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When we use simulation to estimate the performance of a stochastic system, the simulation often contains input models that
were estimated from real-world data; therefore, there is both simulation and input uncertainty in the performance estimates.
In this paper, we provide a method to measure the overall uncertainty while simultaneously reducing the influence of
simulation estimation error due to output variability. To reach this goal, a Bayesian framework is introduced. We use
a Bayesian posterior for the input-model parameters, conditional on the real-world data, to quantify the input-parameter
uncertainty; we propagate this uncertainty to the output mean using a Gaussian process posterior distribution for the
simulation response as a function of the input-model parameters, conditional on a set of simulation experiments. We
summarize overall uncertainty via a credible interval for the mean. Our framework is fully Bayesian, makes more effective
use of the simulation budget than other Bayesian approaches in the stochastic simulation literature, and is supported with
both theoretical analysis and an empirical study. We also make clear how to interpret our credible interval and why it is
distinctly different from the confidence intervals for input uncertainty obtained in other papers.
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1. Introduction
Stochastic simulation is used to characterize the behav-
ior of complex, dynamic systems that are driven by ran-
dom input processes. The distributions of these input pro-
cesses are often estimated from real-world data. Thus, there
are at least two sources of uncertainty in simulation-based
estimates: input estimation error—due to only having a
finite sample of real-world data—and simulation estimation
error—due to only expending a finite amount of simula-
tion effort. Of course, the logic of the simulation model
itself may also be wrong, but that is not the focus of this
paper. See Chapter 5 in Nelson (2013) for a comprehensive
description of simulation errors.

There are already robust methods for quantifying the
simulation estimation error. A formal quantification of
input estimation error, however, is rarely obtained, and no
simulation software routinely does it. Since input estima-
tion error can overwhelm simulation error (Barton et al.
2014), ignoring it may lead to unfounded confidence in
the assessment of system performance, which could be the
basis for critical and expensive decisions. Thus, it is desir-
able to quantify the overall impact of simulation and input

uncertainty on system performance estimates. Although we
focus on the system mean response, our methods can be
extended to other performance estimates, such as variances
and probabilities.

In this paper we address problems with univariate, para-
metric input models that are mutually independent and with
input-model parameters estimated from a finite sample of
real-world data, denoted generically by zm, where m is a
vector whose elements are the number of real-world obser-
vations available for each input process. This implies that
the input models are uniquely specified by their parame-
ters, denoted generically by È. Let �4È5 be the true simula-
tion mean response given parameters È; that is, �4 · 5 is an
unknown function that maps parameters of the input dis-
tributions into the expected value of the simulation output. If
Èc denotes the unknown true parameters, then the goal of the
simulation is to estimate the true mean response �c ≡�4Èc5.
We want to quantify the overall estimation uncertainty about
�c while simultaneously reducing the uncertainty introduced
during the propagation from inputs to outputs.

There are various methods proposed in the litera-
ture to quantify the uncertainty due to estimating input-
model parameters, which we call input uncertainty; see
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Barton (2012) for a review. The methods can be divided
into frequentist and Bayesian approaches. The frequentist
approaches start with a point estimate of the input-model
parameters, È̂, which is a function of real-world data zm.
Since the real-world data are one of many possible random
samples, the uncertainty about È̂ is quantified by its sam-
pling distribution. The input-parameter uncertainty is then
propagated to the output mean through direct simulation or
a metamodel, either of which introduces additional uncer-
tainty. For any fixed È, let �̂4È5 be a point estimate of the
system mean response. One way to summarize the overall
estimation uncertainty for �c is to invert the sampling dis-
tribution of �̂4È̂5 and get a 41−�5100% confidence interval
(CI), denoted by [CL1CU ], such that

Pr8�c
∈ 6CL1CU 79= 1 −�0

What difficulties arise when we use the frequentist
approaches? First, it may not be possible to obtain the sam-
pling distribution of È̂. Thus, asymptotic results are often
invoked to approximate it; two of these are the normal
approximation and the bootstrap. Their validity requires
large samples of real-world data. However, “large” is rel-
ative and it depends on the input models and the values
of the parameters. Thus, the finite-sample performance of
these approximations could vary for different stochastic
systems. In addition, it is difficult for the frequentist meth-
ods to incorporate prior information about the input-model
parameters.

A Bayesian approach avoids some of these issues while
raising others. Bayesians represent the uncertainty in our
belief about Èc via a random vector ä.1 Before collect-
ing any real-world data, our belief is quantified by its prior
distribution �ä4È5. After observing the real-world data zm,
our belief is updated using the assumed parametric dis-
tribution family of the data and Bayes’ rule to yield a
posterior distribution denoted by pä4È � zm5. The poste-
rior of ä corresponds to the sampling distribution of È̂
in the frequentist approaches in that both of them charac-
terize the input-parameter uncertainty. However, Bayesians
have a fundamentally different perspective on quantifying
uncertainty, and answer different questions; correctly and
consistently capturing this perspective is one motivation for
our work.

The distribution �ä provides a convenient way to
account for prior information about the input-model param-
eters, if we have any. If not, a noninformative prior can be
used. There is no need to rely on a large-sample asymp-
totic approximation to the sampling distribution. When the
real-world sample size is small, then the variance of the
posterior distribution will be large. However, evaluation of
the posterior distribution can be difficult, so computational
approaches, such as Markov Chain Monte Carlo (MCMC),
may be needed.

In this paper we take a Bayesian approach to quantify the
uncertainty about �c. To that end, we let ä be a random

variable whose distribution represents our knowledge of Èc.
Similarly, we let M4 · 5 be a random function (also called a
random field) whose distribution represents our knowledge
of �4 · 5. The domain of M4 · 5 is the same as that of �4 · 5,
which is the natural space of feasible values for the input
parameters È for the input distributions in use. The distribu-
tion of M4 · 5 is characterized through the joint distribution
of any finite collection 8M4È151M4È251 0 0 0 1M4Èp59, which
will be Gaussian in our case. See Chapter 1 in Adler (2010)
for the existence of the distribution of a random field. To
reduce the uncertainty about ä and M4 · 5, we employ real-
world input data and simulation experiments, respectively,
along with Bayes’ rule. To represent the overall estimation
uncertainty for �c, we want to make statements about the
composite random variable U ≡M4ä5.

Bayesian quantification of the uncertainty about ä is
completely standard. Our interest is in uncertainty about U .
If the response function �4 · 5 were known, then the impact
of input uncertainty on the system mean response could be
characterized by an induced posterior distribution for U :

FU 4u � zm1�4 · 55≡ Pr8�4ä5¶ u � zm9

with ä ∼ pä4È � zm50 (1)

From this we could construct a 41 − �5100% credible
interval (CrI) for U , denoted by [QL1QU ], which con-
tains 1−� of the probability content: FU 4QU � zm1�4 · 55−
FU 4QL � zm1�4 · 55 = 1 − �. Since there is not a unique
CrI meeting this requirement, we use a two-sided, equal-
tail probability 41 − �5100% CrI for illustration in this
paper. Our approach can also be extended to other criteria,
e.g., the highest posterior density CrI. Notice that the CrI
depends not only on the data zm but also on the prior dis-
tribution �ä, which means different analysts with the same
data could have different, but completely valid, CrIs. Fur-
ther, the quality of the CrI is not based on “coverage” but
rather on whether it correctly reflects the remaining uncer-
tainty about U after accounting for available information
via Bayes’ rule.

In reality �4 · 5 is unknown, so we have to estimate the
mean response; this introduces additional uncertainty. For
this reason we refer to [QL1QU ] derived from (1) as the
“perfect fidelity” CrI that we could obtain without observ-
ing more real-world data because the input uncertainty is
propagated to the output mean using the true mean response
without introducing any additional error; it provides the
standard against which we compare our method and other
Bayesian approaches in the simulation literature.

There are two central contributions of the paper: First,
we provide a fully Bayesian framework to quantify uncer-
tainty about U along with a method to realize a CrI based
on it. Second, we show that our Bayesian framework makes
effective use of the computational budget as measured by
closeness of our CrI to the perfect fidelity CrI.

