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A Nonparametric Bayesian Framework for
Short-Term Wind Power Probabilistic Forecast

Wei Xie, Pu Zhang, Rong Chen, Zhi Zhou Member, IEEE

Abstract—To improve the energy system resilience and eco-
nomic efficiency, the wind power as a renewable energy starts
to be deeply integrated into smart power grids. However, the
wind power forecast uncertainty brings operational challenges.
In order to provide a reliable guidance on operational decisions,
in this paper, we propose a short-term wind power probabilistic
forecast. Specifically, to model the rich dynamic behaviors of
underlying physical wind power stochastic process occurring in
various meteorological conditions, we first introduce an infinite
Markov switching autoregressive model. This nonparametric time
series model can capture the important properties in the real-
world data to improve the prediction accuracy. Then, given
finite historical data, the posterior distribution of flexible forecast
model can correctly quantify the model estimation uncertainty.
Built on it, we develop the posterior predictive distribution to
rigorously quantify the overall forecasting uncertainty accounting
for both inherent stochastic uncertainty and model estimation er-
ror. Therefore, the proposed approach can provide accurate and
reliable short-term wind power probabilistic forecast, which can
be used to support smart power grids real-time risk management.

Index Terms—Bayesian nonparametric approach, probabilistic
forecast, predictive distribution, prediction interval, wind power.

NOMENCLATURE

A. Abbreviation
AR Autoregressive
BELM Bootstrap-based Extreme Learning Machine
DP Dirichlet Process
HDP Hierarchical Dirichlet Process
IHMM Infinite Hidden Markov Model
IMSAR Infinite Markov Switching Autoregressive
MSAR Markov Switching Autoregressive
PI Prediction Interval
TVQR Time-varying Quantile Regression

B. Wind Power Data and Variables
T Index of current time period or the size of

historical data
x[1:T ] Historical wind power data stream
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x[T+1:T+τ ] Wind power forecast in next τ time periods
st Latent meteorological state at time period t

C. IMSAR Forecast Model Parameters
p Order of AR time series kernel
θθθi AR time series kernel parameters in state i
ψψψ(i), σ2(i) Components of AR parameters θθθi
Gθθθ Base DP prior for θθθ
α Concentration parameter of the global DP
G0 Global DP prior for state transition
η Concentration parameter of the state-

conditional DPs
Gi State-conditional DP prior for transition prob-

ability distribution from state i.
πππ Global probability measure on the states
pppi Transition probability from state i

D. Hyperparameters of the Priors for AR parameters
a, b Hyper-parameters of Gamma prior for σ2(i)
µψ, σψ Hyper-parameters of Normal prior for ψψψ(i)

E. Variables and Data for Bayesian Inference
K Number of active states which are visited by

historical wind power data
mmm Vector of visits to active states
mi Number of visits to state i
NNN Transition matrix with Ni,j recording the

number of transitions from active state i to
j for i, j = 1, . . . ,K

Ti Set of time indexes when st = i
xxx[Ti] All wind power data occurring at state i
x̃xxt Regressors for xt
XXX(i) Regressor matrix for data at state i

F. Posterior Predictive Distribution and Samples
F (b) The b-th posterior sample of statistical model

for wind power
Θ(b) AR parameters for states in F (b)

PPP (b) State transition probability matrix in F (b)

qγ(xT+h) The γ-th quantile of the predictive distribu-
tion for wind power at T + h

PI(xT+h) Prediction Interval for wind power at T + h

x
(I)
T+h The I-th sample of XT+h

P̂I(xT+h) Estimated PI for wind power at T + h

G. Evaluation of Forecasting Performance
ft Predictive distribution for wind power xt
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SC(ft, xt) Skill score of the predictive distribution
SC(h) Average skill score for h-step forecasting

I. INTRODUCTION

With the desire of energy system resilience and clean
energy, smart power grids with distributed energy resources
get increasing attention. According to the report from Amer-
ican Wind Energy Association [1], wind energy starts to be
widely used in the power systems. During the year of 2013,
U.S. wind energy provides enough electricity to power the
equivalent of over 18 million homes. While the application
for wind power is in a rapid growth, due to the uncertainty
in wind power forecast, there are concerns on the reliability
and cost. The operational decisions, i.e., generator scheduling,
electricity pricing and trading, depend on the short-term wind
power forecast ranging from 1 - 48 hours [2], [3]. Inaccurate
quantification of forecast uncertainty can lead to low system
reliability and high operational cost [4]. Thus, it is important
to improve the short-term wind power forecast accuracy and
correctly quantify the forecast uncertainty.

There are various approaches proposed to quantify the
uncertainty for short-term wind power forecast; see [3], [2]
for a detailed review. In general, the forecast uncertainty of
wind power can be represented by a probability distribution
or a set of quantiles. The probability distribution is preferred
to support stochastic optimization for real-time risk and re-
liability management [3], [5]. Thus, in this paper, we focus
on developing the probability distribution that can rigorously
characterize the overall wind power forecast uncertainty.

The dynamic behaviors of wind power could have signifi-
cant fluctuations at hourly time scales, which can be caused by
atmospheric changes, such as weather front and rain showers
[6], [7]. To faithfully capture the important properties in the
real data and improve the wind power forecast, it is desirable to
model the evolution of meteorological conditions and estimate
the dynamics of wind power under different conditions.

