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We consider the problem of deriving confidence intervals for the mean response of a system that is repre-
sented by a stochastic simulation whose parametric input models have been estimated from “real-world”

data. As opposed to standard simulation confidence intervals, we provide confidence intervals that account for
uncertainty about the input model parameters; our method is appropriate when enough simulation effort can be
expended to make simulation-estimation error relatively small. To achieve this we introduce metamodel-assisted
bootstrapping that propagates input variability through to the simulation response via an equation-based model
rather than by simulating. We develop a metamodel strategy and associated experiment design method that
avoid the need for low-order approximation to the response and that minimizes the impact of intrinsic (simu-
lation) error on confidence level accuracy. Asymptotic analysis and empirical tests over a wide range of simu-
lation effort show that confidence intervals obtained via metamodel-assisted bootstrapping achieve the desired
coverage.
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1. Introduction
One of the most valuable aspects of simulation is
its ability to characterize the behavior of arbitrar-
ily complex stochastic systems. However, effective
characterization depends on controlling simulation-
estimation error, because a stochastic simulation is in
every sense a statistical experiment. Years of research
on measuring and controlling simulation-estimation
error has yielded robust methods that are adequate
for many practical simulation problems; one might
even be tempted to say that the estimation-error
problem has been “solved.” Unfortunately, there is
a hidden, and often substantial additional error in
simulation experiments that is present even if best
practices for modeling, experiment design, and out-
put analysis are employed: input-uncertainty error.
In fact, the impact of input-uncertainty error relative
to simulation-estimation error can be exacerbated by
best practices for controlling estimation error.

Input models are the driving stochastic processes
in simulation experiments. They represent uncertainty
at a basic level that resists more detailed modeling.
Arrival processes in queueing simulations, demand
processes in supply chain simulations, and patient
occupancy times in hospital simulations are examples

of inputs. Input models are often based on a finite
sample of observed real-world data, and therefore
are subject to error. All simulation software mea-
sures simulation-estimation error; no simulation soft-
ware accounts for input-uncertainty error, and few
practitioners are even aware of this problem. Yet,
as we demonstrate next, input-uncertainty error can
overwhelm simulation-estimation error, placing sim-
ulation users at risk of making critical and expen-
sive decisions with unfounded confidence in (what
appear to be) highly precise simulation assessments
or optimizations.

1.1. An Illustration
The steady-state expected number of customers in an
M/M/� queue (Poisson arrival process with rate �,
exponentially distributed service times with mean � ,
and an infinite number of servers) is �4�1�5 = �� .
To understand how input uncertainty affects simula-
tion, suppose we do not know this result, nor do we
know � or � , but we want to estimate the mean num-
ber of customers in the system in steady state via sim-
ulation. Consider the following stylized experiment.

1. Start by observing m real-world customer inter-
arrival times A11A21 0 0 0 1Am and estimate � by
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�̂= 1/Ā, where a ¯ indicates the sample aver-
age. Similarly, observe m real-world service times
X11X21 0 0 0 1Xm and estimate � by �̂ = X̄. In this illus-
tration and throughout the paper we assume para-
metric input models but with unknown parameters,
as is typical in input modeling. In this case the distri-
butions (exponential) are correct, but the parameters
are estimated.

2. Conditional on �̂ and �̂ , simulate n independent
replications of the queue, and on each one take a sin-
gle observation of the number of customers in the sys-
tem in steady state Y11Y21 0 0 0 1Yn. This is a simplified
version of what actually happens in simulation where
we record the number in the system for some period
of time and average, not just take a single observation.

3. Finally, estimate the steady-state expected
number in the queue �4�1�5 by the sample mean Ȳ .

For this example the properties of Ȳ can be derived:

E6Ȳ 7=
m

m− 1
��1 (1)

Var6Ȳ 7≈
��

n
+

24��52

m
0 (2)

These results integrate over both input and simulation
uncertainties. The impact of input uncertainty shows
up in two ways: First, the estimator Ȳ is biased, as
shown in (1). The bias is a function of m, the amount
of real-world data used to estimate the input models.
The variance of the estimator displayed in (2) contains
two terms. The first term represents the simulation-
estimation error; it decreases as the number of replica-
tions n increases. This is the only term that is captured
by simulation-based confidence intervals (CIs), and
it can be driven to 0 by increasing the number of
replications. In fact, in many practical problems it
is both feasible and reasonable to make simulation-
estimation error negligible. The second term repre-
sents the input-uncertainty error. Notice that it may
entirely dominate the first term depending upon the
amount of real-world data m and it is immune to
more simulation effort.

This is a stylized example, but the situation is
actually much worse in practical problems. A realis-
tic simulation may have tens of input models, some
estimated from huge stockpiles of data and others
from very little. The simulation output is often a
highly nonlinear function of these inputs, so assess-
ing input-uncertainty error with anything like the
previous mathematical analysis is impossible. Most
critically, project success, corporate profitability, and
even human lives may depend on decisions that
are informed by overly confident characterizations of
uncertainty.

1.2. Quantifying Input Uncertainty
The contributions of this paper are to develop a
framework to construct confidence intervals for the
mean simulation response that account for input
uncertainty in parametric input models, and to pro-
vide a specific implementation that makes the frame-
work efficient and effective. Our approach is to
propagate input uncertainty from the input models
to the simulation output using bootstrap resampling
of the real-world data and a metamodel that approx-
imates the mean simulation response as a function of
the input models. As described in §2, this approach
overcomes shortcomings of other methods that have
been proposed. The choice of metamodel form in con-
junction with an experiment design strategy tailored
to this application are also contributions. The result is
a framework for quantifying input uncertainty that is
rigorously justified, but also practically useful.

In this paper we only consider the case of paramet-
ric input models that describe independent and iden-
tically distributed (i.i.d.) inputs and input models that
are mutually independent. We assume we know the
correct distribution families, but not their parameters,
and that we have real-world data from which to esti-
mate the parameters. This is a step toward solving
the problem in which the families of distributions
themselves are also unknown. It is a very important
step, however, because the existence of a “true, cor-
rect” distribution for real processes is always fiction;
any distribution is an approximation, and to account
for other possible parameters that could have been
chosen for the approximation is significant.

The next section describes other approaches to the
input-uncertainty problem; this is followed by a for-
mal description of the problem and development of
the metamodel-assisted bootstrapping concept in §3.
Implementation is considered in §4. We report results
from an empirical evaluation in §5, and conclude the
paper in §6.

2. Background
Simulation input-uncertainty has been addressed in
the literature in essentially two ways: The first is
to perform statistical output characterization condi-
tional on the correctness of the input probability mod-
els and separately perform sensitivity, uncertainty, or
robustness analysis of simulation output to changes
in simulation-input distributions. Descriptions of this
approach can be found in Kleijnen (1987, 1994) and
Law and Kelton (2000). As noted by Schmeiser in his
discussion in Barton et al. (2002), this method has
broad applicability, and can handle qualitative uncer-
tainty in model form as well as situations where no
calibrating real-world data exist. This separate analy-
sis approach has a significant drawback: it provides
no statistical characterization of input uncertainty.
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The second approach is to combine explicit char-
acterization of the impact of input uncertainty with
the measurement of output variability to provide con-
fidence intervals for output parameter values. There
have been three primary streams of research in this
vein.