Our framework represents uncertainty about the input
parameters ä via a posterior distribution conditional on the
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real-world data and uncertainty about the mean simulation
response via a posterior distribution on M4 · 5 conditional
on a designed simulation experiment; together they provide
a posterior distribution and corresponding CrI for U .

The next section describes other Bayesian approaches
to input uncertainty. This is followed by a formal descrip-
tion of the problem of interest. In §4, we study a tractable
M/M/� queue to gain insights about the value of meta-
modeling, which is key to reducing simulation estima-
tion error. Based on these insights, we introduce a fully
Bayesian framework capturing both input and metamodel
uncertainty to provide a posterior distribution for U in §5.
We then propose a computational procedure to construct
the CrI for U . Results from an empirical study of a more
practical problem are reported in §6, and we conclude the
paper in §7.

2. Background
In the simulation literature various Bayesian approaches
for analyzing system performance have been proposed. To
facilitate the review, we represent the simulation output on
independent replication j when the input parameter is È by

Yj4È5=�4È5+ �j4È5

where �j4È5 is a mean-zero, finite-variance random variable
representing the output variability of the simulation.

Suppose that Èc is known so that we can generate
independent and identically distributed (i.i.d.) simulation
outputs 8Y14È

c51 Y24È
c51 0 0 0 1 Yn4È

c59. Andradóttir and Bier
(2000) consider a direct application of Bayes’ rule to obtain
a posterior distribution for E6Y 4Èc57 when the distribution
family of Y 4Èc5 is assumed known.

Of course, Èc is typically unknown but estimable from
real-world data. The Bayesian model average (BMA)
method proposed by Chick (2001) starts with priors on both
the input model families and the values of their param-
eters. Given real-world data zm, he constructs posterior
distributions, draws B random samples from these poste-
rior distributions, and runs a single simulation replication
using each sampled input model. These simulation out-
puts provide an empirical estimate of the posterior dis-
tribution of Y 4ä5 given zm; that is, the predictive distri-
bution of the simulation output given the observed input-
model data. This empirical distribution is used to form a
point estimate and CI for E6Y 4ä5 � zm7 = E6�4ä5 � zm7.
Notice that E6�4ä5 � zm7 depends on the posterior distri-
bution pä4È � zm5 and the particular real-world sample zm
and is not equal to �c in general. Stated differently, Chick
(2001) is interested in a point and interval estimate for the
expected simulation response, averaged over the uncertain
input parameters, rather than a CrI for the mean response at
the true parameters. Our focus on a posterior distribution
of U is a distinguishing feature of this paper.

The Bayesian simulation-replication algorithms of
Zouaoui and Wilson (2003, 2004) also focus on estimation

of E6�4ä5 � zm7 using direct simulation. Zouaoui and Wil-
son (2003) account for input-parameter uncertainty, similar
to this paper, whereas Zouaoui and Wilson (2004) account
for both parameter and input-model-family uncertainty, as
in Chick (2001). A key difference from Chick (2001) is
that Zouaoui and Wilson make multiple simulation repli-
cations at each posterior distribution sample of the input
models so as to separate the two sources of uncertainty:
the input uncertainty and the simulation estimation error.
Like Chick (2001), Zouaoui and Wilson (2003) provide CIs
for E6�4ä5 � zm7. When the simulation error is negligible,
which would occur if a large number of replications were
made at each posterior input-model sample, then their per-
centile CI for this parameter using a random effects model
could be interpreted as an approximation of the perfect
fidelity CrI for U . However, as we show later, their CI
when interpreted as a CrI is typically wider than necessary.

It is worth noting that in Zouaoui and Wilson (2003) the
authors also derive a hierarchical Bayesian framework that
could be used to estimate a Bayesian CrI for E6�4ä5 � zm7
(which, again, is not equal to �c in general). This frame-
work is built on a number of homogeneity assumptions,
including constant-variance normal distributions for Y and
�4ä5. We will provide a valid CrI for U without these
conditions.

Another Bayesian method for simulation output analysis
was proposed by Chick (1997). Here the goal is to char-
acterize the posterior distribution of the simulation output
as a function of the input model parameters rather than to
propagate uncertainty about those parameters to the pro-
cess mean. Suppose that the distribution of the response
Y depends only on its mean (and perhaps some nuisance
parameters), and a functional form of the relationship is
known, say �4È5= g4È3Â5; however, the coefficients Â are
unknown. Let B denote a random vector that characterizes
the uncertainty in our belief about Â. Starting with a prior
distribution for B and simulation outputs yD at a collection
of input-parameter settings È, denoted by D, Bayes’ rule
is used to obtain a posterior distribution pB4Â � yD5; then
for any fixed È, averaging over the metamodel parameter
uncertainty provides a predictive distribution for the simu-
lation response Y 4È5. Our approach also characterizes sim-
ulation uncertainty using a Bayesian metamodel but with
less assumed structure. Also, we combine our Bayesian
metamodel with a characterization of uncertainty about ä
to obtain a measure of uncertainty about U .

In the study of Ng and Chick (2006), the input-parameter
uncertainty is approximated by an asymptotic posterior nor-
mal distribution, and it is propagated to the output mean via
a first-order metamodel in the input parameters. However,
this asymptotic approximation is not appropriate when the
uncertainty about ä is large and �4 · 5 is highly nonlinear.

Work outside the stochastic simulation literature that is
closely related to ours appears in Oakley and O’Hagan
(2002) and Oakley (2004). They consider uncertainty quan-
tification in deterministic computer experiments when the
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values of some parameters are unknown or variable. The
uncertainty about these parameters is represented by ä ∼

Gä4È5 with Gä4 · 5 representing some known distribution
for the input distribution parameters. The function �4 · 5
itself is unknown and each evaluation is expensive. Their
goal is to estimate some property of the distribution of
�4ä5. The prior belief about �4 · 5 is characterized by a
stationary Gaussian process (GP), denoted by M4 · 5; see,
for instance, Sacks et al. (1989). Then given some simu-
lation outputs ÌD, which denotes the system responses at
design points D, Bayes’ rule is applied to obtain the pos-
terior distribution pM4· � ÌD5 for M4 · 5. This provides a
metamodel to propagate the parameter uncertainty to the
output response. Thus, there are two sources of uncertainty:
parameter and metamodel. Inferences about the impact
from these two sources are treated separately in Oakley
and O’Hagan (2002) and Oakley (2004). Specifically, they
first generate many sample paths from the GP posterior,
say, M 4i54 · 51 i = 1121 0 0 0 1 I . Then to quantify the impact of
parameter uncertainty, they compute the response statistic
of interest for each fixed GP sample path M 4i54 · 5 individ-
ually by plugging all of the samples from Gä into each
sample path. Differing from their problem, we character-
ize uncertainty about the input distribution parameters by
a Bayesian approach, our evaluation of �4È5 has simula-
tion noise, and we are interested in the combined effect of
input-parameter and metamodel uncertainty.

The Bayesian framework introduced in the present paper
carries both input and metamodel uncertainty to the output
mean estimator. In each case uncertainty is represented by a
posterior distribution: the input uncertainty by the posterior
pä4È � zm5, and the metamodel uncertainty by a GP pos-
terior pM4· � yD5. This combined approach implies a fully
Bayesian posterior for U , and based on it we can construct
a CrI. Further, the metamodel makes effective use of the
simulation budget, so that our CrI is closer to the perfect
fidelity CrI [QL1QU ] than an interval obtained by direct
simulation.