Motivated by the regime-switching models [8], [9], [10],
[11], [12], [13], [14], in this paper, we propose a nonparametric
time series forecast model, called Infinite Markov Switch-
ing Autoregressive (IMSAR), for the stochastic process of
wind power generation. The latent meteorological changes
are modeled by a Markov state transition process. At each
state, the local dynamic behaviors of wind power are mod-
eled with Autoregressive (AR) time series. Notice that the
introduction of latent regime/state variable is to absorb the
unknown and unobservable meteorological factors into the
model. Since the states separate observations occurring under
different meteorological conditions into different groups, the
estimation error of latent state number induced by using
restrict parametric regime-switching models can impact on
correctly modeling both global and local dynamic behaviors,
which can reduce the wind power prediction accuracy and
lead to an unreliable quantification on the forecast uncertainty.
Differing with existing parametric models, i.e., MSAR, our
approach can automatically adapt the model complexity to
the real-world data. Thus, it can faithfully capture the rich
dynamic behaviors, and improve the prediction accuracy.

The forecast model characterizing the physical stochastic
uncertainty of wind power generation is estimated by finite
historical data. It can cause the model estimation error, called
model uncertainty. Thus, there are two types of uncertainties
in wind power prediction, including stochastic and model
uncertainties. To provide the reliable probabilistic forecast,
both sources of uncertainties should be considered.

Thus, in this paper, we first propose the nonparametric
IMSAR that can faithfully capture the important properties
in the wind power data. Then, given finite historical data, the
posterior distribution of flexible forecast model can quantify
the model selection and parameter estimation uncertainty.
After that, the posterior predictive distribution of wind power
is developed to rigorously characterize the forecast uncertainty
accounting for both inherent stochastic uncertainty of wind
power generation and model uncertainty. We propose an
efficient sampling procedure to generate scenarios from the
predictive distribution, which can be used in the stochastic
programming to find real-time operational decisions hedging
against all sources of uncertainty.

The contributions of this paper are described as follows.
• We present a nonparametric time series statistical

model for wind power generation. It can faithfully
capture the rich properties in the historical data
streams, including nonstationarity, serial dependence,
skewness and multi-modality.

• Then, the posterior distribution of flexible model for
wind power allows us to quantify the model uncer-
tainty, including the model selection and parameter
estimation error.

• The overall wind power forecast uncertainty is char-
acterized by the posterior predictive distribution ac-
counting for both model estimation error and under-
lying stochastic uncertainty of wind power genera-
tion. An efficient Bayesian inference and sampling
procedure is provided to generate scenarios from the
posterior predictive distribution. Our approach also
delivers percentile prediction intervals (PIs) for wind
power forecast.

The structure of this paper is as follows. In Section II,
we briefly review the related existing approaches on short-
term wind power prediction. We then formally introduce
the Bayesian nonparametric forecasting framework and the
sampling procedure for probabilistic forecast in Section III. In
Section IV, the case studies over wind power data demonstrate
that our approach has the promising performance.

II. BACKGROUND

The methodologies developed for wind power forecasting
is reviewed by [2], [3]. Here, we provide a brief review of
the statistical methods for short-term wind power probabilistic
forecast related to our study. The existing approaches can be
categorized into machine learning based and time series based
approaches. As the development in artificial intelligence, many
machine learning algorithms were proposed for wind power
forecast, including quantile regression [15], [16], [17], [18],
time varying quantile regression [19], artificial neural network
[20], [21], [22], [23], support vector machines [24], [25] and
so on.
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Another category of statistical methods are the time series
based approaches. Conventional Autoregressive (AR) models
and Autoregressive Moving Average (ARMA) models are
widely used in wind power forecasting. For example, [26]
used ARMA to predict hourly average wind speed up to 10
hours in advance. [27] proposed a time series model to capture
non-linear and double-bounded nature of wind power data. A
logit-normal transformation was developed for the wind power
bounded between 0 to 1, and the location and scale parameters
are modeled by AR or Conditional Parametric AR processes.

Since the dynamic behaviors of wind power change due
to the fluctuations of meteorological state, the studies in [7],
[12] proposed a Markov-switching autoregressive (MSAR)
approach. It models the state transition with a Markov process
having finite states, and models the local dynamic behaviors at
each state with AR process. [14] further introduced a MSAR
model with seasonal components to capture seasonal and inter-
annual fluctuations in wind power process.

In addition, since the forecast model is estimated by finite
historical data with error, [28] used the Bayesian Model
Averaging (BMA) approach to quantify the model uncertainty,
where a few Gamma distributions are selected as the candidate
model for wind power. [22] proposed the extreme learning
machine (ELM) and used the bootstrap to quantify the model
parameter estimation error. Given the total variance, includ-
ing the model uncertainty variance and data noise variance,
the prediction interval is constructed based the normality
assumption on the prediction distribution. [23] proposed to
use intervals quantifying the parameter estimation uncertainty
for the neural network based predictor, which does not provide
a full predictive distribution for wind power.