One stream of research has developed methods for
a priori known families of parametric input distri-
butions, using maximum likelihood estimator prop-
erties of the parameter estimates and Taylor series
approximations of the expected simulation response,
and assuming that the correct parametric families
of the input distributions are known. Cheng (1994)
and Cheng and Holland (1997) used a delta-method
approximation to achieve this, which requires an
additional number of simulation runs that is linear in
the number of input model parameters. Cheng and
Holland (1998, 2004) suggested an alternative method
that requires only two runs, but yields more conser-
vative confidence intervals. In many cases, the lin-
ear approximation of the impact of input on output
that these methods require cannot be supported. Our
approach, metamodel-assisted bootstrapping, directly
accounts for nonlinearity.

A second stream of research is based on Bayesian
methods. The distribution of the expected value of the
simulation output is characterized by running simu-
lations at each of many repeated samplings from a
posterior distribution for the parametric input model
parameters. The posterior distributions are deter-
mined by applying Bayes’ rule to a prior distribution
and observations of real-world data. This Bayesian
model averaging (BMA) strategy has been described
and refined by Chick (1997, 1999, 2000, 2001), Chick
and Ng (2002), Ng and Chick (2001), Zouaoui and
Wilson (2001a), and Zouaoui and Wilson (2001b,
2003). These methods require normality and homo-
geneity assumptions on the impact of input uncer-
tainty that may not be tenable. Zouaoui and Wilson
(2004) used a different BMA approach to capture both
parameter uncertainty and uncertainty across an a
priori determined set of possible parametric families.
The assumption of homogeneous variance induced
by input variability remains, and the t-type confi-
dence interval they describe also depends on approx-
imate normality because of input uncertainty. Biller
and Corlu (2011) extended the Bayesian framework to
handle a large number of correlated inputs.

A third stream of research takes a frequentist
approach, characterizing the impact of input uncer-
tainty on the simulation output using direct sam-
pling and bootstrap resampling methods. This work
includes the papers on nonparametric bootstrap
approaches by Barton and Schruben (1993, 2001) and
Barton (2007), and a parametric bootstrap approach

by Cheng and Holland (1997). These percentile inter-
vals do not require normality or homogeneity because
of input uncertainty. Unfortunately, because the boot-
strap statistic is the output of a stochastic simulation,
it is not a smooth function of the input data; this
violates a requirement for asymptotic consistency of
a bootstrap confidence interval, which is one of the
central issues that metamodel-assisted bootstrapping
addresses.

Further, the sampling methods in this third stream
and the percentile method in Zouaoui and Wilson
(2004) suffer from a failure to distinguish the behavior
of output variability and input variability. Schmeiser
in his discussion in Barton et al. (2002, p. 363) noted
“Any reasonable version [of a method capturing both
input-uncertainty error and simulation-estimation
error] needs to reflect the fundamental difference that
sampling error decreases with additional simulation
sampling while additional sampling has no impact
on modeling error.” This means that confidence inter-
vals based on resampling strategies will have cover-
age that exceeds the nominal value if the simulation
effort for each resample is relatively low. Barton iden-
tified this error for nonparametric bootstrap methods
in Barton et al. (2002) and proposed simulation effort
guidelines in Barton (2007).

There has been related work on allocation-of-effort
strategies to minimize the joint impact of input
uncertainty and simulation-output uncertainty. Lee
and Glynn (2003) developed a framework to esti-
mate the distribution of the conditional expecta-
tion of a simulation-output statistic in the presence
of model and parameter uncertainty, and presented
methods to minimize the mean squared error of
an estimator of the expected value. Steckley and
Henderson (2003) further developed the framework
and described a kernel approach for estimating the
density of the conditional expectation depending on a
single unknown parameter. Ng and Chick (2001) used
the delta method in a Bayesian framework to sequen-
tially choose which real-world data to augment with
additional samples to reduce the variance of the simu-
lation output. Freimer and Schruben (2002) described
two approaches to determine whether additional real-
world data should be collected, given a fixed level
of simulation effort. In the first approach, upper and
lower confidence limits on model parameters are used
as parameter values in a factorial set of simulation
experiments. If the parameter effects are statistically
significant, then more real-world data must be col-
lected. In the second approach, the real-world data
are bootstrap resampled to generate random values of
the parameters, and a random-effects model is used
to test for significance of the parameter uncertainty.

Henderson (2003) gives a detailed review and cri-
tique of these approaches. He found no clearly supe-
rior method, and suggested the need for a method
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that is transparent, statistically valid, implementable,
and efficient. In this paper we describe a metamodel-
assisted bootstrapping method and show its use with
parametric input models. This approach addresses
many of the shortcomings in the prior work: The
use of a general-form metamodel can provide a
higher fidelity approximation than a first-order Taylor
approximation and makes the bootstrap statistic a
smooth function of the input data. Further, the use of
a metamodel reduces the impact of intrinsic simula-
tion error on the accuracy of the confidence intervals
that we construct.

In Barton et al. (2010) we conducted an empiri-
cal study comparing metamodel-assisted bootstrap-
ping against the alternatives using two test cases
with special structure. The results provided com-
pelling evidence that metamodel-assisted bootstrap-
ping is both effective and superior to competitors,
motivating its extension in this paper to more general
input-uncertainty problems.

The two test cases in Barton et al. (2010)
were M/M/� and M/M/1/q queues. We compared
metamodel-assisted bootstrapping to the standard
conditional confidence interval (i.e., ignoring input
uncertainty), direct bootstrapping, Bayesian boot-
strapping, and a fully Bayesian analysis using non-
informative priors; detailed algorithms are given in
Barton et al. (2010). Factors we varied included the
quantity of real-world data, simulation budget, and
number of bootstrap/posterior resamples.

Not surprisingly, the coverage of the conditional
CIs was far below nominal level and decreased with
greater simulation budget. As has been noted in the
literature, the direct bootstrap, Bayesian bootstrap,
and Bayesian methods could have substantial over-
coverage (for instance, we observed 100% coverage
in 1,000 trials when the nominal level was 95%).
Although overcoverage is certainly better than under-
coverage, overcoverage is not harmless as it misleads
the analyst into thinking that there is more uncer-
tainty than there really is.

Metamodel-assisted bootstrapping was robust, pro-
viding coverage right at the nominal level across
all experimental settings. However, it is important
to note that because all of the input distributions
in these examples were exponential and thus had a
single parameter (the mean), metamodeling is rela-
tively straightforward. The open questions remain-
ing from Barton et al. (2010) are what form should
the metamodel take, and what is an effective exper-
iment design to fit the metamodel, for general
multiparameter distributions? Answers to these ques-
tions, along with a proof of validity of the bootstrap
approach, are the subject of the remainder of the
paper. We will not include the competitors in this
paper because they were already shown to be inferior
in Barton et al. (2010).