Our approach completes and extends the prior work.
Compared with the Bayesian metamodel approach (BMA)
in Chick (1997), we use Bayesian posteriors to characterize
both input and metamodel uncertainty without assuming a
parametric form of �4 · 5. Compared with BMA in Chick
(2001), our approach focuses on the posterior and a CrI
for U instead of a point estimate of E6�4ä5 � zm7. Again,
�c and E6�4ä5 � zm7 are not the same when there is a
finite amount of real-world data and the underlying sys-
tem mean response is a nonlinear function of the inputs.
Compared with the Bayesian simulation-replication algo-
rithm in Zouaoui and Wilson (2003) that also focuses on a
point estimate and a CI for E6�4ä5 � zm7, our framework
leads to a fully Bayesian CrI quantifying the overall uncer-
tainty about U while simultaneously reducing the influence
of simulation estimation error relative to direct simulation.
And compared with the asymptotic approximation in Ng
and Chick (2006), our method is appropriate even when the

quantity of real-world data is not large. Finally, previous
Bayesian treatments of input uncertainty in stochastic sim-
ulation do not include the stochastic simulation error in the
Bayesian formulation, or if they do then they make strong
assumptions.

Perhaps the most important point to make is that our
focus is on a Bayesian treatment of �c = �4Èc5, the mean
simulation response at the correct input parameter values.
We believe that this is the parameter that simulation ana-
lysts want: the true mean response independent of their
prior distributions or observed data. However, they may
well want a Bayesian quantification of U that characterizes
the uncertainty in our belief about �c using all available
information: prior and real-world data on the inputs and
prior and simulation data on the response. The framework
in this paper provides a provably valid path to attain this
objective.

3. Problem Statement and
Proposed Approach

Suppose that the stochastic simulation output is a function
of random numbers and L independent input distributions
F ≡ 8F11 F21 0 0 0 1 FL9. For instance, in the M/M/� simula-
tion in §4, 8F11 F29 are the interarrival-time and service-time
distributions; in the clinic simulation in §6, 8F11 F21 0 0 0 1 F69
correspond to interarrival-time distributions, bed occupancy
times, and patient class probabilities. To simplify notation,
we do not explicitly represent the random numbers that
drive the simulation.

The output from the jth independent replication of a sim-
ulation with input distribution F can be written as

Yj4F 5=�4F 5+ �j4F 5

where �4F 5 denotes the unknown output mean and �j4F 5
represents the simulation error with mean zero. Notice that
the simulation output depends on the choice of input dis-
tributions. The true “correct” input distributions, denoted
by F c ≡ 8F c

1 1 F
c

2 1 0 0 0 1 F
c
L 9, are unknown and are estimated

from real-world data. We assume F c exists.
In this paper, we also assume that the distribution fami-

lies are known, but not their parameter values. Let an hl ×1
vector Èl denote the parameters for the lth input distribu-
tion. By stacking Èl with l = 1121 0 0 0 1L together, we have a
d× 1 dimensional parameter vector È> ≡ 4È>

1 1È
>
2 1 0 0 0 1È

>
L 5

with d ≡
∑L

l=1 hl. Since the parameters uniquely specify
the input models, we can equivalently treat �4 · 5 as a func-
tion of the input-model parameters. Thus, we rewrite the
simulation response as

Yj4È5=�4È5+ �j4È50 (2)

We assume that the unknown true parameters Èc are
fixed. However, they are estimated by a random sample
of real-world observations. Let ml denote the number of
i.i.d. real-world observations available from the lth input
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distribution Zl1ml
≡ 8Zl111Zl121 0 0 0 1Zl1ml

9 with Zl1 i
i0i0d
∼ F c

l ,
i = 1121 0 0 0 1ml. Let Zm = 8Zl1ml

1 l = 1121 0 0 0 1L9 be the
collection of samples from all L input distributions in F c,
where m = 4m11m21 0 0 0 1mL5. The real-world data are a
particular realization of Zm, denoted zm. Given a finite sam-
ple of real-world data and a finite simulation budget N , we
want to produce a Bayesian CrI for U .

Standard Bayesian inference about Èc represents uncer-
tainty by a random vector ä with prior distribution
�ä4È5. For simplification, we assume �ä4È5 is such that
pä4È � zm5 is a density. After obtaining zm, our belief is
updated by Bayes’ rule: the data make some values of the
parameters more likely than others and some less likely
through weighting by the corresponding likelihood,

pä4È � zm5∝�ä4È5 ·pZm
4zm � È51

where pZm
is the assumed likelihood function of zm given

the parameters. Thus, uncertainty about the input-model
parameters is quantified by the posterior pä4È � zm5. Under
some regularity conditions (Section 4.2 in Gelman et al.
2004), the effect of the prior will disappear when we have
enough data, but an appropriate prior can reduce the input-
parameter uncertainty. Notice that we have abused nota-
tion by lumping the parameters, priors, and likelihoods of
all L distributions together. Since these distributions are
assumed independent they would more naturally be treated
individually.

If �4 · 5 is known, then the impact of input uncertainty
can be characterized by an induced posterior distribution
FU 4· � zm1�4 · 55. Further, the uncertainty can be quanti-
fied by a two-sided 41 − �5100% CrI 6q�/24zm1�4 · 551
q1−�/24zm1�4 · 557, where

q�4zm1�4 · 55≡ inf8q2 FU 4q � zm1�4 · 55¾ �9

with � = �/211 − �/2. In our terminology, this is
the perfect fidelity two-sided, equal-tail-probability CrI.
When we cannot directly evaluate FU 4· � zm1�4 · 55,
we can obtain a Monte Carlo estimate of this CrI,
6q̂�/24zm1�4 · 551 q̂1−�/24zm1�4 · 557.

1. For b = 1 to B
(a) Generate äb ∼ pä4È � zm5.
(b) Compute �b =�4äb5.

2. With � = �/211 − �/2, set q̂�4zm1�4 · 55 = �4�B��5

where �4b5 denotes the bth smallest response in the set
8�b1 b = 1121 0 0 0 1B9.

Since �4 · 5 is typically unknown, a straightforward
approach is to use simulation to estimate �4äb5. Specifi-
cally, in step 1b we could use n simulation replications to
estimate �4äb5 by Ȳ 4äb5 ≡ n−1∑n

j=1 Yj4äb5. Notice that
the input processes and the simulation noise are mutually
independent. We can then approximate FU 4· � zm1�4 · 55 by

FȲ 4ä54y � zm5≡ Pr8Ȳ 4ä5¶ y � zm9

and approximate the perfect fidelity CrI for U by
6q̄�/24zm51 q̄1−�/24zm57 where

q̄�4zm5≡ inf8q2 FȲ 4ä54q � zm5¾ �9

with � = �/211 − �/2. The corresponding Monte Carlo
estimate is

6 ˆ̄q�/24zm51 ˆ̄q1−�/24zm57≡ 6Ȳ4�B�/2�51 Ȳ4�B41−�/25�571

where Ȳ4b5 denotes the bth smallest response in the set
8Ȳb = Ȳ 4äb51 b = 1121 0 0 0 1B9. We refer to this as the direct
simulation method. It is essentially the approach of Chick
(2001) and Zouaoui and Wilson (2003).

We estimate the input uncertainty through posterior sam-
ples 8ä11ä21 0 0 0 1äB9. The order statistics of the esti-
mated responses at these samples are used to estimate
the �/2 and 1 − �/2 quantiles of the simulation response
distribution. To obtain quantile estimates without substan-
tial mean squared errors (MSE), B needs to be large
enough that observations in the tails of the distribution
are likely when � = 00110005, and 0001, the traditional
values. A typical recommendation is that B should be at
least one thousand. Since at each sample äb the sim-
ulation estimator Ȳ 4äb5 is more variable than �4äb5,
we expect 6 ˆ̄q�/24zm51 ˆ̄q1−�/24zm57 to be stochastically wider
than 6q̂�/24zm1�4 · 551 q̂1−�/24zm1�4 · 557. Given a tight com-
putational budget, n will be small and the impact from the
simulation estimation error could be substantial.

The direct simulation approach ignores any relationship
between the mean response at different È values. However,
a relationship typically exists, and this information can be
exploited to make more effective use of the simulation bud-
get. Further, if we treat the unknown response function
�4 · 5 in a Bayesian manner, then we can obtain a CrI for U
that correctly reflects input-parameter and simulation uncer-
tainty; the direct simulation approach does not incorporate
the simulation uncertainty into the Bayesian formulation.