III. A BAYESIAN NONPARAMETRIC PROBABILISTIC
FORECAST FRAMEWORK

Our approach is motivated by parametric MSAR approaches
[8], [7], [12]. Considering that the number of underlying
meteorological states is unknown and also there exists the
model estimation uncertainty for wind power forecast, we
propose a nonparametric Bayesian probabilistic forecasting
framework. Specifically, motivated by the infinite Hidden
Markov model [29], we first present the nonparametric forecast
model, called IMSAR, in Section III-A, which can adapt
the model complexity to capture the important properties in
the wind power data. Then, in Section III-B, given finite
historical data, we derive the posterior distribution quantifying
the model estimation uncertainty and further develop the poste-
rior predictive distribution to quantify the forecast uncertainty
accounting for both the inherent stochastic uncertainty of wind
power generation and the forecast model estimation error. In
Section III-C, we provide a sampling procedure to efficiently
generate scenarios for wind power probabilistic forecasting
and further deliver a PI.

A. IMSAR Nonparametric Forecast Model for Wind Power

Let xt and st be the wind power and latent meteorological
state at time period t. In the IMSAR forecast model, denoted
by F , we model the dependent stochastic processes {xt}
and {st} simultaneously. For the short-term wind power

forecast, the state in next time period highly depends on
the current state. Motivated by [13], we model {st} as a
Markov process. Without strong prior information on the
underlying meteorological states, an infinite hidden Markov
model (IHMM) models the state transition. At each state,
the dynamic behaviors of wind power is modeled by AR
time series. Thus, at any time period t, given the historical
wind power data, denoted by x[1:t−1] = (x1, . . . , xt−1), the
probabilistic forecast for xt is

f(xt|x[1:t−1], F )

=

+∞∑
i=1

p(st = i|x[1:t−1])h(xt|x[1:t−1], θθθst , st = i) (1)

with the conditional probability of st = i

p(st = i|x[1:t−1]) =

+∞∑
j=1

p(st = i|st−1 = j)p(st−1 = j|x[1:t−1])

where h(·) denotes the AR time series kernel specified by
parameters θθθi characterizing the dynamic behaviors of wind
power when st = i.

The nonparametric IMSAR can automatically adapt the
model complexity to the wind power data. It can capture
the rich properties, including non-stationarity, multi-modality,
skewness, tail and serial dependence.

To support the inference and implementation, a hierarchi-
cal Dirichlet process (HDP) is used to represent IHMM;
see the introduction on HDP in [30]. The prior for state
transition probabilities is modeled by the global DP in the
hierarchical model, denoted by G0 ∼ DP(α,Gθθθ), where
α is the concentration parameter and Gθθθ represents the
prior distribution for parameters θθθ. Based on the defini-
tion of DP in [31], the random distribution G0 over any
finite measurable partitions B1, . . . , Br of the space of θθθ
follows a Dirichlet distribution,

(
G0(B1), . . . , G0(Br)

)
∼

Dirichlet
(
αGθθθ(B1), . . . , αGθθθ(Br)

)
. We can write G0 =∑+∞

`=1 π`δθθθ` , where π` is the probability staying in state `
which has the wind power dynamic behaviors specified by
parameters θθθ`, and δθθθ` denotes a Dirac function at θθθ`. Then,
since underlying meteorological conditions are shared by state
variables st with t = 1, 2, . . ., a set of state-conditional DPs,
Gi|G0, η ∼ DP(η,G0), is used to model the prior transition
probabilities from current state i to the next state for IHMM,
which is statistically centering around G0 with η measuring
the concentration.

Since the real-world data are assumed to be one sample
path realization from the physical stochastic process {xt}, the
current state st could take different values. Up to the time
t, suppose that there are K meteorological states visited by
x[1:t], called active states. The next state st+1 can move to any
of these K active states or a new state. The set of potential
next state is shared by transitions from different values of
current state st, and the prior of global transition probabilities
πππ = {πj}K+1

j=1 of st+1 = j for j = 1, . . . ,K + 1 does not
depend on the meteorological conditions of the current state.
As K → +∞, the prior of global probability measure becomes
a stick-breaking process, πππ ∼ Stick(α); see [32].
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Then, the state-conditional transition probability from state
st = i to next state, denoted by pppi = {pij}K+1

j=1 for i =
1, . . . ,K, has the prior belief modeled by,

pppi|πππ ∼ Dirichlet(ηπ1, . . . , ηπK , ηπK+1) (2)

with η controlling the impact of the global probability measure
πππ on each transition distribution pppi. As K → +∞, the prior
can be written as pppi|πππ ∼ DP(η,πππ).

Therefore, in the IMSAR, IHMM models the underlying
state transition and AR time series kernel models the dynamic
behaviors of wind power at each state. With the HDP repre-
sentation for IHMM, the IMSAR model F is written as

xt = φ0(st) +

p∑
j=1

φj(st)xt−j + σ(st)εt

θθθst ≡ {φ0(st), . . . , φp(st), σ
2(st)} ∼ Gθθθ

st|st−1, {pppi}+∞i=1 ∼ pppst−1

pppi|πππ ∼ DP(η,πππ)

πππ ∼ Stick(α)

(3)

where εt ∼ N (0, 1) with N (a, b2) denoting a normal dis-
tribution with mean a and variance b2. At each state st, the
AR process with parameters θθθst models the local dynamic
behaviors of wind power, and θθθst has the prior Gθθθ, as shown
in the first two equations in (3). The state transition model for
{st} has the HDP prior as shown in the last three equations.