3. A Framework for Confidence
Intervals

To account for input uncertainty, we introduce the
following representation of a computer simulation.

A simulation is a function g2 �→ Y , where � is an
elementary outcome from a probability space 4ì1P5;
to be concrete, one might think of � as a realiza-
tion of an infinite sequence of i.i.d. uniform (011)
random numbers (although only a finite subset will
be used in the simulation). The mapping g is also a
functional of L input distributions, say 8F11 F21 0 0 0 1 FL9.
Thus, g4�5 = g4� � F11 F21 0 0 0 1 FL5. In this paper we
assume that the different input processes are inde-
pendent. We represent the simulation in this way
to indicate that different choices are possible for the
driving input processes, and we distinguish L dis-
tributions because the typical simulation is driven
by i.i.d. samples from one or more distinct distribu-
tions and “input modeling” involves characterizing
each of these distributions separately. For instance,
in a queueing simulation, F1 might be the distribu-
tion of the interarrival times of a stationary arrival
process, and F2 could be the distribution of service
times. In this paper, we only consider parametric
input models. The parameters of the lth input distri-
bution are denoted by xl, a pl ×1 vector. The collection
of all of the distribution parameters is denoted x> =

4x>
1 1x>

2 1 0 0 0 1x>
L 5, facilitating the equivalent but more

concise representation Y = g4� � x5. We discuss our
choice of parameterization next.

In addition, the simulation output often depends
on other parameters describing the structure of the
model or the experiment, such as the number of
servers, the “feeds and speeds” of the equipment, or
the simulation stopping time, but this dependence is
omitted from the notation and not a part of our frame-
work. We assume that the objective is to characterize
system behavior given a fixed set of these controllable
parameters.

Our interest is in the mean response

�4x5=

∫

g4� � x5 dP1

and in particular, the mean response at the true, cor-
rect parameters xc, which are not known and must be
estimated from real-world data. Assuming the exis-
tence of xc, our goal in this paper is to obtain random
bounds CL and CU such that

Pr8�4xc5 ∈ 6CL1CU 79≥ 1 −�0 (3)

The approach we take exploits a metamodel that pre-
dicts the mean response �4x5 as a function of the
parameters x. Because we will use a spatial correla-
tion metamodel, we need to define “space” so that
input distributions that are “close” to each other lead
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to similar simulation output. A natural way to mea-
sure the distance between two parametric distribu-
tions is as a function of the difference between their
parameters. For instance, a gamma4�1 �5 distribu-
tion has a shape parameter � and scale parameter �,
so the distance between two gamma distributions
could be of the form �14�i −�j5

2 + �24�i −�j5
2, where

4�11 �25 reflect the importance of differences in each
dimension. Clearly when this distance is small, the
gamma distributions will yield probabilistically sim-
ilar inputs. Nevertheless, there are a number of rea-
sons why we do not measure the distance between
input distributions as a function of the natural model
parameters.

To build metamodels we will run simulation exper-
iments that cover the relevant parameter space. But
even two-parameter distributions are not always
parameterized by “shape” and “scale.” Therefore,
if we use the natural parameters then distance
between two, say, time-to-failure distributions might
be measured differently than between two service-
time distributions. More importantly, to fit a meta-
model we need to define a relevant space to cover.
The feasible parameter space for most parametric dis-
tributions is enormous (e.g., � > 0 for the gamma)
and would require far too many experiments to cover
completely. So instead we want an experiment design
strategy that adapts to the real-world data we have,
and the possible bootstrap resamples it could gener-
ate. The natural parameters of many distributions are
complex nonlinear functions of the data, making it
difficult or costly to deduce the relevant range.

In this paper, we measure the distance between dis-
tributions as a function of the distance between the
first few moments (or standardized moments) of the
distribution. We assume that a pl-parameter distri-
bution is uniquely specified by its first pl moments,
which is true for the distributions that are most often
used in stochastic simulation. We are exploiting the
fact that when the parametric family of distributions
is known and fixed then the values of its moments
completely specify it, and when the moments are
close, then the distributions will be similar. Thus, the
independent variable x is the concatenation of the first
pl moments of all input distributions l = 1121 0 0 0 1L.
The dimension of x is d =

∑L
l=1 pl.

The output from a single simulation replication can
be written as Y 4x1�5 = �4x5 + �4x1�5, where �4x5 =
∫

g4� � x5 dP and �4x1�5 = g4� � x5 − �4x5. From here
on we drop the dependence of these random variables
on � for notational convenience, giving the random
output

Y 4x5=�4x5+ �4x50 (4)
When independent replications are obtained (from
independent realizations �j of �) we append a sub-
script j to indicate the jth replication as in Yj4x5 =

�4x5+ �j4x5.

For many simulation settings the output is an aver-
age of a large number of more basic outputs, so
a version of the central limit theorem implies that
the distribution of �4x5 (and consequently Y 4x5) is
approximately Gaussian. Simulation outputs in this
category include continuous-time-average statistics
such as utilization and discrete-time-average statistics
such as average waiting time. If xc were known then
the desired CI could be obtained from classical statis-
tics using simulated outputs 8Yj4xc51 j = 1121 0 0 0 1n9
from a set of n replicated simulation runs.

Of course, xc is typically unknown and must be
estimated using finite real-world samples, and the
number of observations from each of the L input
distributions might differ. Let ml be the number of
i.i.d. observations from lth input distribution, and let
the observed values be Zl1ml

= 8Zl111Zl121 0 0 0 1Zl1ml
9.

Let Zm = 8Zl1ml
1 l = 1121 0 0 0 1L9 be the collection of

observations from all L input distributions, where
m = 4m11m21 0 0 0 1mL5. The pl × 1 vector of moment
estimators for the lth process is a function of this data,
X̂l1ml

= X̂l4Zl1ml
5. Combining moment estimators from

all processes, we obtain a d × 1 moment vector X̂>
m =

4X̂>
11m1

1 0 0 0 1 X̂>
L1mL

5.
Simulation-output analysis is usually based on a

particular realization of Zm, say z405
m , giving a corre-

sponding moment (parameter) estimate x̂405
m . Standard

simulation-output analysis constructs a confidence
interval that is conditioned on x̂405

m ; that is, it forms
random bounds CL and CU such that

Pr8�4x̂405
m 5 ∈ 6CL1CU 7 � X̂405

m = x̂405
m 9≥ 1 −�0 (5)

The probability in the conditional CI is with respect
to �; the randomness in x̂405

m is ignored. Thus, the
bounds provide a probability guarantee of covering
�4x̂405

m 5 rather than �4xc5. As has been shown in many
papers, this can lead to coverage probabilities for
�4xc5 that are far from 1 − �. Our goal is to obtain
asymptotically correct confidence intervals for �4xc5
as the amount of real-world data increases, under the
assumptions that the real-world input distributions
are stable and the model logic is correct. Clearly the
real-world distributions must be unchanging for the
probability statement (3) to make sense.