We will let a random function M4 · 5 represent our uncer-
tainty about �4 · 5. Our prior belief about this function is
modeled by a stationary GP prior �M . Given simulation
outputs yD, the belief is updated to a posterior distribution
for M4 · 5, denoted by pM4· � yD5. The computational cost
of generating yD is N . Notice that since we assume �4 · 5
is continuous, both �M and pM4· � yD5 are measures on
the space of continuous functions. Properties of this space
depend on the correlation structure of the GP; see Adler
(2010, Theorem 3.4.1) for conditions that ensure continu-
ity. Then instead of using direct simulation to estimate the
mean response at each sample äb ∼ pä4È � zm5, we use
M4äb5 to propagate the input uncertainty to the output
mean. Our formal posterior on M4 · 5 accounts for meta-
model uncertainty, where metamodel uncertainty results
from a finite amount of simulation effort (design points and
replications per design point). Notice that the input pro-
cesses, simulation noise, and GP are mutually independent.
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Within this framework, the posterior distribution for U is

FU 4u � zm1yD5≡ Pr8U ¶ u � zm1yD9

= Pr8M4ä5¶ u � zm1yD90 (3)

Based on this posterior, we construct the CrI
6q�/24zm1yD51 q1−�/24zm1yD57 where

q�4zm1yD5≡ inf8q2 FU 4q � zm1yD5¾ �9

with � = �/211 − �/2. Based on B posterior samples,
a Monte Carlo estimate of this CrI is [q̂�/24zm1yD51
q̂1−�/24zm1yD5]. We describe the experiment more precisely
in the next section.

Our objective in this paper is to provide a Bayesian
framework that quantifies the overall uncertainty about U .
Furthermore, given a fixed computational budget, we want
to reduce the uncertainty introduced when propagating
the input-parameter uncertainty to the output mean. Since
[q�/24zm1�4 · 55, q1−�/24zm1�4 · 55] is the perfect fidelity
two-sided, equal-probability CrI, we want our estimated
CrI [q̂�/24zm1yD51 q̂1−�/24zm1yD5] to be close to it and
closer than what can be obtained with the direct simulation
method.

4. Value of Metamodeling
In this section we use a tractable M/M/� queue to moti-
vate employing a metamodel instead of direct simulation to
propagate input-parameter uncertainty to the output mean.
The value of this simple setting is that it clearly illustrates
how the benefits from metamodeling arise. Our Bayesian
framework to accomplish this more generally is presented
in the next section.

Suppose we are interested in estimating the steady-state
mean number of customers in an M/M/� queue when the
unknown true arrival rate is �c = 1 and the known mean
service time is 5. Thus, the true mean response is �c =

�4�c5 = 5�c = 5. In this stylized example each replication
of the simulation generates one observation of the num-
ber of customers in the queue in steady state, which is
Poisson45�5.

We observe m “real-world” interarrival times zm =

8z11 z21 0 0 0 1 zm9, which are actually exponentially dis-
tributed with rate �c. We know the distribution is exponen-
tial but pretend that we do not know �c. A noninformative
prior is used: �ä4�5 ∝ 1/�. Therefore, the corresponding
posterior pä4� � zm5 is Gamma4m1

∑m
i=1 zi5 (Ng and Chick

2006). If the response surface function �4�5 = 5� were
known, then the induced posterior distribution for U would
be Gamma4m1

∑m
i=1 zi/55. Thus, given the real-world data,

the perfect fidelity posterior distribution FU 4· � zm1�4 · 55 is
computable for this simple example.

4.1. Direct Simulation

We first explore using direct simulation to propagate the
input uncertainty to the output mean. In this setting, “direct
simulation” means the following:

1. Observe “real-world” data zm = 8z11 z21 0 0 0 1 zm9 i.i.d.
Exponential4�c5.

2. Form the posterior distribution pä4� � zm5, which is
Gamma4m1

∑m
i=1 zi5.

3. For b = 1 to B
(a) Generate äb ∼ Gamma4m1

∑m
i=1 zi5.

(b) Generate Yj4äb51 j = 1121 0 0 0 1 n that are i.i.d
Poisson45äb5.

(c) Form Ȳ 4äb5= n−1∑n
j=1 Yj4äb5.

Next b
4. Use Ȳ 4äb51 b = 1121 0 0 0 1B, to estimate FȲ 4ä54· � zm5

as an approximation for FU 4· � zm1�4 · 55.
Here we will obtain the distribution FȲ 4ä54· � zm5 ana-

lytically rather than via step 4. Let C4�5 ≡ nȲ 4�5 =
∑n

j=1 Yj4�5. Since Yj4ä5 � ä ∼ Poisson45ä5, we have
C4ä5 � ä ∼ Poisson45nä5. And we know that ä � zm ∼

Gamma4m1
∑m

i=1 zi5 is the posterior distribution of ä given
the data. From this we derive the distribution of Ȳ 4ä5 when
n simulation replications are averaged for each posterior
sample from Gamma4m1

∑m
i=1 zi5. Using standard methods

we can show that

C ≡C4ä5 � zm ∼ NegBin
(

m1

∑m
i=1 zi

5n+
∑m

i=1 zi

)

0

Therefore, FȲ 4ä54· � zm5 is the distribution of C/n, which is
computable.

We compare FU 4· � zm1�4 · 55 and FȲ 4ä54· � zm5 in the
left panels of Figure 1, where we plot the cumulative dis-
tribution functions (cdfs) from 10 macro-replications with
real-world sample sizes m = 10 and 100, total simulation
budget N = 11000, and B = 11000 samples from the poste-
rior distribution of ä. Recall that N = Bn. In each macro-
replication, we first generate m real-world data points zm,
and then conditional on the data, we compute the cdfs
rather than do simulation. The solid lines are realizations
of FU 4· � zm1�4 · 55, and the dashed lines correspond to
FȲ 4ä54· � zm5.

The solid lines are the perfect fidelity posterior distri-
butions, given the real-world data. Their spread indicates
the effect of different possible real-world samples. As m
increases from 10 to 100, the input uncertainty decreases
and FU 4· � zm1�4 · 55 becomes more concentrated around the
true response �4�c5= 5.

Since FȲ 4ä54· � zm5 includes simulation variability, the dif-
ference between FȲ 4ä54· � zm5 and FU 4· � zm1�4 · 55 indicates
the impact of simulation estimation error. The left two plots
in Figure 1 indicate that as m increases from 10 to 100,
there is less impact from input uncertainty so that the sim-
ulation uncertainty dominates. Notice that as m increases
we need even greater simulation effort to remain close to
the perfect fidelity posterior distribution for U .
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Figure 1. Ten posterior cdfs for each method corre-
sponding to 10 samples of real-world data,
where m is the quantity of real-world data in
each sample.

m = 100 (direct simulation)

m = 10 (direct simulation) m = 10 (metamodel)

F
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0.4

0.8

0.0
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u
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u
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m = 100 (metamodel)

Note. Solid lines give the induced posterior FU 4· � zm1�4 · 55; dashed lines
give the direct simulation approximation FȲ 4ä54· � zm5 and the metamodel
approximation FU 4· � zm1yD5 with N = 11000.

4.2. Metamodeling

Assume that we know �4�5= �� for the M/M/� example
but not the value of the slope parameter �.

1. Observe “real-world” data zm = 8z11 z21 0 0 0 1 zm9 i.i.d.
Exponential4�c5.

2. Form the posterior distribution pä4� � zm5, which is
Gamma4m1

∑m
i=1 zi5.

3. Choose a design point �0. Expend the entire sim-
ulation budget to obtain the outputs yD ≡ 8yj4�051 j =

1121 0 0 0 1N 9. Notice Yj4�05 ∼ Poisson4��05. Without loss
of generality, let �0 = 1.

4. For the metamodel parameter �, suppose we have a
flat prior �B4�5∝ 1. By Bayes’ rule, the posterior is

pB4� � yD5∝�B4�5 ·p4yD � �5∝ �
∑N

j=1 yj e−�N 0

Thus, B � yD ∼ Gamma4
∑N

j=1 yj + 11N 5.
5. For b = 1 to B

(a) Generate äb ∼ Gamma4m1
∑m

i=1 zi5.
(b) Generate Bb ∼ Gamma4

∑N
j=1 yj + 11N 5.

