
t −ψψψ

a
t ãaa(i)t

)>
V x

t+1

(
x̃xx(i)t+1−ψψψ

x
t x̃xx

(i)
t −ψψψ

a
t ãaa(i)t

)
(9)
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Let x̃xx(i)t+1 and (x̃xx(i)t ,ãaa(i)t ) denote the i-th rows of output matrix Y and the input matrix X . Let Bt = (ψψψx
t ,ψψψ

a
t )
>

denote the coefficient vector. As a result, the MLEs of ψψψx
t and ψψψa

t are

(ψ̂ψψx
t ,ψ̂ψψ

a
t )
> = B̂t = argmax

Bt
−1

2
(Y −XBt)

> (V x
t+1)

−1 (Y −XBt) = (X>(V x
t+1)

−1X)−1X>(V x
t+1)

−1Y. (10)

The MLE of each standard deviation can be computed by v̂x,k
t =

√
1
m ∑

m
i=1

(
x̃k(i)

t

)2
(Fuller and Rao 1978).

In summary, from observations D , the auxiliary MLE can then be obtained as β̂ββ = (µ̂µµx, µ̂µµa,ψ̂ψψx,ψ̂ψψa,σ̂σσ ,v̂vvx).

5 Empirical Study

In this section, we use the erythroblast cell therapy manufacturing example presented in Glen et al. (2018)
to assess the performance of the proposed LG-DBN auxiliary likelihood-based ABC-SMC approach.

5.1 Hybrid Modeling for Cell Therapy Manufacturing Process

The cell culture of erythroblast exhibits two phases: a relatively uninhibited growth phase followed by
an inhibited phase. Glen et al. (2018) identified that this reversible inhibition is caused by an unknown
cell-driven factor rather than commonly known mass transfer or metabolic limitations. They developed
an ODE-based mechanistic model describing the dynamics of an unidentified autocrine growth inhibitor
accumulation and its impact on the erythroblast cell production process,

dρt

dt
= rgρt

(
1−
(

1+ e(ks(kc−It))
)−1
)

and
dIt
dt

=
dρt

dt
− rdIt

where ρt and It represent the cell density and the inhibitor concentration (i.e., latent state) at time t. The
kinetic coefficients φφφ = {rg,ks,kc,rd} denote the cell growth rate, inhibitor sensitivity, inhibitor threshold,
and inhibitor decay. Then, we construct the hybrid model

ρt+1 = ρt +∆t · rgρt

(
1−
(

1+ e(ks(kc−It))
)−1
)
+ eρ

t and It+1 = It +∆t ·

(
ρt+1−ρt

∆t
− rdIt

)
+ eI

t (11)

where the residuals follow the normal distributions eρ

t ∼N (0,v2
ρ) and eI

t ∼N (0,v2
I ) by applying CLT.

Therefore, the hybrid model is specified by θθθ = (rg,ks,kc,rd ,vρ ,vI). The prediction is made on a basis of
three hours ∆t = 3 from 0 hour to 30 hours (corresponding to time step t = 1,2, . . .11).

We denote the “true” hybrid model with underlying parameters θθθ c. Following Glen et al. (2018), we
specify the true mechanistic parameter values as φφφ c = {rg,ks,kc,rd}= {0.057,3.4,2.6,0.005}. We set the
bioprocess noise level v = vρ = vI , the initial cell density 3 ×106 cells/mL (ρ1 = 3), and no initial inhibition
(I1 = 0). Based on the simulation data generated by the true hybrid model, we assess the performance of the
proposed LG-DBN auxiliary ABC-SMC algorithm under different levels of bioprocess noise v = {0.1,0.2}
and model uncertainty (i.e., different sizes of process observations m = 3,6,20 batches).

5.2 LG-DBN Auxiliary ABC-SMC Performance Assessment

We compare the performance of LG-DBN auxiliary ABC-SMC with naive ABC-SMC (i.e. without using
the LG-DBN as auxiliary model) in terms of: (1) prediction accuracy, (2) computation cost, and (3) posterior
concentration. The distance metric of naive ABC-SMC is d (D ,D?). The results are estimated based 30
macro-replications. We set the number of particles N = 400, the ratio α = 0.5, the number of replications
L = 60, and the minimal accept rate Paccmin = 0.15. The prior distributions of model parameters are set as:
rg ∼U(0,0.5), ks ∼U(0,5), kc ∼U(0,5), rd ∼U(0,0.05), vρ ∼U(0,0.2), and vI ∼U(0,0.2).