Our focus on a CI for �4xc5 avoids the problem
of correcting for the bias of �4x̂405

m 5 as an estimator
of �4xc5, as illustrated in §1.1; instead we bound the
value of �4xc5 with high probability and let this inter-
val account for the bias.

How can we obtain a CI like (3) rather than one
like (5)? Suppose, as a thought experiment, that we
could obtain i.i.d. observations of size m of the real-
world process, Z405

m 1Z415
m 1Z425

m 1 0 0 0 , and let X̂4i5
m denote

the corresponding moment estimator obtained from
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the ith set. This makes it easy to see that the dis-
tribution of the simulation-output Y 4X̂4i5

m 5 has two
sources of randomness: the simulation output vari-
ability conditional on X̂4i5

m , and the randomness from
the input variability of Z4i5

m used in constructing X̂4i5
m .

Specifically,

Y 4X̂4i5
m 5 = �4X̂4i5

m 5+ �4X̂4i5
m 5

= �4xc5+ 6�4X̂4i5
m 5−�4xc57+ 6Y 4X̂4i5

m 5−�4X̂4i5
m 57

= �4xc5+D+V 0 (6)

Now suppose that the function �4 · 5 were known,
as well as the distribution of D, denoted FD. Then
if we observed only one real-world sample Z405

m , the
random interval CU = �4X̂405

m 5 − F −1
D 4�/25 and CL =

�4X̂405
m 5− F −1

D 41 −�/25 achieves objective (3) because

Pr8CL ≤�4xc5≤CU 9

= Pr8F −1
D 4�/25≤�4X̂405

m 5−�4xc5≤ F −1
D 41 −�/259

= 1 −�1

because �4X̂405
m 5−�4xc5 has distribution FD. Of course,

neither �4 · 5 nor FD are known, but this insight
suggests a path to a CI:

• Use simulation experiments to build a meta-
model �̂4 · 5 to stand in for �4 · 5.

• Let bootstrap resampling stand in for repeated
observations of the real-world data. More specifically,
for the lth input process, l = 1121 0 0 0 1L, draw ml ran-
dom samples with replacement from Z405

l1ml
; repeat this

procedure B times to obtain B bootstrap samples and
corresponding moment estimators X̂4b5

m , b = 1121 0 0 0 1B.
Approximate the distribution FD of �4X̂4i5

m 5−�4xc5 by
the empirical distribution of �̂4X̂4b5

m 5− �̂4X405
m 5.

Building a metamodel for the mean simulation
response as a function of the input moments is key to
our framework, and building an accurate one is essen-
tial to making it work. By running a designed exper-
iment in the input moment space we leverage more
information about the response surface �4 · 5, and the
impact of distribution choice on output performance,
than we would have from a single simulation at x̂405

m .
Fitting a metamodel allows us to spend the simulation
budget carefully across a relatively small number of
well-chosen design points providing precise estimates
not only at those design points, but throughout the
mean response surface. As we show empirically, this
effectively eliminates the impact of V . Using a meta-
model �̂4 · 5 also provides the continuity conditions
that support the asymptotic validity of bootstrapping,
which is that the bootstrap statistic be a smooth func-
tion of the input data. Of course, the challenges are
designing the experiment in input-model space, in the
choice of metamodel, and in proving that it works.
These are the primary contributions of this paper.

An alternative to creating a metamodel is running
separate simulation experiments at each of the boot-
strap input moments X̂4b5

m 1 b = 1121 0 0 0 1B. Because, for
accuracy of the bootstrap CI, B is recommended to
be at least 1,000, this spreads the simulation budget
across a relatively large number of bootstrap exper-
iments, leading to imprecise estimates of the mean
response at those points. Metamodeling leverages all
of the data from a designed experiment to provide
better predictions of the response at each bootstrap
point.

4. Metamodel-Assisted Bootstrapping
Next we give an overview of our approach, hinting at
the particular (and important) implementation details
we describe in the sections that follow. Within this
framework other implementation choices are possi-
ble, although we will make arguments in favor of our
selections.

1. Input: A set of real-world data z405
m .

2. Construct metamodel �̂4x5: Select an experiment
design, run simulations at the design points, and fit a
metamodel �̂4x5 as an approximation to the true mean
response �4x5 as a function of the input moments x.
This requires two choices:

a. Metamodel form. We choose stochastic kriging,
which is reviewed in §4.1, because it does not
require strong assumptions about the response sur-
face �4x5, and it is specifically intended to account
for output variability in stochastic simulation.
b. Experiment design. The design points xi, i =

1121 0 0 0 1 k fill the space of most likely bootstrap
resample moments. To locate this region, we gener-
ate a preliminary bootstrap resample from the real-
world data z405

m whose sole purpose is to map the
relevant design space (see §4.2).
3. Construct confidence interval: Generate indepen-

dent bootstrap resamples Z4b5
m ∼ z405

m and correspond-
ing sample moments X̂4b5

m , b = 1121 0 0 0 1B, and let the
confidence interval be the �/2 and 1 − �/2 sample
quantiles of

8�̂4X̂415
m 51 �̂4X̂425

m 51 0 0 0 1 �̂4X̂4B5
m 590

That is, we use a bootstrap percentile interval. The
validity of the approach is discussed in §4.3.

4.1. Stochastic Kriging
At the heart of our approach is a metamodel that
predicts the mean simulation response as a function
of the moments of the input models that drive the
simulation. Consider the examples used in Barton
et al. (2010): Because the input models are a Poisson
arrival process and exponentially distributed service
times, the arrival rate � and the mean service time �
provide complete characterizations. For the M/M/�
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queue the steady-state expected number in queue is
�4�1�5= �� , and for the M/M/1/q queue it is

�4�1�5=
��

1 −��
−

4q + 154��5q+1

1 − 4��5q+1
0

Notice that even restricting ourselves to Markovian
queueing models, these two response functions are
quite different. To be general, we need a metamod-
eling framework that neither makes strong assump-
tions about the response surface (such as being
low-order polynomial), nor is tied to particular
input distributions (such as exponential). Our pro-
posal is to use stochastic kriging for the metamodel,
and input-distribution moments as the independent
variables.

Kriging is an interpolation-based method that has
been widely used for the design and analysis of deter-
ministic computer experiments (Santner et al. 2003).
Differing from computer experiments with determin-
istic response, the outputs from stochastic simulation
include intrinsic output variability, and this variabil-
ity often changes significantly across the design space.
We use the term “intrinsic” uncertainty or variability
to refer to the variability inherent in the sampling that
generates stochastic simulation output, as opposed to
“extrinsic” uncertainty (introduced later) that refers
to our lack of knowledge about the mean response
surface. To meet the requirements of stochastic sim-
ulation, stochastic kriging (SK) was introduced by
Ankenman et al. (2010). Whereas kriging metamodels
assume that there is no error at the design points, SK
appropriately weights the contributions of the design
points depending on their precision. In this section
we provide enough background on SK to see why we
chose it and how we use it.