(c) Compute Mb =Bbäb.
Next b
6. Use Mb1 b = 1121 0 0 0 1B, to approximate FU 4· �

zm1�4 · 55.
Again, we will derive the distribution of Mb analytically.
Let U =Bä. Then we have

FU 4u � zm1yD5=

∫ �

0
Pr4B�¶ u � zm1yD5 · Pr4ä = � � zm5d�

=

∫ �

0
Pr4B¶ u/� � zm1yD5

·
4
∑m

i=1 zi5
m�m−1e−�

∑m
i=1 zi

4m− 15!
d�

=

∫ �

0

[

1 − e−4u/�5N

∑N
k=1 yk
∑

j=0

1
j!

(

u

�
N

)j]

·
4
∑m

i=1 zi5
m�m−1e−�

∑m
i=1 zi

4m− 15!
d�

We compare FU 4· � zm1�4 · 55 and FU 4· � zm1yD5 in the
right panels of Figure 1, where we plot the cdfs from 10
macro-replications, real-world sample sizes m = 10 and
100, total simulation budget N = 11000, and B = 11000
samples from the posterior distribution of ä. The solid
lines are realizations of FU 4· � zm1�4 · 55 and the dashed
lines correspond to FU 4· � zm1yD5. Figure 1 shows that given
the same simulation budget, FU 4· � zm1yD5 is much closer
to FU 4· � zm1�4 · 55 than FȲ 4ä54· � zm5 is for either quantity
of real-world data. This illustrates the power of using an
appropriate metamodel rather than direct simulation.

The example reveals the following insight: Given a finite
computational budget, to reduce the impact from the simu-
lation estimation error we should exploit prior information
about �4 · 5 when we build a metamodel to propagate the
input uncertainty to the output mean. Our prior belief about
the output mean response surface may be as strong as a
global parametric trend or as weak as local smoothness and
continuity. As we show in §5, Bayesian metamodeling pro-
vides a convenient method to combine different types of
information from prior beliefs and simulation results and it
also naturally characterizes the metamodel uncertainty.

5. A Bayesian Framework
In this section we introduce a Bayesian framework that pro-
vides a posterior distribution for the system mean response
U given input-model data and a designed simulation exper-
iment. We also show how to sample from this posterior
distribution to obtain a CrI for U . Thus, if we start with
appropriate priors for the input distribution parameters and
system mean response surface, our algorithm provides a
rigorous Bayesian characterization of the impact from input
and simulation uncertainty and a CrI for U .

5.1. A Bayesian Output Metamodel

In this paper, we focus on cases where the parameters È
take continuous values in open or closed intervals, e.g.,
location and scale parameters. We assume that the simula-
tion mean response �4 · 5 is a continuous function of È and
model the simulation output Y by

6Yj4È5 �ä = È7= f4È5>Â+W4È5
︸ ︷︷ ︸

M4È5

+�j4È50 (4)
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This model encompasses three sources of uncertainty:
input-parameter uncertainty ä, mean response uncertainty
M4È5, and the simulation output uncertainty �j4È5. They
are assumed mutually independent. We discuss each in turn.

The input-parameter uncertainty begins with a prior dis-
tribution �ä4È5 for ä; the uncertainty is reduced by
observing real-world data zm, as represented by the poste-
rior distribution pä4È � zm5.

For the simulation uncertainty we use a normal approx-
imation �4È5 ∼ N401�2

� 4È55. Since the output is often an
average of a large number of more basic outputs, this
approximation is appropriate for many simulation settings.
We are not directly interested in �2

� 4È5.
Uncertainty about the mean response surface is modeled

by a stochastic process M4 · 5, which includes two parts:
f4È5>Â and W4È5. The trend f4È5>Â captures global spa-
tial dependence, where f4È5 is a p × 1 vector of known
basis functions and Â is a p × 1 vector of unknown trend
parameters. The first element of f4È5 is usually 1. If there
is no prior information about a parametric trend—which is
often the case, including in our empirical study in §6—then
we use f4È5>Â= �0.

Our prior on the remaining local spatial dependence is a
mean-zero, second-order stationary GP, denoted by W4 · 5.
Specifically, W4È5∼ GP401 �2r4È1È′55, where �2r4È1È′5=

Cov6W4È51W4È′57, so that �2 is the marginal process vari-
ance and r4·1 ·5 is a correlation function. Based on our
previous study (Xie et al. 2010), we use the product-form
Gaussian correlation function

r4È1È′5= exp
(

−

d
∑

j=1

�j4�j − �′

j5
2

)

(5)

for the empirical evaluation in §6. Let Ô = 4�11�21
0 0 0 1�d5 be the vector of correlation parameters.

If, in addition, we select the prior for Â to be Gaussian,
B∼ N4b1ì5 with b and ì having appropriate dimensions,
then the overall prior uncertainty for M4 · 5 is a GP

M4È5∼ GP4f4È5>b1 f4È5>ìf4È′5+ �2r4È1È′55

with parameters 4�21Ô5 (Rasmussen and Williams 2006).
This flexible metamodel provides a convenient way to
include various types of prior information about �4 · 5:
global parametric information can be represented by choos-
ing the basis functions f4È5 and the prior over B; and local
spatial dependence information can be included through the
covariance function �2r4·1 ·5.

To reduce uncertainty about M4 · 5 we choose an
experiment design consisting of pairs D ≡ 84Èi1 ni51 i =

1121 0 0 0 1 k9 at which to run simulations, where 4Èi1 ni5
denotes the location and the number of replications, respec-
tively, at the ith design point. The simulation outputs at
D are yD ≡ 84y14Èi51 y24Èi51 0 0 0 1 yni4Èi553 i = 1121 0 0 0 1 k9
and the sample mean at design point Èi is ȳ4Èi5 =
∑ni

j=1 yj4Èi5/ni. Let the sample means at all k design

points be ȳD = 4ȳ4È151 ȳ4È251 0 0 0 1 ȳ4Èk55
T . Since the use

of common random numbers is usually detrimental to
prediction (Chen et al. 2012), the outputs at different
design points should be independent and the variance
of ȳD is represented by a k × k diagonal matrix C =

diag8�2
� 4È15/n11�

2
� 4È25/n21 0 0 0 1�

2
� 4Èk5/nk9.

Given the simulation results at design points yD, we
update our belief about �4 · 5. Let F ≡ 4f4È151 f4È251
0 0 0 1 f4Èk55, a p × k matrix. Let è be the k × k local
spatial covariance matrix of the design points with èij =

�2r4Èi1Èj5 and let è4È1 ·5 be the k×1 local spatial covari-
ance vector between each design point and a fixed predic-
tion point È. If the parameters 4�21Ô5 and C are known,
then the posterior distribution of M4 · 5 is the GP

Mp4È5≡M4È5 � yD ∼ GP4mp4È51�
2
p4È55 (6)

where mp4 · 5 is the minimum MSE linear unbiased
predictor

mp4È5= f4È5>Â̂+è4È1 ·5>4è+C5−14ȳD − F >Â̂51 (7)

and the corresponding marginal variance is

�2
p4È5= �2

−è4È1 ·5>4è+C5−1è4È1 ·5

+�>6ì−1
+ F 4è+C5−1F >7−1� (8)

where Â̂ = 6ì−1 + F 4è + C5−1F >7−16F 4è + C5−1ȳD +

ì−1b7 and � = f4È5−F 4è+C5−1è4È1 ·5 (Rasmussen and
Williams 2006). The posterior covariance structure can also
be expressed, but it is messy and not needed in our work.

This metamodel includes some commonly used predic-
tors as special cases. If we put a point mass prior on �2 =

0, then it becomes a parametric regression model on the
space spanned by the basis functions f4 · 5. If, on the other
hand, ì−1 is a matrix of zeros, which is equivalent to no
prior information over the global trend, then the posterior
for M4 · 5 becomes the stochastic kriging (SK) metamodel
of Ankenman et al. (2010).