One of the major benefits induced by the LG-DBN auxiliary likelihood is that it provides an efficient
way to measure the distance between simulated and observed samples, which quickly leads to posterior
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samples fitting well on dynamics and variations. To show the advantage of LG-DBN auxiliary ABC-SMC,
we first study its computational efficiency improvement. For each r-th macro replication, let T (r)

w and T (r)
wo

represent the computation cost of the ABC-SMC algorithm with and without LG-DBN auxiliary. The
computational efficiency improvement after incorporating the LG-DBN auxiliary model is evaluated as the
time consuming ratio, i.e., C(r) = T (r)

wo /T (r)
w . We record the 95% confidence interval (CI) for improvement,

denoted by C̄±1.96×SC/
√

30, where C̄ = 1
30 ∑

30
r=1 T (r)

wo /T (r)
w and SC = [∑30

r=1(T
(r)

wo /T (r)
w −C̄)2/29]1/2; see

the results in Table 1. With the LG-DBN auxiliary, the ABC-SMC algorithm shows significant improvement
in computational efficiency. In all different settings, the mean computation cost of naive ABC-SMC is
greater than auxiliary based ABC-SMC by 27% (at low variance and small sample size) to 163% (at high
variance and relative larger sample size).

Table 1: Computational efficiency improvement ratio.

Process Noise m = 3 m = 6 m = 20

v = 0.1 1.27 ± 0.11 1.43 ± 0.11 2.44 ± 0.15

v = 0.2 1.39 ± 0.08 1.52 ± 0.17 2.63 ± 0.20

Then, we compare the prediction accu-
racy of the posterior predictive distributions
obtained from ABC-SMC with and without
LG-DBN auxiliary. We estimate the pa-
rameters θθθ = (rg,ks,kc,rd ,vρ ,vI). Specif-
ically, in each macro replication, we gen-
erate posterior samples

{
θθθ (i)
}Nα

i=1 by LG-
DBN auxiliary and naive ABC-SMC approaches to approximate the posterior predictive distribution,

p(ρt , It |ρ1, I1,D) =
∫

p(ρt , It |θθθ ,ρ1, I1)p(θθθ |D)dθθθ =
1

Nα

Nα

∑
i=1

p
(

ρt , It |ρ1, I1,θθθ
(i)
)
,

where the probability density p(ρt , It |ρ1, I1,θθθ
(i)) is computed by the hybrid model (11) at θθθ (i). Given the

“true” model parameters θθθ c, we can also construct the predictive distribution p(ρt , It |ρ1, I1,θθθ
c) from the

model (11). Figure 1 shows posterior predictive distributions of cell density and inhibitor concentration at
30 hours or timestep t = 11 given a fixed initial state (ρ1, I1) = (3,0). The black dashed line represents
the predictive distribution of “true” model p(ρ11, I11|ρ1, I1,θθθ

c).

Table 2: The K-S statistics of cell density and inhibitor accumulation at 30-th hour (i.e., t = 11).

ABC-SMC with auxiliary ABC-SMC without auxiliary

State Process Noise m = 3 m = 6 m = 20 m = 3 m = 6 m = 20

ρt

v = 0.1 0.34 ± 0.04 0.31 ± 0.03 0.25 ± 0.02 0.26 ± 0.05 0.24 ± 0.04 0.23 ± 0.03

v = 0.2 0.25 ± 0.05 0.22 ± 0.04 0.19 ± 0.02 0.36 ± 0.04 0.32 ± 0.03 0.28 ± 0.02

It
v = 0.1 0.45 ± 0.04 0.46 ± 0.03 0.44 ± 0.02 0.68 ± 0.04 0.69 ± 0.03 0.67 ± 0.02

v = 0.2 0.38 ± 0.05 0.37 ± 0.05 0.36 ± 0.04 0.53 ± 0.07 0.55 ± 0.06 0.56 ± 0.04

By comparing Figure 1(a)-(b) to Figure 1(c)-(d), we observe that DBN auxiliary ABC-SMC shows
more robust performance across macro-replications and the posterior predictive distributions are generally
closer to the “true” predictive distribution than naive ABC-SMC. We further investigate Panel (a) and (c).
In low noise level v = 0.1, the auxiliary based ABC-SMC tends to overestimate the variance vρ causing the
estimated posterior predictive distributions more flat than the “true” predictive distribution. However, in
high noise level, the posterior predictive distribution of LG-DBN auxiliary ABC-SMC is more accurate than
that from naive ABC-SMC which consistently underestimates the variance vρ . The auxiliary ABC-SMC
shows consistently better predictions of inhibitor concentration from Figure 1(b) and 1(d).

