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ABSTRACT  
AIMS: Comorbid chronic conditions are common among people with type 2 diabetes. We 

developed an Artificial Intelligence algorithm, based on Reinforcement Learning (RL), for 

personalized diabetes and multimorbidity management with strong potential to improve 

health outcomes relative to current clinical practice. 

METHODS: We modeled glycemia, blood pressure and cardiovascular disease (CVD) 

risk as health outcomes using a retrospective cohort of 16,665 patients with type 2 

diabetes from New York University Langone Health ambulatory care electronic health 

records in 2009 to 2017. We trained a RL prescription algorithm that recommends a 

treatment regimen optimizing patients’ cumulative health outcomes using their individual 

characteristics and medical history at each encounter. The RL recommendations were 

evaluated on an independent subset of patients.  

RESULTS: The single-outcome optimization RL algorithms, RL-glycemia, RL-blood 

pressure, and RL-CVD, recommended consistent prescriptions with what observed by 

clinicians in 86.1%, 82.9% and 98.4% of the encounters. For patient encounters in which 

the RL recommendations differed from the clinician prescriptions, significantly fewer 

encounters showed uncontrolled glycemia (A1c>8% on 35% of encounters), uncontrolled 

hypertension (blood pressure > 140mmHg on 16% of encounters) and high CVD risk (risk > 

20% on 25% of encounters) under RL algorithms than those observed under clinicians 

(43%, 27% and 31% of encounters respectively; all P < 0.001).   

CONCLUSIONS: A personalized reinforcement learning prescriptive framework for type 

2 diabetes yielded high concordance with clinicians’ prescriptions and substantial 

improvements in glycemia, blood pressure, cardiovascular disease risk outcomes.  



Key Points 

• Artificial intelligence (AI) prescription algorithms have been successfully applied to 

single disease problems, but previous applications have not considered comorbid 

conditions, pharmacological treatments, treatment histories, and other individual 

characteristics that are important for personalized diabetes management. 

• We trained and evaluated a series of AI algorithms to optimize patients’ glycemia, 

blood pressure and CVD risk outcomes, either individually or jointly, using a 

retrospective cohort of T2DM patients from an ambulatory care electronic health 

records database (2009-2017). 

• When optimizing glycemia, blood pressure and CVD risk individually, the 

algorithms recommended prescriptions consistently with clinicians’ decisions in 

86.1%, 82.9% and 98.4% of patient encounters. In cases where the AI 

recommendation differed from the clinician’s prescription, health outcomes were 

significantly improved.  

• The RL algorithm can be integrated into EHR platforms to assist physicians with 

dynamic real-time suggestions on personalized treatment paths. 

  



1. INTRODUCTION 

Comorbid chronic conditions are common among people with Type 2 Diabetes (T2DM) 

(1). Hypertension (HTN) and atherosclerotic cardiovascular disease (CVD) are the two 

most common multimorbidities for T2DM patients (2). Therefore, the need to address 

comorbid chronic conditions, in addition to patients’ diabetes-specific treatment goals (3) 

poses a substantial challenge for effective T2DM management. Although improvements 

in glycemic monitoring and control have been documented in several large systems of 

care, and more widespread use of treatments such as angiotensin-converting enzyme 

(ACE) inhibitors and aspirin have decreased patients’ risk of cardiovascular death, the 

current commonly used standard of care and guidelines are usually built around single 

diseases (4). Despite the increasing numbers of patients with multimorbidity, such 

patients are usually excluded from randomized controlled trials (5-7). A systematic review 

of managing patients with multimorbidity identified only 10 randomized trials worldwide 

and highlighted the paucity of research into interventions to improve outcomes for patients 

with multimorbidity (8). On the other hand, there is a large volume of evidence suggesting 

that the response to T2DM treatment, HTN treatment and CVD prevention differs between 

population subgroups (9; 10). Therefore, the need for an individualized approach is 

especially pressing given the variety of comorbid conditions, pharmacological treatments, 

individual treatment histories, and other individual characteristics that may inform 

treatment selection.   

 

We provide an artificial intelligence (AI) prescription algorithm, based on reinforcement 

learning (RL), which is able to dynamically suggest personalized optimal treatments for 



patients with T2DM to manage their multimorbidity based on evidence from patients’ 

electronic health records (EHRs). Reinforcement learning has been successfully applied 

in the past to single disease problems, such as blood glucose control (11), HIV therapy 

(12), cancer treatment (13), anemia treatment in hemodialysis patients (14), treatment 

strategies for sepsis in intensive care (15) and personalized regime of sedation dosage 

and ventilator support for patients in Intensive Care Units (ICUs) (12). Prescriptive 

algorithms using regression trees and 𝑘 nearest neighbors (kNN) have previously shown 

great potential in personalized diabetes management (16; 17).  