By combining the effect of input-parameter and meta-
model uncertainty, we can derive the posterior distribution
of U = M4ä5. Denote the support of pä4È � zm5 by A.
Therefore, conditional on zm and yD, the posterior distribu-
tion of U is

FU 4u �zm1yD5=Pr8U ¶u �zm1yD9

=

∫

A
Pr8M4ä5¶u �ä=È1yD9pä4È �zm5dÈ

=

∫

A
ê

(

u−mp4È5

�p4È5

)

pä4È �zm5dÈ (9)

where ê4 · 5 denotes the cdf of the standard normal distri-
bution.

Since the parameters 4�21Ô5 and C are unknown, maxi-
mum likelihood estimates are typically used for prediction,
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and the sample variance is used as an estimate of the sim-
ulation variance at design points C; see Ankenman et al.
(2010). By inserting these into Equations (7) and (8), we
can obtain the estimated mean m̂p4È5 and variance �̂2

p4È5.
The estimated posterior of M4È5 is Gaussian with mean
m̂p4È5 and variance �̂2

p4È5. Then by inserting these into
Equation (9), we can get the estimated posterior distribu-
tion of U . In the next section we sample from this posterior
distribution to estimate a two-sided, equal-tail-probability
41 −�5100% CrI 6q̂�/24zm1yD5, q̂1−�/24zm1yD57 for U .

5.2. Procedure to Construct a CrI

Typically we cannot evaluate (9), but sampling from it is
relatively easy:

0. Provide priors on ä and B.
1. Identify a design space E of È values over which

to fit the metamodel. This is done empirically by finding
the smallest ellipsoid E that covers a large percentage of
random samples from the posterior distribution pä4È � zm5
using the method of Barton et al. (2014). The design
space is driven by pä4È � zm5 because the purpose of the
metamodel is to map values of È into a mean simulation
response, and the likelihood of these values is governed
by pä4È � zm5. As the amount of real-world data increases,
the posterior pä4È � zm5 becomes more concentrated, and
therefore E shrinks as it should.

2. To obtain an experiment design D = 84Èi1 ni51 i =

1121 0 0 0 1 k9, use a Latin hypercube sample to embed k
design points into the design space E and assign equal
replications to these points to exhaust N . The choice of k
is addressed in Barton et al. (2014), and the use of equal
replications is the only sensible allocation in a one-stage
design.

3. Run simulations at the design points to obtain outputs
yD. Compute the sample averages ȳ4Èi5 and sample vari-
ances s24Èi5 of the simulation outputs, for i = 1121 0 0 0 1 k.
Fit the metamodel to calculate the posterior mean m̂p4È5
and the variance �̂2

p4È5 using 8ȳ4Èi51 s
24Èi51Èi1 i = 1121

0 0 0 1 k9; see Ankenman et al. (2010).
4. For b = 1 to B

(a) Sample äb ∼ pä4È � zm5.
(b) Sample Mb ∼ N4m̂p4äb51 �̂

2
p4äb55.

Next b
5. Report an estimated CrI:

6q̂�/24zm1yD51 q̂1−�/24zm1yD57

≡ 6M4�B4�/25�51M4�B41−�/25�57 (10)

where M415 ¶M425 ¶ · · ·¶M4B5 are the sorted values.
Step 4 generates B samples 8M11M21 0 0 0 1MB9 from the

posterior distribution of U according to Equation (9), pro-
viding the estimated CrI in (10) whose precision improves
as B increases. Beyond the N simulation replications, the
additional computational burden depends on how difficult
it is to execute step 4a. When we use standard paramet-
ric families and conjugate or noninformative priors—as

in the next section—sampling from the posteriors is typ-
ically fast. Otherwise, we need to resort to some compu-
tational approaches such as MCMC to generate samples
from pä4È � zm5. Notice that the sampling procedure in
step 4 is similar to that used for estimating a conditional
expectation in Lee and Glynn (1999) and Steckley and
Henderson (2003).

In this paper, we use a Monte Carlo approach to esti-
mate percentiles of the posterior distribution FU 4· � zm1yD5.
Other methods, such as randomized quasi-Monte Carlo,
might also be employed for the integration in Equation (9)
and could yield smaller error (Lemieux 2009). However,
these methods may lose their effectiveness when the dimen-
sion of the integral becomes large, as it often will (Caflisch
1998). For example, the critical care facility simulated in
§6, a relatively small system, already has È with dimension
equal to 12. Further, quasi-Monte Carlo is not as versatile
as Monte Carlo, and this may be an issue when the poste-
rior pä4È � zm5 is not a standard distribution and we need
to use computational methods such as MCMC to generate
samples from ä. The combination of quasi-Monte Carlo
with MCMC for general situations is still under study; see
Caflisch (1998) and Owen and Tribble (2005).

The estimated CrI in Equation (10) characterizes the
impact from both input and metamodel uncertainty. If
desired, the variance decomposition in Xie et al. (2014) can
be used to assess their relative contributions and guide a
decision maker as to where to put more effort: If the input
uncertainty dominates, then get more real-world data (if
possible); if the metamodel uncertainty dominates, then run
more simulations; if neither dominates, then both activities
are necessary to reduce the overall uncertainty about U .

Theorem 1. Suppose the parameters È take continuous
values and the simulation mean response surface �4 · 5 is a
continuous function of È. Suppose also that the input pro-
cesses Zlj , the simulation noise �j4È5 and GP M4È5 are
mutually independent, and the parameters 4�21Ô5 and C
are known. Then given zm and yD,

1. the posterior distribution for U is continuous;
2. as B → �, the empirical distribution based on sam-

ples 8Mb1 b = 1121 0 0 0 1B9 provides a uniformly consistent
estimator of the posterior distribution of U ; and

3. limB→�6q̂�/24zm1yD51 q̂1−�/24zm1yD57
a0s0
= 6q�/24zm1

yD51 q1−�/24zm1yD570

Proof. Since FU 4u � zm1yD5 is a weighted sum of normal
distributions by Equation (9), the posterior distribution
for U is continuous. By the Glivenko-Cantelli Theo-
rem in Van Der Vaart (1998), the empirical distribu-
tion of 8M11M21 0 0 0 1MB9 with Mb

i0i0d0
∼ FU 4· � zm1yD5 con-

verges uniformly to FU 4· � zm1yD5 almost surely (a.s). Since
FU 4u � zm1yD5 is continuous, by applying Lemma 21.2 in
Van Der Vaart (1998), as B → � the quantile estimate
q̂�4zm1yD5

a0s0
→ q�4zm1yD5 for � = �/211 −�/2. �
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Remark2 In the result above we assumed that the param-
eters 4�21Ô1C5 are known; this is a common assumption in
the kriging literature because including the effect of param-
eter estimation error makes the posterior distribution of
M4 · 5 mathematically and computationally intractable. To
apply our method in practice (including the empirical study
in §6) we form the plug-in estimators obtained by insert-
ing �̂21 Ô̂ and Ĉ into the relevant expressions. This, too, is
common practice.

Ignoring the error in 4�21Ô1C5 leaves open the possibil-
ity that we could underestimate the metamodel uncertainty.
However, based on our experience with SK, this will not be
the case, provided we have an adequate experiment design,
such as the one developed in Barton et al. (2014) that we
use here. A similar observation about parameter insensitiv-
ity in the presence of a good experiment design was made
by Gano et al. (2006).

Nevertheless, if one is concerned, then it is possible to
apply diagnostic tests such as those described in Bastos
and O’Hagan (2009) and Meckesheimer et al. (2002) to
evaluate how well the fitted Gaussian process represents
the metamodel uncertainty. Yet another approach is to start
with prior distributions on the hyperparameters (�21Ô1C)
and thereby include them in the hierarchical Bayesian
framework. However, this necessitates a computationally
expensive simulation to evaluate the posterior distribution
in step 4b. As our results in the next section illustrate, we
have not found this to be necessary.