B. Forecast Uncertainty Quantification

At the current time, denoted by T , the underlying stochastic
model for {xt} is unknown and estimated by finite historical
data, denoted by x[1:T ] = (x1, . . . , xT ). By applying the
Bayes rule, the model uncertainty is quantified by the posterior
distribution,

p(F |x[1:T ]) ∝ p(F )p(x[1:T ]|F ),

where p(F ) and p(x[1:T ]|F ) represent the prior belief on the
model and the likelihood of wind power data.

When the model estimate F is used for the τ -step ahead
probabilistic forecast by p(x[T+1:T+τ ]|x[1:T ], F ), the posterior
predictive distribution,

p(x[T+1:T+τ ]|x[1:T ])

=

∫
p(x[T+1:T+τ ]|x[1:T ], F )p(F |x[1:T ])dF, (4)

can characterize the overall forecast uncertainty with
p(F |x[1:T ]) quantifying the model estimation error and
p(x[T+1:T+τ ]|x[1:T ], F ) quantifying the prediction uncertainty
induced by the inherent stochastic uncertainty of wind
power generation. The dynamic behaviors learning through
p(F |x[1:T ]) can be used to improve the prediction accuracy.

Given the historical data x[1:T ], suppose that there are K
active states. Let Ti = {t : st = i} be all the time periods with
st = i, let mmm = (m1, . . . ,mK) with mi recording the number
of visits to state i, and let NNN denote the transition matrix with
Ni,j recording the number of transitions from state i to state
j for i, j = 1, . . . ,K.

Then, we derive the conditional posterior distributions for
the stochastic model of {xt} in (3), which will be used
in the sampling procedure in Section III-C to generate the
posterior samples from p(F |x[1:T ]). Let the prior for φφφ(i) =
[φ0(i), φ1(i), . . . , φp(i)]

> with i = 1, . . . ,K to be a multi-
variate Normal distribution with mean µµµφ = µφ1(p+1)×1 and
covariance matrix Σφ = σ2

φI(p+1)×(p+1), and let the prior
for σ2(i) to be an Inverse Gamma distribution, denoted by
σ2(i) ∼ IG(a2 ,

b
2 ), which specifies Gθθθ in (3), where µφ, σφ,

a and b are hyper-parameters, and I is an identity matrix. Let
x̃xxt = [1, xt−1, . . . , xt−p]. Let xxx[Ti] denote a (mi×1) vector of
xt with t ∈ Ti, andXXX(i) denote the corresponding mi×(p+1)
regressors matrix having each row to be x̃xxt with t ∈ Ti.

By following [33], when st = i, the conditional posteriors
for the AR parameters φφφ(i) and σ2(i) are,

φφφ(i)|σ(i),x[1:T ] ∼ N (A−1B,A−1)

σ2(i)|φφφ(i),x[1:T ] ∼ IG
(
a+mi

2
,
b+ c

2

)
(5)

where

A = Σ−1φ +XXX(i)>XXX(i)/σ2(i)

B = Σ−1φ µµµφ +XXX(i)>xxx[Ti]/σ
2(i)

c = xxx>[Ti]
xxx[Ti] − 2φφφ(i)>XXX(i)>xxx[Ti] +φφφ(i)>XXX(i)>XXX(i)φφφ(i).

In the case studies, we use the non-informative priors with
hyper-parameters a = 1, b = 1 and µφ = 0, σφ = 100.

Given the HDP representation in (3), the conditional pos-
terior for the historical states s[1:T ] = (s1, . . . , sT ) is derived
by following [34],

p(st = i|x[1:T ],πππ, st−1, st+1, θθθi)

= C0p(st = i|πππ, st−1)p(st+1|πππ, st = i)p(xt|st = i, θθθi,x[1:t−1])

=

C0
ηπi+Nst−1,i

η+mst−1

ηπst+1
+Ni,st+1

η+mi
f(xt|θθθi), 1 < t < T

C0
ηπi+Nst−1,i

η+mst−1
f(xt|θθθi), t = T

(6)

and p(s1 = 1) = 1, where

f(xt|θθθi) =
1√

2πσ(i)
exp

−
(
xt − φ0(i)−

∑p
j=1 φj(i)xt−j

)2
2σ2(i)


and C0 is a normalizing constant shared by all st = i to
guarantee that

∑K+1
i=1 p(st = i|x[1:T ],πππ, st−1, st+1, θθθi) = 1.

Given the prior πππ ∼ Stick(α), the conditional posterior for
πππ is derived by following [30],

πππ|s[1:T ] ∼ Dirichlet(m1, . . . ,mK , α). (7)

Then, given πππ and the prior in (2), the transition probability
pppi for i = 1, . . . ,K has the conditional posterior distribution

pppi|πππ ∼ Dirichlet(ηπ1 +Ni,1, . . . , ηπK +Ni,K , ηπK+1). (8)

According to [30], in the case studies, we set α = 1 and
η = 1 so that the priors do not have an obvious impact on the
conditional posterior distributions in (7) and (8).
C. A Sampling Procedure for Probabilistic Forecast

In this section, we propose a sampling procedure to generate
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scenarios for wind power probabilistic forecast. Given the
historical data x[1:T ], we first provide a Gibbs sampling
procedure in Algorithm 1 to generate posterior samples,
F (b) ∼ p(F |x[1:T ]) with b = 1, . . . , B, quantifying the fore-
cast model estimation uncertainty; see [35] for the introduction
of Bayesian inference and Gibbs sampling. Then, by drawing
samples of wind power from p(x[T+1:T+τ ]|x[1:T ], F

(b)), we
generate scenarios from the posterior predictive distribution
p(x[T+1:T+τ ]|x[1:T ]) quantifying the overall forecast uncer-
tainty and further construct a PI by following Algorithm 2.