We further use the Kolmogorov–Smirnov(K-S) statistics to assess the performance of LG-DBN auxiliary
ABC-SMC and naive ABC-SMC. The K-S statistics quantifies the distance between the empirical distribution
functions of the samples from posterior predictive distribution and predictive distribution of “true” model.
The K-S statistics is D = sups |Fc(s)−F p(s)| for s ∈ {ρ, I}, where Fc(s) and F p(s) are the empirical
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(b) Inhibitor concentration (with auxiliary)
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(c) Cell density (without auxiliary)
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(d) Inhibitor concentration (without auxiliary)

Figure 1: Posterior predictive distributions of cell density and inhibitor concentration at 30 hours (t = 11)
p(pt , It |ρ1, I1) obtained from 6 macro-replications (simulated with common random numbers). The color
filled areas under the probability density curve represent estimated posterior predictive distributions in
different macro-replications. The black dashed line represents the predictive distribution of the “true”
model, i.e. p(ρt , It |ρ1, I1,θθθ

c). The rows of each panel represent noise levels (i.e. v = 0.1,0.2) while the
columns of each panel are sample sizes of observations (i.e., m = 3,6,20). Panel (a) and Panel (b) represent
auxiliary based ABC-SMC algorithm. Panel (c) and Panel (d) represent naive ABC-SMC algorithm.

distribution functions of the samples from predictive distribution of “true” model and posterior predictive
distribution respectively. The smaller value of K-S statistic means better approximation performance of
posterior predictive distribution. The number of sample used to construct empirical distribution function
is set as K = 2000 in each macro-replication for both distributions. We summarize 95% CIs of distances
for both cell density and inhibitor accumulation at 30-th hour, denoted by D̄±1.96×SD/

√
30 in Table 2,

where D̄ = 1
30 ∑

30
r=1 D(r) and SD = [∑30

r=1(D
(r)− D̄)2/29]1/2.

As shown in Table 2, the LG-DBN auxiliary ABC-SMC algorithm has better performance in inhibitor
concentration prediction at all levels of model estimation uncertainty and stochastic uncertainty. It also
provides better prediction on cell density under high stochastic uncertainty, which is common in bioprocess.
The results are consistent with the observations obtained from Figure 1. The performance improvement
can be further observed from the estimated posterior distributions of hybrid model parameters; see the
representative plots of cell growth rate rd and inhibitor decay rd in Figure 2. The posterior distributions
estimated by LG-DBN auxiliary ABC-SMC has better concentration (i.e., how much the posterior mass
is close to the true value (Ho et al. 2020)) than naive ABC-SMC in all noise levels and sample sizes.
Especially, the better inference on rd is inspiring due to its extremely small but positive true value (i.e.,
rc

d = 0.005) and also it is only involved in the ODE mechanistic model of latent state It ; see (11).
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(b) rg (without auxiliary)
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(c) rd (with auxiliary)
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(d) rd (without auxiliary)

Figure 2: Posterior distributions of rg and rd of 6 macro-replications. The posterior distributions estimated
by auxiliary based ABC-SMC are shown in Panels (a), (c). The posterior distributions estimated by naive
ABC-SMC are shown in Panels (b), (d). The black dashed lines represent the “true” value of parameters.

.In sum, compared with naive ABC-SMC, the proposed LG-DBN auxiliary ABC-SMC algorithm tends
to have better prediction accuracy and computational efficiency especially under the situations with high
stochastic and model uncertainties. This can benefit bioprocess mechanism learning and robust control.

6 Conclusion

To leverage the information from existing mechanistic models and facilitate learning from real-world data,
we develop a probabilistic knowledge graph (KG) hybrid model that can faithfully capture the important
properties of integrated biomanufacturing processes, including nonlinear reactions, partially observed state,
and nonstationary dynamics. Since the likelihood is intractable, approximate Bayesian computation (ABC)
sampling strategy is used to generate samples to approximate the posterior distribution. For complex
biomanufacturing processes with high stochastic and model uncertainties, it is computationally challenging
to generate simulated trajectories close to real-world observations. Therefore, in this paper, we utilize a
simple linear Gaussian dynamic Bayesian network (LG-DBN) auxiliary model to design summary statistics
for ABC-SMC that can accelerate Bayesian inference on the probabilistic KG hybrid model with high
fidelity characterizing complex bioprocessing mechanisms. The empirical study demonstrates that the
proposed LG-DBN auxiliary ABC-SMC can improve computational efficiency and prediction accuracy. In
the future research, we will extend this approach to complex multi-scale bioprocess hybrid model in order
to facilitate metabolic mechanism learning and support robust control on both cellular and system levels.
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