6. Empirical Study
In this section we use the critical care facility described in
Ng and Chick (2001) to illustrate the performance of our
Bayesian assessment of uncertainty. The structure of the
facility is shown in Figure 2. The performance measure is
the steady-state expected number of patients per day that
are denied entry to the facility. Patients arrive to either the
Intensive Care Unit (ICU) or Coronary Care Unit (CCU)
and then either exit the facility or go to Intermediate Care
(IC), which is a combination of intermediate ICU (IICU)
and intermediate CCU (ICCU). Each unit has a finite num-
ber of beds. If a patient cannot get an ICU or CCU bed,
then he is turned away. If a patient is supposed to move to
IC but there is no bed available, then he stays put; when a
bed in IC becomes available, the first patient on the waiting
list moves in.

The critical care facility includes six input processes.
The arrival process is Poisson with arrival rate � =

303/day (exponentially distributed interarrival times). The
stay durations at all four units follow lognormal distribu-
tions. Specifically, the ICU stay duration has mean 304 days
and standard deviation 305 days, the CCU stay duration has
mean 308 days and standard deviation 106 days, the IICU
stay duration has mean 1500 days and standard deviation
700 days, and the ICCU stay duration has mean 1700 days

Figure 2. (Color online) Critical care facility.
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entry
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Coronary care
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0.55

Exit

0.20
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and standard deviation 300 days. Recall that the density
function of the lognormal is

f 4x � �1�25=
1

x
√

2��
exp

[

−4ln x− �52

2�2

]

0

There is a one-to-one mapping between input parameters
(�1�2) and the first two moments of the stay time (�L1�

2
L):

mean �L = e�+�2/2 and variance �2
L = e2�+�2

4e�
2
− 15. The

routing probabilities follow a multinomial distribution with
parameters p1 = 002, p2 = 0055, p3 = 002, and p4 = 0005.
Thus,

È= 4�1 �ICU1�
2
ICU1 �CCU1�

2
CCU1 �IICU1�

2
IICU1 �ICCU1

�2
ICCU1 p11 p21 p31 p45

>

and Èc is this vector with each element taking the value
listed above. Later, when we fit a metamodel for �4È5, we
drop p2 since it equals 1 − p1 − p3 − p4 and is redundant.
The number of beds is 14 in ICU, 5 in CCU, and 16 in IC;
the IICU and ICCU share the same bed resources.

The goal is to estimate the remaining uncertainty about
U , the steady-state expected number of patients per day
denied entry, after accounting for all available information:
prior and real-world data on the inputs, and prior and sim-
ulation data on the response. To evaluate our method, we
pretend that the 12 input-model parameters are unknown
and estimated from m i.i.d. observations from each of the
six true distributions; this represents obtaining “real-world
data.”

For the interarrival-time process we use the noninforma-
tive prior �ä4�5 ∝ 1/�. Given m interarrival times z11m =

8z1111 z1121 0 0 0 1 z11m9, the posterior distribution pä4� � z11m5
is Gamma4� = m1� =

∑m
i=1 z11 i5, where � and � denote

the shape and rate parameters.
For the stay time at ICU we use a noninformative prior

�ä4�1 �5∝ 1/�, where 4�1 �5 denotes the mean and preci-
sion � = 1/�2 of the logarithm of stay times. Given m real-
world observations z21m = 8z2111 z2121 0 0 0 1 z21m9, the poste-
rior is

pä4�1 � � z21m5∝
4m�51/2

√
2�

exp
[

−
m�

2
4� − �m5

2

]

︸ ︷︷ ︸

p4� ��1 z21m5=N4�m11/4m�55
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·
��m
m

â4�m5
��m−1 exp4−�m�5

︸ ︷︷ ︸

p4��z21m5=Gamma4�m1 �m5

(11)

where �m =
∑m

i=1 ln4z21 i5/m, �m = 4m − 15/2 and �m =
∑m

i=16ln4z21 i5−
∑m

i=1 ln4z21 i5/m72/2 (Ng and Chick 2001).
Thus, based on Equation (11), we can generate samples
from the posterior pä4�1 � � z21m5 as follows:

1. Generate � from Gamma4�m1 �m5;
2. Conditional on �, generate � from N4�m11/4m�55.

Similarly, we can derive the posterior distributions for the
stay-time parameters at the remaining units.

For the routing process, the probabilities p11 p21 p3, and
p4 are estimated from the routing decisions from m patients
z61m = 8z6111 z6121 0 0 0 1 z61m9. The cumulative numbers of
patients choosing the four different routes are denoted by
x11 x21 x31 x4 with xj =

∑m
i=1 I4z61 i = j5 and

∑4
j=1 xj = m,

where I4 · 5 is the indicator function. With a flat prior, the
posterior pä4p11 p21 p31 p4 � z61m5 follows a Dirichlet4x1 +

11 x2 + 11 x3 + 11 x4 + 15 distribution (Gelman et al. 2004).
The simulation of the critical care facility starts with an

empty system. The first 500 days of startup were discarded
as transient (this is sufficient to avoid bias in our study).
We consider cases where the computational budget is tight
and the simulation estimation uncertainty is significant and
cases with low simulation uncertainty. To accomplish the
former, we use a short run length for each replication:
10 days after the warm-up. For the latter we use a run
length of 500 days after the warm-up.

Ideally we would compare our CrI for U to the per-
fect fidelity CrI [q�/24zm1�4 · 55, q1−�/24zm1�4 · 55], which
requires knowledge of �4 · 5. Since the true response sur-
face of the critical care facility is not known, we instead
used very long simulation runs to estimate the system
mean response for each sample ä ∼ pä4È � zm5. To find
a run length that is adequate to estimate �4È5, we did a
side experiment: We consider real-world sample sizes of
m= 5011001500. For each sample size, we ran 10 macro-
replications, drawing an independent real-world sample
from the true distributions in each. Given these data, we
computed the posteriors of the input model parameters;
drew 10 samples from each posterior; and recorded esti-
mates of the mean response obtained using run lengths of
10311041105, and 106 days. The maximum relative differ-
ence for each run length compared to the results obtained
using 106 is recorded in Table 1. A run length of 104

achieved a maximum relative error of 0005. Considering
both the precision and computational cost, we used run
length 104 days to estimate the system mean response
and further to obtain [q̂�/24zm1�4 · 551 q̂1−�/24zm1�4 · 55] for
comparison.

We compare our method to direct simulation and to
the perfect fidelity CrI. To do so, we ran 1,000 macro-
replications of the entire experiment. In each macro-
replication, we drew m real-world observations from each
input model and computed the posteriors of the input-model

Table 1. The maximum absolute difference relative to
the results obtained by using a run length
equal to 106 days.

Run length 103 104 105

m= 50 00245 0005 0002
m= 100 00191 0005 00019
m= 500 00185 00049 00016

parameters pä4È � zm5. To closely approximate the perfect
fidelity CrI, we then generated B = 11000 posterior sam-
ples from pä4È � zm5 and estimated �4È5 using a run length
of 104 days; this yielded [q̂�/24zm1�4 · 551 q̂1−�/24zm1�4 · 55]
for that macro-replication.

For direct simulation and our Bayesian approach, we set
the run lengths for each simulation replication be 10 or 500
days beyond the warm-up period. A total computational
budget of N = 21000 replications was expended by each
method. For our Bayesian method, the number of design
points used to build the metamodel was k = 20, implying
n= 100 replications per design point. For a 12-dimensional
problem k = 20 is a very small design. We used B = 11000
posterior samples to form the CrI. For direct simulation we
also used B = 11000 posterior samples but allocated n =

21000/11000 = 2 replications to each.
The mean and standard deviation (SD) of q̂X

�/2, q̂X
1−�/2 and

the estimated posterior probability content in 6q̂X
�/21 q̂

X
1−�/27

were obtained for m = 5011001500 and � = 0005; they
are recorded in Tables 2 and 3, where X denotes the
method used to obtain the estimate: perfect fidelity, direct
simulation, or metamodel. The top halves of Tables 2
and 3 give the results with run length 10 days, implying
large simulation estimation uncertainty. The CrI obtained
by our Bayesian approach, [q̂�/24zm1yD5, q̂1−�/24zm1yD5],
is very close to [q̂�/24zm1�4 · 55, q̂1−�/24zm1�4 · 55]. How-
ever, as m increases, the difference between direct
simulation’s [ ˆ̄q�/24zm5, ˆ̄q1−�/24zm5] and [q̂�/24zm1�4 · 55,
q̂1−�/24zm1�4 · 55] increases, and the interval obtained by
direct simulation is too wide; this is because simulation
uncertainty is overwhelming input-parameter uncertainty.
On the other hand, since the design space for the GP meta-
model is the smallest ellipsoid covering the most likely
samples from pä4È � zm5, the size of this space decreases
as the amount of real-world data m increases. Thus, the
metamodel uncertainty decreases. Table 3 shows that as m

increases, the error �q̂�4zm1yD5 − q̂�4zm1�4 · 55� for � =

�/211 − �/2 tends to decrease. Because a larger mean
response is typically associated with a larger estimator vari-
ance, the estimators of the CrI upper bounds are more vari-
able than they are for the lower bounds.