Algorithm 1: Gibbs Sampling Procedure to Generate
Posterior Samples for the IMSAR Forecast Model

1 Initialize the states s[1:T ] with st = t. Initialize πππ by
generating a sample from the conditional posterior,
Dirichlet(1(1×T ), α); see (7). Record the transition
matrix NNN and the counter vector mmm.

2 for t = 2, . . . , T do
3 Set Nst−1,st = Nst−1,st − 1,

Nst,st+1 = Nst,st+1 − 1, and mst = mst − 1.
Update the AR parameters θθθst according to (5).
Set K as the number of unique values in the state
set s[1:T ] excluding st.

4 Sample a new set of AR model parameters θθθK+1

from Gθθθ.
5 Sample st from p(st = k|x[1:T ],πππ, st−1, st+1, θθθk)

by using (6) for k = 1, . . . ,K + 1. If st = K + 1,
let K = K + 1, append an empty column and an
empty row to the matrix NNN , append a new
element 0 to mmm.

6 Set Nst−1,st = Nst−1,st + 1,
Nst,st+1 = Nst,st+1 + 1 and mst = mst + 1

7 Update the AR parameters θθθst according to (5).
8 end
9 for k = 1, . . . ,K do

10 if mk = 0, remove the k-th state from NNN , mmm and
πππ, and also remove the AR parameters θθθk. Let
K = K − 1.

11 end
12 Update πππ based on (7).
13 Update pppi for i = 1, . . . ,K based on (8). Generate
pppK+1 by using (2).

14 Repeat Steps 2–13 until convergence, and then record
B posterior samples of IMSAR model with F (b)

specified by parameters {Θ(b),P(b)} for
b = 1, . . . , B, where Θ(b) ≡ {θθθ1, . . . , θθθK , θθθK+1} are
the AR parameters and P(b) is a probability transition
matrix with the i-th row to be pppi for
i = 1, . . . ,K + 1, where θθθK+1 is the average of
samples from the prior Gθθθ. And, record the latent
states s(b)T from the corresponding b iteration.

Given the conditional posteriors for the IMSAR model as
shown in (5)–(8), we provide a Gibbs sampling procedure
described in Algorithm 1 to generate B posterior samples of
the forecast model, F (b) ∼ p(F |x[1:T ]) for b = 1, . . . , B.
In Step 1, we initialize the states s[1:T ] and πππ. In Steps 2–
8, for each t = 1, . . . , T , we update the state st and θθθst by
sampling from the conditional posteriors in (6) and (5). In

Steps 9–11, we update the number of active states K. Then,
we update πππ and pppi for i = 1, . . . ,K + 1 in Steps 12–13.
Notice that since there is no transition from the inactive or
new state K + 1 occurring in x[1:T ], the transition probability
pppK+1 follows the prior in (2). As all the inactive states share
the same prior, the state K + 1 can be regarded as a group
representing inactive states. Thus, we approximate θθθK+1 by
the average of samples from the prior Gθθθ according to [36].
The probability of new state is α/(T + α). The procedure is
repeated until convergence, and then record F (b) and s(b)T for
b = 1, . . . , B.

In Algorithm 2, at each F (b) with b = 1, . . . , B,
we generate m sample paths of X[T+1:T+τ ] from
p(x[T+1:T+τ ]|x[1:T ], F

(b)). Then, we can get Bm samples
of x[T+1:T+τ ] from p(x[T+1:T+τ ]|x[1:T ]) accounting for
both stochastic uncertainty and model estimation error. Since
the samples of xT+h with h = 1, . . . , τ can be used to
estimate the distribution p(xT+h|x[1:T ]), we can construct the
(1− α?)100% two-sided percentile PI for xT+h,

PI(xT+h) ≡ [qα?/2(xT+h), q1−α?/2(xT+h)],

quantifying the forecast uncertainty, where qγ(xT+h) ≡
inf{q : FXT+h

(q|x[1:T ]) ≥ γ} for γ = α?/2, 1 − α?/2,
and FXT+h

(·|x[1:T ]) represents the cumulative distribution
function for p(xT+h|x[1:T ]). The PI(xT+h) can be estimated
by using the α?/2-th and (1−α?/2)-th order statistics of the
Bm scenarios, x(I)

T+h with I = 1, . . . , Bm, in Equation (9).

Algorithm 2: Procedure to Generate Scenarios
from the Posterior Predictive Distribution
p(x[T+1:T+τ ]|x[1:T ]) and Construct (1 − α?)100%
Two-sided Percentile PI for xT+h with h = 1, . . . , τ
Quantifying the Forecasting Uncertainty

1 Specify m and set I = 0.
2 for b = 1, . . . , B and i = 1, . . . ,m do
3 Let I = I + 1.
4 for h = 1, . . . , τ do
5 Generate a sample of sT+h from P

(b)
sT+h−1,sT+h .

6 Generate a scenario of xT+h,
x
(I)
T+h = φ

(b)
0 (sT+h) +∑p

j=1 φ
(b)
j (sT+h)xT+h−j + σ(b)(sT+h)ε.

7 end
8 end
9 Build the posterior predictive distribution

p(xT+h|x[1:T ]) by using Bm samples of xT+h from
Steps 2-8 for h = 1, . . . , τ .