In SK, Ankenman et al. (2010) represent the
simulation output on replication j at design point x as

Yj4x5= f4x5TÂ+W4x5+ �j4x50 (7)

The independent variable x = 4x11x21 0 0 0 1 xd5 is inter-
preted as a location in space and the variation
in the simulation response is divided into three
uncorrelated parts: a trend model f4x5TÂ, extrin-
sic (response-surface) uncertainty W4x5, and intrinsic
(simulation-output) uncertainty �j4x5.

When we have no process physics to justify a
parametric trend model—which is the situation we
assume—best practice in kriging and stochastic krig-
ing is to use only a constant trend f4x5TÂ= �0. Includ-
ing a trend model, if appropriate, would not change
our approach.

Uncertainty about the response surface is modeled
by a mean 0, second-order stationary Gaussian ran-
dom field W , which accounts for the spatial depen-
dence. Loosely, a Gaussian random field is a function

from <d to < such that any finite collection of
W4x151W4x251 0 0 0 1W4xk5 has a multivariate normal
distribution.

A parametric form for the spatial covariance of
W4x5 is typically assumed:

è4x1x′5= Cov6W4x51W4x′57= �2r4x − x′
� È51

where r is a correlation function that depends on
some unknown parameters È and �2 is the variance.
Stationarity implies that the response-surface correla-
tion depends only on x−x′ and not the actual location
of the design points.

Based on the assumed smoothness of the response,
different correlation functions can be chosen. The
product-form Gaussian correlation function is the
most commonly used in practice, as well as the one
we use in this paper:

r4x − x′
� È5= exp

{ d
∑

j=1

�j4xj − x′

j5
2

}

0 (8)

To generate a global predictor, we choose k design
points x11x21 0 0 0 1xk, and then run ni replications at the
ith point. The sample mean of the simulation outputs
at xi is Ȳ 4xi5=

∑ni
j=1 Yj4xi5/ni, and the vector of sample

means at all design points is denoted by Ȳ = 4Ȳ 4x15,
Ȳ 4x251 0 0 0 1 Ȳ 4xk55

T . The variances of the simulation-
output uncertainty � at different x’s are typically not
equal. Let �24x5 = Var6�4x57. Because the outputs at
different x’s are independent,1 the diagonal matrix C
of intrinsic output variances can be written as

C =











�24x15/n1

0 0 0

�24xk5/nk











0

Let è represent the k × k covariance matrix of
è4xi1xj5 across all design points x11x21 0 0 0 1xk, and
let è4x1 ·5 be the k × 1 covariance vector between
prediction point x and all design points. Then the
minimum mean squared error (MSE) linear predictor
(Ankenman et al. 2010) is

�̂4x5= �0 +è4x1 ·5>6è+ C7−14Ȳ −�0 · 1k×150 (9)

Notice that the prediction at x is the weighted average
of the observations, with the design points closer to
the prediction point and with smaller output variance
having larger weight.

Because the constant �0 and spatial correlation
parameters �2 and È are unknown, maximum likeli-
hood estimates are typically used for prediction. SK

1 Chen et al. (2012) showed that the use of common random num-
bers inflates the mean squared error of prediction for stochastic
kriging, so we use independent simulations.
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employs an estimate of C using sample variances
S24xi5. To facilitate experiment design, SK also fits a
variance model �24x5 = �2 + V 4x5, where V 4x5 is an
independent Gaussian random field. See Ankenman
et al. (2010) for details.

4.2. Experiment Design
In this section, we describe an experiment design
strategy for fitting a stochastic kriging metamodel
�̂4 · 5 so that it can accurately estimate the mean
simulation response at bootstrap resample moments.

The process of bootstrapping involves three steps:
(i) resampling with replacement from the original
sample data, (ii) computing the statistic under study
from the bth set of bootstrap resampled data, and
(iii) characterizing the empirical distribution of the
B values of the bootstrapped statistic to yield con-
fidence intervals. In our case the resampled data
are themselves moments, and the computed statis-
tic is the simulation output. The design space for
fitting the metamodel is well defined by consider-
ing where the values computed under step (i) fall,
and so these bootstrap resample moments themselves
could be used for the experiment design. Unfortu-
nately, this approach has two drawbacks. First, if the
number of bootstrap resamples (B) is not very large,
then the randomness of the selection process will not
likely result in uniform coverage of the design space.
On the other hand, if B is very large, then running the
simulation an extremely large number of times will
be computationally intractable. One might imagine
selecting a small subset of a large number of candi-
date bootstrap resamples to maximize some unifor-
mity property, such as a maxi–min design, but this
strategy is also computationally intractable when B is
large. This has been a motivating factor for compu-
tationally efficient design construction strategies such
as Latin hypercubes and other orthogonal arrays, and
uniform designs. Our strategy is to modify one of
these efficient design generation schemes to generate
points falling in some regular region where bootstrap
resample moments can be expected to fall.

The most common regular region used to define a
design space is a hyperbox. For ease of exposition, we
first suppose that there is a single input from which
we have a sample of real-world data z

405
1 1 z

405
2 1 0 0 0 1 z

405
m

and a two-parameter input distribution (such as the
gamma, lognormal, or Weibull). A bootstrap resam-
ple is a sample of size m with replacement from
z
405
1 1 z

405
2 1 0 0 0 1 z

405
m . Let Z

4b5
1 1Z

4b5
2 1 0 0 0 1Z

4b5
m denote the bth

bootstrap resample, with corresponding standardized
sample moments (mean and standard deviation) of

Z̄4b5
m =

1
m

m
∑

j=1

Z
4b5
j

S4b5
m =

√

1
m− 1

m
∑

j=1

4Z
4b5
j − Z̄4b5

m 520

The metamodel will be used to predict the mean
simulation response given any bootstrap resample
moments 4Z̄

4b5
m 1 S

4b5
m 5. Thus, we need the metamodel to

be accurate over the space of possible 4Z̄
4b5
m 1 S

4b5
m 5 pairs

that we could obtain from bootstrap resampling the
real-world data.

There is no way to specify a tight experiment
design—one that covers only the relevant moment
space—prior to obtaining the real-world data. There-
fore, we need to use the real-world data to guide
the experiment design. Given z

405
1 1 z

405
2 1 0 0 0 1 z

405
m , the

extreme moments can be computed: the minimum
and maximum sample means are min z

405
j and max z405j ,

respectively, and the minimum standard deviation is
0 and the maximum (if m is even) is

√

√

√ m

m− 1

(max z405j − min z
405
j

2

)2

0

However, the rectangle defined by these extremes is a
poor choice for the design space because the extremes
are very unlikely, or impossible in the case of the
maximum standard deviation paired with either the
minimum or maximum mean. Further, 4Z̄4b5

m 1 S
4b5
m 5 will

tend to be correlated so that the entire rectangle is
not equally relevant. These deficiencies become even
more severe when there are L > 1 input processes if
we let the experimental region be the hyperrectangle
defined by the extreme moments.