Since FU 4· � zm1�4 · 55 is unknown, we use the percent-
age of precisely estimated mean responses contained in
the intervals [q̂�/24zm1yD5, q̂1−�/24zm1yD5] and [ ˆ̄q�/24zm5,
ˆ̄q1−�/24zm5] to estimate the probability content. Tables 2
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Table 2. CrI quantile estimates when m = 5011001500 and � = 0005, where p̂X
�

denotes the estimated probability content of FU 4· � zm1�4 · 55 in the interval
[q̂X

�/21 q̂
X
1−�/2].

q̂X
�/2 mean q̂X

�/2 SD q̂X
1−�/2 mean q̂X

1−�/2 SD p̂X
� mean p̂X

� SD

m= 50, run length = 10
Estimated perfect fidelity 1002 004 2097 0064
Direct simulation 0075 0037 3032 0064 0099 00004
GP metamodel 0094 0039 2094 0064 00952 00019

m= 100, run length = 10
Estimated perfect fidelity 1026 0029 2062 0041
Direct simulation 0089 0027 3005 0042 00998 00002
GP metamodel 1021 0029 2061 0041 00951 00019

m= 500, run length = 10
Estimated perfect fidelity 1063 0014 2023 0016
Direct simulation 1006 0013 2086 0018 1 0
GP metamodel 1061 0015 2023 0017 00947 00027

m= 50, run length = 500
Estimated perfect fidelity 1 0039 2094 0063
Direct simulation 0099 0039 2095 0063 00951 00003
GP metamodel 0093 0038 2093 0063 00953 00017

m= 100, run length = 500
Estimated perfect fidelity 1025 0029 2061 0041
Direct simulation 1024 0029 2062 0041 00952 00004
GP metamodel 1022 0029 206 0041 0095 00018

m= 500, run length = 500
Estimated perfect fidelity 1063 0014 2024 0017
Direct simulation 1061 0014 2026 0017 00964 00005
GP metamodel 1062 0014 2023 0017 00948 00017

and 3 show that the probability content of [q̂�/24zm1yD5,
q̂1−�/24zm1yD5] is close to the nominal value 1 −�. How-
ever, under the same computational budget, the inter-
vals [ ˆ̄q�/24zm5, ˆ̄q1−�/24zm5] obtained by direct simulation

Table 3. Errors of CrI quantile estimates when m= 5011001500 and �= 0005, where
eXq� ≡ q̂X

� − q̂� with q̂� = q̂�4zm1�4 · 55 and � = �/211 − �/2 and eXp� ≡

p̂X
� − 41 −�5.

eXq�/2
mean eXq�/2

SD eXq1−�/2
mean eXq1−�/2

SD eXp� mean eXp� SD

m= 50, run length = 10
Direct simulation −0027 0006 0035 0007 0004 00004
GP metamodel −0008 0009 −0002 0012 00002 00019

m= 100, run length = 10
Direct simulation −0037 0005 0044 0006 00048 00002
GP metamodel −0005 0006 −0001 0008 00001 00019

m= 500, run length = 10
Direct simulation −0057 0004 0062 0004 0005 0
GP metamodel −0002 0004 0 0004 −00003 00027

m= 50, run length = 500
Direct simulation −0001 0002 0001 0002 00001 00003
GP metamodel −0007 0008 −0002 0011 00003 00017

m= 100, run length = 500
Direct simulation −0001 0002 0001 0002 00002 00004
GP metamodel −0004 0005 −0001 0007 0 00018

m= 500, run length = 500
Direct simulation −0002 0001 0002 0001 00014 00005
GP metamodel −00006 0002 −00008 0003 −00004 00017

are much wider and they typically have obvious over-
coverage. Note that “over-coverage” here means the prob-
ability content of FU 4· � zm1�4 · 55 contained in the interval
is larger than 1 − �; this is different from CI coverage.
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The over-coverage of [ ˆ̄q�/24zm5, ˆ̄q1−�/24zm5] becomes even
worse when m increases and input uncertainty declines.
This indicates that for smaller input uncertainty, we need a
larger computational budget for direct simulation so that the
impact from the simulation estimation uncertainty becomes
negligible.

The bottom halves of Tables 2 and 3 give the results with
run length 500 days. The interval [ ˆ̄q�/24zm5, ˆ̄q1−�/24zm5]
is very close to [q̂�/24zm1�4 · 55, q̂1−�/24zm1�4 · 55]. This
indicates that the simulation estimation error is negligi-
ble. From these results one might conclude that when the
simulation budget is substantial, then direct simulation is
slightly better than using a metamodel. However, for con-
sistency we retained a small experiment design of only k =

20 design points even with the larger budget and smaller
variance outputs; metamodel error would be reduced even
further by using more design points.

The finite-sample performance in Tables 2 and 3 demon-
strates that when there is a tight computational budget,
our Bayesian approach reduces the influence of simula-
tion estimation error and provides a CrI much closer to
[q�/24zm1�4 · 551 q1−�/24zm1�4 · 55] than does direct simu-
lation; when there is sufficient computational budget, both
direct simulation and our approach provide CrIs close to
[q�/24zm1�4 · 551 q1−�/24zm1�4 · 55].

7. Conclusions
When we use simulation to evaluate the performance of a
stochastic system, there is input and simulation uncertainty
in the performance estimates. In this paper, we propose
a fully Bayesian framework to quantify the impact from
both sources of uncertainty via a CrI for the simulation
mean response when evaluated at the true, correct paramet-
ric input-model parameters. We do this by propagating the
posterior uncertainty about the input-model parameters to
the output mean via a GP that characterizes the posterior
information about the mean response as a function of the
input models given a set of simulation experiments. A flex-
ible metamodel allows us to include various types of prior
information about the simulation mean, and this reduces
the influence of simulation estimation error. Our Bayesian
framework provides a way to sample from the posterior
distribution for the system mean response U from which
we can produce an asymptotically valid CrI as the number
of posterior samples goes to infinity.

An empirical study using a critical care facility demon-
strates that when the computational budget is tight, our
Bayesian framework makes effective use of the simulation
budget and reduces the uncertainty introduced when prop-
agating the input uncertainty to output mean; when there
is sufficient computational budget, then both direct sim-
ulation and our approach provide intervals that are close
to the perfect fidelity CrI. In addition, our approach has
good finite-sample performance even when there are sev-
eral input models including both discrete and continuous
distributions.

We have provided a provably valid Bayesian frame-
work to quantify uncertainty in stochastic simulation prob-
lems with univariate, independent, parametric input models
from known distribution families. Useful extensions of our
framework that we will pursue include multivariate input
models, input-model-family uncertainty, and nonparametric
input models. Some steps in these directions are provided
by Biller and Corlu (2011), who developed an approach to
quantify the uncertainty of multivariate input models; Chick
(2001) and Zouaoui and Wilson (2004), who accounted
for both parameter and input-model-family uncertainty; and
Song and Nelson (2013), who considered input uncertainty
when using the empirical distribution of the real-world data.
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Endnote

1. We use Èc to denote the unknown true parameters, ä to
denote a random variable representing our belief about Èc,
and È to denote a generic value or function argument.
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