10 Report a (1− α?)100% two-sided percentile PI for
xT+h with h = 1, . . . , τ ,

P̂I(xT+h) =
[
x
[d(α?/2)Bme]
T+h , x

[d(1−α?/2)Bme]
T+h

]
(9)

where x[1]T+h ≤ x
[2]
T+h ≤ . . . ≤ x

[Bm]
T+h are the order

statistics of all samples x(I)T+h with I = 1, . . . , Bm.

IV. EMPIRICAL STUDY

In this section, we use the year 2006 hourly wind power data
from a hypothetical site in Illinois to compare the performance
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of our approach with the persistence model [37], the MSAR
model [14], the TVQR model [19] and the BELM [22]. The
dataset is from the Eastern Wind Integration and Transmission
Study provided by NREL [38]. Since the raw data, denoted by
{x∗t }, are in the range (0, 1), by following [27], we take the
logit transformation, xt = log(

x∗
t

1−x∗
t
), so that the support of xt

is on the whole real line. After predicting xt+h, we transform
it back to x∗t+h.

A. Overall Performance for Wind Power Forecasting

To evaluate the behaviors of various approaches, we perform
three-step ahead probabilistic prediction by using L = 1000
consecutive sequences of hourly wind power. To study the
impact of forecast model estimation uncertainty, each sequence
consists of historical data with length T = 100, 500, denoted
by x[`−T+1:`] with ` = 0, . . . , L− 1. By following the proce-
dure described in Section III-C, we can generate the scenarios
for x`+h from the predictive distribution p(x`+h|x[`−T+1:`])
for h = 1, 2, 3.

To evaluate the performance of the probabilistic forecast,
three metrics are considered: skill score, coverage and sharp-
ness of PIs. Skill score (SC) proposed by [39] gives a com-
prehensive measurement of a predictive distribution, denoted
by ft, with the real world data xt. It is defined as

SC(ft, xt) =

J∑
j=1

(ξ(αj) − αj)(xt − q
(αj)
t ),

where αj for j = 1, . . . , J is a sequence of quantile levels,
q
(αj)
t is the αj-th quantile of the predictive distribution ft, and
ξ(αj) is an indicator variable,

ξ(αj) =

{
1 if xt < q

(αj)
t

0 otherwise
.

In the skill score, for a high quantile percentage α, large
penalty is taken if xt > q

(α)
t , and for a low quantile percentage

α, large penalty is taken if xt < q
(α)
t . The maximum value of

SC is 0 when ft concentrates at the real world realization xt.
A larger SC denotes better forecasting performance.

In the case studies, we use a sequence of quantiles with
(α1, . . . , α99) evenly distributed on [0.01, 0.99], which repre-
sent the global information of the predictive distribution. We
record the average SC obtained from L testing sequences of
wind power with h = 1, 2, 3

SC(h) =
1

L

L−1∑
`=0

SC
(
p(x`+h|x[`−T+1:`]), x`+h

)
.

We compare the performance of IMSAR with MSAR [14],
TVQR [19], ELM [22] and the persistence model [37] which
has the empirical predictive distribution for x`+h specified
by {x` − x`−i + x`−i−h : i = 0, . . . , T − h − 1}. For
MSAR, according to [14], we set the number of states to
be K0 = 1, 3, 5. The R package “NHMSAR” provided in
[14] is used to train the MSAR model. Our empirical study
indicates that the choice of p does not have significant impact
on the forecasting performance of IMSAR and MSAR. Thus,
we set p = 1. To build the posterior predictive distribution

TABLE I
SKILL SCORE RESULTS OF PREDICTIVE DISTRIBUTIONS

T = 100 h = 1 h = 2 h = 3
IMSAR -1.120 -2.064 -2.983

Persistence -1.195 -2.357 -3.337
MSAR (K0 = 1) -1.846 -3.534 -4.962
MSAR (K0 = 3) -1.385 -2.606 -3.606
MSAR (K0 = 5) -1.266 -2.424 -3.453

TVQR -1.313 -2.530 -3.648
BELM -1.297 -2.385 -3.922
T = 500 h = 1 h = 2 h = 3
IMSAR -0.968 -1.774 -2.763

Persistence -1.212 -2.542 -3.408
MSAR (K0 = 1) -1.370 -2.917 -4.053
MSAR (K0 = 3) -1.096 -2.323 -3.116
MSAR (K0 = 5) -0.914 -2.187 -2.957

TVQR -1.127 -2.445 -3.257
BELM -0.980 -2.034 -3.155

and construct the PIs quantifying the forecast uncertainty by
following the procedure in Section III-C, we let B = 100 and
m = 100. For TVQR, we use the R package “QRegVCM”
developed based on [40]. For BELM, we use the R package
“elmNN” to train the extreme learning machines and generate
B = 1000 bootstrapped samples to quantify both the model
estimation uncertainty and stochastic uncertainty.

Table I shows the SC results of predictive distributions ob-
tained from different approaches. IMSAR provides the largest
SC in all situations. The persistence model works well when
the size of historical data is small, but its performance does
not improve much when there are more historical data.