The tilted cloud shape common in scatter plots sug-
gests that an ellipse (or ellipsoid when d > 2) will
tend to provide a more suitable regular region than
a hyperbox. When B is not very large, the enclosing
ellipsoid combined with a transformed Latin hyper-
cube design that falls within the ellipsoid is easy to
compute and helps ensure uniform coverage. This
leads to the following algorithm.

Fit Ellipse.
1. Generate B0 bootstrap resamples from z405

m and
compute the corresponding sample moments X̂4b5

m 1
b = 1121 0 0 0 1B0.

2. Fit an ellipsoid to the sample moment data in
such a way that it contains a large fraction of the
pairs, say q. Specifically, find the smallest a2 such that

#8b2 4X̂4b5
m − M5>V−14X̂4b5

m − M5≤ a29/B0 ≥ q (10)

where

M =

B0
∑

b=1

X̂4b5
m /B0 and

V =

B0
∑

b=1

4X̂4b5
m − M5>4X̂4b5

m − M5/4B0 − 150
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3. Generate B1 independent bootstrap resamples
from z405

m and compute X̂4b5
m , b = B0 + 11B0 + 21 0 0 0 1

B0 +B1. If more than c of these B1 additional pairs are
contained in the ellipsoid (10), then accept this ellip-
soid as the design space. Otherwise, add these boot-
strap resamples to the data set, let B0 ← B0 + B1, and
go to step 2.

Here, B1 and c are chosen to obtain a desired type I
error and power for a hypothesis test based on the
binomial distribution that the probability a bootstrap
resample moment is contained in the ellipsoid is ≥ q.
In our experiments we set q = 0099, type I error to
00005, and power to 0095 when the true probability is
q = 0097 or less.

The output of this algorithm is an ellipsoid defined
by M1V, and a

8x ∈ <
d2 4x − M5>V−14x − M5≤ a290 (11)

To place k design points into this space, we employ
an algorithm due to Sun and Farooq (2002), §3.2.1, for
generating points uniformly distributed in the desired
ellipsoid. The algorithm first generates the polar coor-
dinates of a point uniformly distributed in a hyper-
sphere, then transforms it to Cartesian coordinates,
and finally transforms it again to a point uniformly
distributed in an ellipsoid. The advantage of this
approach is that each element of the initial polar coor-
dinates are independently distributed, allowing them
to be generated coordinate by coordinate via their
inverse cumulative distribution function. Therefore, if
we start with points 8uj1 j = 1121 0 0 0 1 k9 ∈ 60117d that
are space filling instead of random, then their space fill-
ing property will tend to be preserved in the ellipsoid.
We obtain 8uj1 j = 1121 0 0 0 1 k9 by generating many
Latin hypercube samples and picking the one that
maximizes the minimum distance between points.
The output is then an experiment design x11x21 0 0 0 1xk

with all the xi falling in the ellipsoid (11). Figure 1
illustrates how this works when there is L = 1 input
distribution with two parameters.

Note that no simulation experiments are required
to generate the experiment design. Of course the
bootstrap resamples that are generated to create the
ellipsoid could be evaluated directly via simulation
runs rather than fitting a metamodel at all. This strat-
egy is inferior to what we propose for three rea-
sons. First, the simulation response is stochastic: two
replications with the same input parameters produce
different results, so the bootstrap statistic is not a
smooth function of the data. Second, when the num-
ber of input parameters is not too large, the experi-
ment design that we generate to fit a metamodel will
require significantly fewer simulation runs (e.g., tens)
than would be needed for direct bootstrapping (e.g.,
thousands). Third, the intrinsic error effect on the cor-
rectness of bootstrap intervals as discussed in Barton

2.2 2.4 2.6 2.8 3.0 3.2

1.2

1.4

1.6

1.8

2.0

2.2

2.4

X

S

Figure 1 Experiment Design in Moment Space, Where the Horizontal
Axis Is the Mean and the Vertical Axis Is the Standard
Deviation

Note. A ∗ indicates a bootstrap resample, the dashed line is an ellipse that
covers 99% of the data, and a � indicates a design point.

(2007) is reduced significantly when it is propagated
through the fitted metamodel.

4.3. Metamodel-Assisted Bootstrap CI
In this section we present the metamodel-assisted
bootstrapping algorithm and provide some theoretical
support for its use.

Metamodel-Assisted Bootstrap
1. Given real-world data z405

m , obtain experiment
design xi1 i = 1121 0 0 0 1 k as described in §4.2.

2. For design points i = 1121 0 0 0 1 k, simulate i.i.d.
replications Yj4xi5 for j = 112 0 0 0 1ni, and compute the
sample average Ȳ 4xi5 and sample variance S24xi5 of
the simulation outputs.

3. Fit a stochastic kriging metamodel �̂4x5 using
4Ȳ 4xi51 S

24xi51xi5, i = 1121 0 0 0 1 k as described in §4.1
(see Equation (9)).

4. For b = 1 to B,
(a) generate bootstrap resample Z4b5

m ∼ z405
m and

compute sample moments X̂4b5
m ;

(b) set �̂b = �̂4X̂4b5
m 5.

Next b
5. Report bootstrap percentile confidence interval

6�̂4�B�/2�51 �̂4�B41−�/25�57, where �̂415 ≤ �̂425 ≤ · · · ≤ �̂4B5 are
the sorted values.

Consider the algorithm above with �4 · 5, the true
response function, replacing the simulation-based
estimator �̂4x5 everywhere in the algorithm. We
establish the asymptotic coverage of the bootstrap
percentile CI in this case, then discuss the necessity
for estimating �4 · 5 following the proof.
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Theorem 1. Suppose that the following conditions
hold:

1. The input distribution Fl is uniquely determined by
its first pl moments, and it has finite first 2pl moments, for
l = 1121 0 0 0 1L.

2. We have i.i.d. observations Z
405
l111Z

405
l121 0 0 0 1Z

405
l1ml

from
Fl, for l = 1121 0 0 0 1L. As m → � we have m/ml → 1,
l = 1121 0 0 0 1L, where m drives the number of observations
to � from all input sources.

3. The response surface �4x5 is finite and continuously
differentiable with nonzero gradient in a neighborhood
of xc.

4. If x′ is a moment vector such that �4x′5 does not exist,
then the definition of �4 · 5 is extended so that �4x′5 = �

or −�.2

Then the bootstrap CI is consistent, meaning

lim
m→�

lim
B→�

Pr8�4xc5∈ 6�4�B�/2�51�4�B41−�/25�579=1−�0 (12)

Proof. We show that the CI satisfies the conditions
of Theorem 4.1 of Shao and Tu (1995) for consistency
of a bootstrap CI.