Another metric to evaluate the performance of probabilistic
forecasting is the coverage of PI for h-step ahead prediction,

Coverage(x`+h) =
1

L

L−1∑
`=0

1 (x`+h ∈ PI(x`+h))

where 1(·) is an indicator function. Table II shows the cover-
age of 99%, 95% and 90% percentile two-sided symmetric PIs
from different approaches. Since the MSAR doesn’t consider
the forecast model estimation uncertainty, it underestimates
the forecast uncertainty and its PI coverage is much less than
the desired confidence level. TVQR also tends to have the
under-coverage issue. The PI widths obtained from different
approaches are reported in Table III to evaluate the sharpness
of probabilistic forecasting. MSAR provides narrower PIs
since it underestimate the forecast uncertainty. Notice that
a narrower PI doesn’t necessarily indicates more accurate
forecasting. It should be interpreted together with the coverage.

We also report the posterior mode of the number of active
states for IMSAR, denoted as K̂. Table IV shows the results
obtained by using L = 1000 wind power datasets with
T = 100, 500. Notice that the number of active states depends
on the real-world data. As the amount of historical data, T ,
increases, the number of active states also increases.

We record the mean CPU time of IMSAR to evaluate its
computational cost. Algorithms 1 and 2 are implemented in
“R” software, and ran on one node of the DRP cluster with
two eight-core 2.6 GHz Intel Xeon E5-2650 processors and
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TABLE II
COVERAGE OF PIS OBTAINED FROM DIFFERENT APPROACHES

99% PI

T = 100 h = 1 h = 2 h = 3
IMSAR 0.985 0.974 0.964

Persistence 0.976 0.968 0.967
MSAR (K0 = 1) 0.578 0.588 0.531
MSAR (K0 = 3) 0.879 0.873 0.907
MSAR (K0 = 5) 0.924 0.923 0.919

TVQR 0.954 0.922 0.886
BELM 0.961 0.944 0.929
T = 500 h = 1 h = 2 h = 3
IMSAR 0.984 0.981 0.975

Persistence 0.989 0.982 0.981
MSAR (K0 = 1) 0.602 0.576 0.552
MSAR (K0 = 3) 0.853 0.837 0.841
MSAR (K0 = 5) 0.915 0.910 0.916

TVQR 0.984 0.947 0.900
BELM 0.979 0.968 0.957

95% PI

T = 100 h = 1 h = 2 h = 3
IMSAR 0.953 0.942 0.935

Persistence 0.940 0.938 0.943
MSAR (K0 = 1) 0.557 0.554 0.481
MSAR (K0 = 3) 0.828 0.823 0.844
MSAR (K0 = 5) 0.905 0.912 0.908

TVQR 0.927 0.893 0.881
BELM 0.934 0.923 0.916
T = 500 h = 1 h = 2 h = 3
IMSAR 0.959 0.946 0.937

Persistence 0.951 0.948 0.944
MSAR (K0 = 1) 0.590 0.574 0.533
MSAR (K0 = 3) 0.825 0.822 0.840
MSAR (K0 = 5) 0.896 0.906 0.903

TVQR 0.924 0.898 0.875
BELM 0.938 0.925 0.919

90% PI

T = 100 h = 1 h = 2 h = 3
IMSAR 0.919 0.904 0.867

Persistence 0.891 0.880 0.886
MSAR (K0 = 1) 0.504 0.512 0.476
MSAR (K0 = 3) 0.667 0.701 0.683
MSAR (K0 = 5) 0.730 0.719 0.727

TVQR 0.889 0.857 0.828
BELM 0.885 0.872 0.860
T = 500 h = 1 h = 2 h = 3
IMSAR 0.905 0.898 0.882

Persistence 0.898 0.897 0.895
MSAR (K0 = 1) 0.529 0.515 0.482
MSAR (K0 = 3) 0.714 0.718 0.710
MSAR (K0 = 5) 0.789 0.768 0.789

TVQR 0.891 0.859 0.826
BELM 0.894 0.881 0.870

128GB of system memory. The CPU time of IMSAR with
T = 100 historical data is on average 6 seconds with the
standard deviation as 0.2 seconds. The CPU time with T =
500 is 29 seconds with the standard deviation as 1.6 seconds.

B. Robustness Performance

Since there could exist sudden changes in wind power due to
the fluctuation of meteorological conditions, we are interested
in the robustness performance of various approaches in such
situations. For the sudden changes, we follow the definition
of wind ramp in [41], that the change of wind power during
∆T = 1 hour is larger than a threshold Pval = 0.25 on the
[0, 1] unit. According to this definition, there are 9 wind ramps

TABLE III
WIDTH OF PIS OBTAINED FROM DIFFERENT APPROACHES

99% PI

T = 100 h = 1 h = 2 h = 3
IMSAR 0.335 0.474 0.549

Persistence 0.301 0.502 0.641
MSAR (K0 = 1) 0.099 0.137 0.165
MSAR (K0 = 3) 0.151 0.271 0.371
MSAR (K0 = 5) 0.160 0.300 0.424

TVQR 0.256 0.370 0.458
BELM 0.283 0.424 0.570
T = 500 h = 1 h = 2 h = 3
IMSAR 0.302 0.451 0.528

Persistence 0.302 0.484 0.633
MSAR (K0 = 1) 0.094 0.132 0.160
MSAR (K0 = 3) 0.148 0.259 0.355
MSAR (K0 = 5) 0.156 0.281 0.406