The distribution of
√
m6�4X̂4b5

m 5−�4X̂405
m 57 is strongly

consistent for the distribution of
√
m6�4X̂405

m 5 − �4xc57
as m→ � by Theorem 3.1 of Shao and Tu (1995). The
distribution of

√
m6�4X̂405

m 5 − �4xc57 is asymptotically
normal with mean 0 as m→ � using standard delta-
method arguments. Together, these results establish
that the percentile interval 6�4�B�/2�51�4�B41−�/25�57 satis-
fies the conditions of Theorem 4.1 of Shao and Tu
(1995) and is therefore asymptotically consistent as
m1B → �; that is, (12) holds. �

The CI in Theorem 1 is 6�4�B�/2�51�4�B41−�/25�57, and
the CI from metamodel-assisted bootstrapping is
6�̂4�B�/2�51 �̂4�B41−�/25�57. Stated differently, the theorem
assumes that �̂4x5=�4x5 and there is no metamodel-
ing error. As a practical matter, what our proof estab-
lishes is that metamodel-assisted bootstrapping will
be effective when we have a (nearly) global meta-
model with a good fit. We chose stochastic kriging
because it explicitly accounts for simulation variabil-
ity through the intrinsic variance matrix C and can
provide a good fit without making strong assump-
tions about the form of the response surface, such as
being linear as assumed in a first-order Taylor series
approximation. Notice, also, that stochastic kriging
with the Gaussian correlation function (8) always sat-
isfies the smoothness property of condition 3. What
we have found to date (see the results in §5 and
in Barton et al. 2010) is that when the input uncer-
tainty is substantially more significant than the out-
put variability, then the metamodel-assisted bootstrap

2 The canonical example of this is an open queueing system where
the arrival rate is greater than the service rate. This extension
insures that bootstrap samples leading to infeasible moments imply
responses in an extreme tail.

CI attains the correct coverage. This shows that in
practice the metamodel need not be exact, but only
sufficiently good so that it can be treated as exact.
Unfortunately, the interaction between the amount of
real-world data available and the simulation effort
required to obtain a metamodel that is “sufficiently
good” is not simple: When m is very large, the meta-
model may only need to be accurate over a very small
region near the true values of the input-model param-
eters; thus, the entire experiment design is concen-
trated within a small ellipsoid. When m is small, the
variation in the likely parameter values could be sub-
stantial, leading to an ellipsoid that covers a large
space of possible parameter values and a complex
response surface. For these reasons we introduce an
empirical test for sufficiently good next.

For stochastic kriging, having an adequate num-
ber of design points k seems to be more important
than having a substantial number of replications per
design point ni. The standard recommendation from
the kriging literature of k ≥ 10d, where d is the dimen-
sion of the independent variable x, works well and
is what we recommend. In the absence of any prior
information about the variances of the simulation out-
puts at the design points (�24xi51 i = 1121 0 0 0 1 k), an
equal allocation of ni = n0 replications per design
point is sensible; we recommend n0 ≥ 10 simply
to insure a stable estimate of the intrinsic variance
matrix C = diag6�24x151�

24x251 0 0 0 1�
24xk57/n0.

Following these simple guidelines will frequently
be sufficient to achieve the desired CI coverage. How-
ever, it is possible that if the intrinsic variance is very
large then there might be undercoverage; therefore,
we provide the following easy-to-apply empirical test
and remedial action if the test fails.

Our CI is based on the metamodel �̂4 · 5 formed
from k design points with (say) n0 replications at each.
Let Ĉ be the estimate of C. Notice that, given a set
of parameters, Ĉ is the only term in the stochastic
kriging metamodel (9) that is affected by the number
of replications. If we increased the number of repli-
cations per design point to n0 + ãn, then we would
expect the new estimate of C to be approximately
Ĉ+ = 4n0/4n0 + ãn55Ĉ. As a test for whether the CI
in step 5 is sensitive to additional replications, we
add the following steps to the metamodel-assisted
bootstrap algorithm:

6. Form an adjusted metamodel �̂+4 · 5 by only
replacing Ĉ with Ĉ+ and leaving everything else the
same (no new simulation-output data are generated).

7. If

#8�̂+4X4b5
m 5 ∈ 6�̂4�B�/2�51 �̂4�B41−�/25�579

B
≈ 1 −�1 (13)

then accept the CI. Otherwise, actually increase the
number of replications per design point to n0 ← n0 +

ãn and go to step 3.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

16
5.

12
4.

16
6.

20
1]

 o
n 

08
 F

eb
ru

ar
y 

20
14

, a
t 1

9:
23

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Barton, Nelson, and Xie: Quantifying Input Uncertainty
84 INFORMS Journal on Computing 26(1), pp. 74–87, © 2014 INFORMS

In words, (13) tests whether the empirical coverage
of the bootstrap CI would change if we increased the
number of replications per design point. If not, then
the current CI is stable with respect to the simulation-
output variance. The algorithm is guaranteed to ter-
minate because C → 0 with probability 1 as n → �.
We illustrate the contribution of these additional steps
in the next section.

5. Empirical Evaluation
To evaluate metamodel-assisted bootstrapping, we
consider estimating the mean number of cus-
tomers in a GI/G/1/50 queue where the interarrival
times are gamma4�A1�A5 and the service times are
gamma4�S1�S5. The real-world parameters are �A = 2,
�A = 5/3, �S = 3, �S = 1, implying a traffic intensity of
0.9. Based on a very long simulation, the true mean
number of customers in the system in steady state is
40147. In the experiments we assume that the input
distribution families are known to be gamma, but the
parameters �A, �A, �S , �S are unknown. To imitate
obtaining real-world data, we generate samples from
the correct gamma distributions.

When we do metamodel-assisted bootstrapping,
the metamodel is a function of the means and stan-
dard deviations of both interarrival and service times;
that is, pA = pS = 2 and the metamodel is four-
dimensional. We systematically examined the impact
of the quantity of real-world data, the total simulation
budget, and allocation of the budget between design
points and replications by varying them as follows:
we chose real-world sample sizes m= 1015011001500
(both interarrival and service times have a common
sample size); two levels of total computational bud-
get nc = 600111200 replications; and number of design
points k = 20140160 (see Figure 2). At each design
point, the run length was 1,000 finished customers
with warm-up period of 300 customers. The number
of replications at all design points is nc/k, so we did
not take advantage of the ability of SK to differen-
tially allocate replications based on differences in out-
put variance.

We also report results for the conditional CI, which
means fitting the gamma distributions to the real-
world data and allocating all nc replications to sim-
ulating the resulting system. The competitors to
metamodel-assisted bootstrapping were evaluated in
Barton et al. (2010).

Table 1 displays the coverage, width, and stan-
dard deviation of the width of metamodel-assisted
bootstrapping CIs and conditional CIs based on
1,000 macroreplications of the entire experiment; each
macroreplication obtains an independent sample of
real-world data, and the nominal confidence level
is 95%. The small width of the conditional CIs sug-
gests that we have estimated the true mean very

20 40 60

600

1,200

k

n c

n = 60 n = 30 n = 20

n = 30 n = 15 n = 10

Figure 2 Experiments for GI/G/1/50 Queue

precisely. However, the coverage of the conditional
CI is far from the nominal 95% level, even when
the quantity of real-world data is a relatively large
m= 500 observations. The much wider CI obtained
with metamodel-assisted bootstrapping shows that,
even with 500 real-world samples, input uncertainty
dominates the simulation uncertainty. In other words,
the simulation has no practical value if we really want
to know what the long-run average number of cus-
tomers would be in the real world: the CI width is
three to 11 times as big as the mean value. With-
out some evaluation of input uncertainty the analyst
would have no clue how little they actually knew.

Notice that the coverage of the metamodel-assisted
bootstrapping CI is very close to the nominal value
when m is 50 or greater, and the width of the CI
decreases as roughly

√
m. The coverage is closer to

90% when we have only 10 real-world observations,
but this is a very small sample of data to estimate the
parameters of any distribution. In these experiments
the coverage of the metamodel-assisted CI is robust
to the experiment design; that is, it works well with a
smaller design each receiving many replications, or a
larger design with fewer replications per design point.

These results, as well as those in Barton et al. (2010),
demonstrated robust coverage provided that there is
at least a modest amount of real-world data; and
even when there is little real-world data (m = 10 in
our experiments) the coverage is much closer to the
nominal level than the conditional CI.

The amount of real-world data is often not under
our control, but the amount of simulation effort is.
Therefore, we created an example in which nc is ini-
tially too small to obtain the desired coverage to show
that our test (steps 6–7) can both detect the lack of
coverage and compensate for it. To do this, we cut
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Table 1 Coverage, Width, and Standard Deviation (Std. Dev.) of Width
of Metamodel-Assisted Bootstrapping and Conditional CIs

nc = 600 nc = 11200

k = 20 k = 40 k = 60 k = 20 k = 40 k = 60

m = 10
M-A bootstrap 8808 9009 8602 8900 9002 8303

coverage (%)
M-A bootstrap 48097 47090 44009 49039 48045 43064

width
Std. dev. bootstrap 16039 15043 18020 15082 15086 18038

width
Conditional CI 1 003

coverage (%)
Conditional CI 0027 0019

width
Std. dev. conditional 0020 0010

width
m = 50
M-A bootstrap 9406 9503 9500 9409 9600 9504

coverage (%)
M-A bootstrap 40040 39002 37085 40036 39021 38000

width
Std. dev. bootstrap 15000 13072 13067 14091 13087 13064

width
Conditional CI 2 2

coverage (%)
Conditional CI 0049 0032

width
Std. dev. conditional 0028 0013

width
m = 100
M-A bootstrap 9504 9407 9408 9605 9506 9505

coverage (%)
M-A bootstrap 33014 32012 31030 33022 32004 32009

width
Std. dev. bootstrap 14076 14054 14054 14092 14028 14020

width
Conditional CI 3 1

coverage (%)
Conditional CI 0045 0034

width
Std. dev. conditional 0024 0013

width
m = 500
M-A bootstrap 9601 9601 9308 9408 9506 9602

coverage (%)
M-A bootstrap 12027 11071 11046 12062 12029 11064

width
Std. dev. bootstrap 8049 8000 8039 8043 8032 8004

width
Conditional CI 6 4

coverage (%)
Conditional CI 0032 0023

width
Std. dev. conditional 0008 0003

width

the run length of each replication from 1,000 com-
pleted customers to 50 completed customers, applied
the rule of thumb of k = 10d = 40 design points, ini-
tially made n0 = 10 replications at each design point,
and used the increment ãn = 10 if the test in step 6

indicated that more replications were needed (esti-
mated coverage that deviated by no more than 00005
from 0095 was required to pass the test). We did this
for two levels of real-world data, m = 1001500. This
gave coverages after the initial n0 replications of only
00921 and 00924, respectively. When m = 100, imple-
mentation of steps 6 and 7 increased the coverage to
00953 with an average of 1409 replications per design
point at termination. When m= 500 the coverage was
00955 with an average of 1804 replications per design
point at termination. As before, coverage was esti-
mated using 1,000 macroreplications.

6. Conclusions
The empirical results in this paper, and those in
Barton et al. (2010), illustrate good performance for
metamodel-assisted bootstrapping when the simu-
lation budget is sufficient to give a short condi-
tional CI; in other words, when input uncertainty
dominates point-estimator variability. We also pro-
vided an empirical test to verify that this is the case.
Because simulation replications are typically cheap
relative to real-world data, metamodel-assisted boot-
strapping addresses the situation most frequently
encountered in practice. We do not recommend this
method when the simulation budget is so tight that
even the conditional CI is relatively wide.

Although our one-stage experiment design worked
well in the examples, there will be simulations
with more complex response surfaces for which a
sequential design will be needed to obtain an ade-
quate metamodel. Rather than evenly distributing the
simulation effort throughout the design space, we
should sequentially and adaptively add design points
and replications to balance the global and local fitting
uncertainties. Specifically, we need an accurate fit in
subareas of the moment space with responses close to
the quantiles that form the bootstrap CI. Sequential
design is a strength of stochastic kriging.

An advantage of metamodel-assisted bootstrap-
ping relative to direct bootstrapping is effective
use of the simulation budget: Metamodel-assisted
bootstrapping spends the simulation effort on a
designed experiment that covers the input space and
leverages information from all design points; this
makes bootstrapping not only fast but also robust
to simulation-estimation error. Direct bootstrapping
spreads the simulation budget across 1,000 or more
bootstrap resamples, giving noisy, isolated estimates
of the simulation response at each bootstrapped input
setting.

However, there will be limits to the number of
input models we can handle via a metamodel: 50
input models averaging two parameters each implies
a 100-dimensional input space. Adding a screening
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step that first determines the most influential input
models, and then accounting for only their input
uncertainty via the metamodel, is one way to extend
the methodology to such situations.

When will our method fail or not be appropri-
ate? Clearly, input distributions without enough finite
moments (e.g., Cauchy) are outside of the scope of
this approach. Also, continuity and differentiability
of �4 · 5 in a neighborhood of the true parameters xc

matter. Consider, for instance, a multiclass queueing
network where one input model is the distribution of
customer type. A response surface, such as the mean
time in the system, can have nondifferentiable points
when a small change in customer mix distribution
causes the bottleneck queue to shift. Of course, hav-
ing the true input parameters correspond exactly to
such a point is unlikely.

A further limitation of our approach is the use
of parametric input models. Of course, there is no
true, correct input model for any real-world pro-
cess, so even techniques that average over a num-
ber of possible model families suffer this problem
(although perhaps less so). Our proposal is to extend
the metamodel-assisted bootstrapping approach to
simulations driven by empirical distributions (that is,
the real-world data itself).
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