TVQR 0.249 0.352 0.449
BELM 0.279 0.406 0.558

95% PI

T = 100 h = 1 h = 2 h = 3
IMSAR 0.221 0.324 0.393

Persistence 0.214 0.379 0.515
MSAR (K0 = 1) 0.073 0.114 0.149
MSAR (K0 = 3) 0.136 0.234 0.291
MSAR (K0 = 5) 0.141 0.257 0.340

TVQR 0.206 0.288 0.409
BELM 0.228 0.365 0.489
T = 500 h = 1 h = 2 h = 3
IMSAR 0.203 0.298 0.362

Persistence 0.204 0.343 0.489
MSAR (K0 = 1) 0.063 0.097 0.122
MSAR (K0 = 3) 0.126 0.228 0.284
MSAR (K0 = 5) 0.132 0.240 0.326

TVQR 0.196 0.288 0.371
BELM 0.208 0.349 0.454

90% PI

T = 100 h = 1 h = 2 h = 3
IMSAR 0.186 0.259 0.331

Persistence 0.172 0.306 0.416
MSAR (K0 = 1) 0.063 0.088 0.106
MSAR (K0 = 3) 0.104 0.195 0.276
MSAR (K0 = 5) 0.111 0.217 0.307

TVQR 0.165 0.253 0.276
BELM 0.179 0.276 0.362
T = 500 h = 1 h = 2 h = 3
IMSAR 0.164 0.262 0.347

Persistence 0.181 0.315 0.434
MSAR (K0 = 1) 0.060 0.084 0.103
MSAR (K0 = 3) 0.109 0.197 0.275
MSAR (K0 = 5) 0.114 0.215 0.304

TVQR 0.165 0.237 0.268
BELM 0.164 0.261 0.353

TABLE IV
POSTERIOR MODE OF THE NUMBER OF ACTIVE STATES K FOR IMSAR

K̂ 1 2 3 4 5 6 7 8 9 ≥ 10
T = 100 3 386 549 60 2 0 0 0 0 0
T = 500 0 0 2 183 319 258 141 70 21 6

during the year of 2006. We compare the performance of all
the approaches in forecasting with T = 100 historical data.

We report the average skill score over the 9 datasets in
Table V. Table VI records the mean of absolute forecast error,
where the error is defined as Error = |x̂T+h − xT+h| for
h = 1, 2, 3. For IMSAR and MSAR, we use the mean of the
predictive distributions as the point forecast x̂T+h. For TVQR
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we use the median response, and for persistence model we
use x̂T+h = xT . The results in Tables V and VI demonstrate
that IMSAR can provide much better probabilistic forecast and
prediction accuracy when there are sudden changes.

TABLE V
SKILL SCORE OF FORECASTING FOR THE DATASETS WITH WIND RAMP

Skill Score h = 1 h = 2 h = 3
IMSAR -3.892 -4.767 -5.314

Persistence -7.921 -9.977 -11.327
MSAR (K0 = 1) -4.725 -6.348 -6.748
MSAR (K0 = 3) -4.014 -5.868 -6.270
MSAR (K0 = 5) -3.788 -5.363 -5.209

TVQR -3.873 -5.735 -6.437
BELM -4.195 -5.624 -6.092

TABLE VI
PREDICTION ERROR FOR THE DATASETS WITH WIND RAMP

Error h = 1 h = 2 h = 3
IMSAR 0.122 0.147 0.164

Persistence 0.233 0.223 0.248
MSAR (K0 = 1) 0.140 0.177 0.181
MSAR (K0 = 3) 0.127 0.158 0.168
MSAR (K0 = 5) 0.124 0.152 0.163

TVQR 0.122 0.155 0.170
BELM 0.129 0.153 0.166

We also use a representative dataset with wind ramp to
illustrate the probabilistic forecast obtained by IMSAR. We
predict the wind power for hours 4353 to 4355, denoted by
xT+h with h = 1, 2, 3, using the historical data x[1:T ] from
the 4253-th to the 4352-th hour. The wind power data and the
prediction intervals are plotted in Fig. 1. The blue solid line
represent the real wind power and the red dash lines are the
upper and lower bounds of the 95% PI.

Fig. 1. Wind Power Data with Sudden Changes
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Fig. 2. Posterior Predictive Distributions p(xT+h|x[1:T ]) with h = 1, 2, 3.
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The predictive distributions p(xT+h|x[1:T ]) with h = 1, 2, 3
are plotted in Fig. 2. As h increases, the prediction uncertainty

increases. These plots demonstrate that the prediction distribu-
tions are right skewed and have heavy tails. It is risky to make
operational decisions without well quantifying the forecast
uncertainty. The whole distribution should be considered to
provide a reliable guidance on real-time risk management.

V. CONCLUSION

In this paper, we introduce a Bayesian nonparametric
framework for short-term wind power probabilistic forecast.
It can provide the predictive distribution accounting for both
stochastic uncertainty and forecast model estimation uncer-
tainty. Combining with scenario-based stochastic optimization,
it allows us to provide reliable operational decisions for smart
power grids hedging against wind power forecast uncertainty.
The case studies on the wind power data from NREL demon-
strate that our approach can provide more accurate, robust
and reliable predictive distribution. When the wind power
has sudden changes and large fluctuations, the advantages of
our approach are more obvious. The potential future research
directions include: (1) develop an online predictive distribution
updating for wind power; (2) develop an efficient forecast
framework for dependent wind power data from many firms.
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