Our approach leverages the power of RL and abundant data in the EHR system to 

dynamically recommend treatment prescriptions, which are personalized based on 

patient characteristics, including age, sex, race, BMI, blood pressure (BP), lab tests, 

duration of T2DM and treatment history. In our setting, we first apply RL to optimize 

glycemic control, BP control, and CVD prevention separately, and then study the potential 

of RL for multimorbidity management by optimizing all three outcomes jointly. We 

evaluate the effectiveness of the personalized treatment recommendations made by RL 

against the observed clinician’s treatment by estimating patients’ outcomes based on the 

outcomes of similar patients in the EHR database.  

 

2. RESEARCH DESIGN AND METHODS 

2.1 Study Design and Participants  

We used ambulatory care EHR samples for T2DM patients from New York University 

Langone Health (NYULH-EHR) to derive and validate the RL algorithm. Eligible patients 

have had at least one encounter with an NYULH ambulatory primary care physician 



between 2009-2017 and have been selected by a T2DM rule-based phenotyping 

algorithm, defined as the following criteria: (1) having at least two encounters with an 

International Classification of Diseases (ICD)-10 code for T2DM, or (2) having ≥ two 

abnormal hemoglobin A1c (A1c) (≥ 6.5%) and at least one encounter with an ICD-10 code 

for T2DM, or (3) having a prescription for a T2DM medication, excluding metformin and 

acarbose. We excluded patients seen for consultation only and patients in emergency 

department, inpatient or specialist settings, as these lacked consistent documentation of 

T2DM across encounters. We randomly selected 60% of the eligible patients as the 

training cohort to develop the RL algorithm and reserved the remaining 40% patients as 

the test cohort to evaluate the performance of the RL algorithm. This study was approved 

by the NYULH IRB and the data were de-identified to ensure anonymity.  

 

For each patient, we had access to demographic data, including age, sex, race, ethnicity 

and smoking status, as well as the following biomarkers: systolic BP (SBP), diastolic BP 

(DBP), body mass index (BMI), HbA1c, total cholesterol (TC), low-density lipoprotein 

(LDL), high-density lipoprotein (HDL), creatinine, triglycerides and estimated glomerular 

filtration rate (eGFR). In NYULH-EHR, 1% of samples had missing vitals including blood 

pressures and BMI, 8% missing HbA1c, 5-32% missing renal function biomarkers, and 

13% missing lipid biomarkers. Following Lundberg et al.(18), we imputed the missing 

patients’ biomarkers based on the observed values measured in previous encounters. 

Medication prescriptions were first grouped by therapeutic class codes of 

antihyperglycemic, antihypertensive and lipid-lowering, then analyzed by pharmacologic 

subclass. The antihyperglycemic therapeutic class contains nine pharmacologic 

subclasses including PPARs agonist thiazolidinedione (PPARg), insulin release stimulant 



type (INSR), incretin mimetic (GLP-1 receptor agonist) (GLP1), DPP-4 inhibitor and 

biguanide (DPP4-BIG), DPP-4 inhibitors (DPP4), biguanide type (BIG), insulin release 

stimulant and biguanide (INSR-BIG), sodium-glucose cotransport-2 inhibitors (SGLT2) 

and insulins (INSO). The antihypertensive therapeutic class contains ten pharmacologic 

subclasses including angiotensin receptor antagonists (ARA), Potassium-sparing 

diuretics in combination (PSD), alpha/beta-adrenergic blocking agents (ABAB), ACE 

inhibitor with thiazide or thiazide-like diuretic (ACE-TD), angiotensin receptor antagonists 

with thiazide diuretic (ARA-TD), ACE inhibitors (ACE), thiazide and related diuretics (TD), 

beta-adrenergic blocking agents (BAB), calcium channel blocking agents (CCB) and 

angiotensin receptor antagonists with calcium channel blocking agents (ARA-CCB). The 

antihyperlipidemic therapeutic class contains five pharmacologic subclasses including 

bile salt sequestrants (BSS), HMG-CoA reductase inhibitors (HMG), HMG-CoA reductase 

inhibitors and cholesterol absorption inhibitors (HMG-CA), proprotein convertase 

subtilisin/kexin type 9 inhibitors (PCSK9) and lipotropics (LIP).  

2.2 Overview of RL algorithm 

RL algorithms model the course of patients' EHR histories, which includes prescriptions, 

biomarkers and health outcomes changing over time using a Markov decision process 

with key elements including state, action, and reward (15; 19). In this setting, "state" refers 

to the observed patient demographics, laboratory test results at the current encounter 

and their histories of lab tests and prescriptions. "Action" refers to the prescribed 

treatment regimen at the current encounter, which are pharmacologic subclasses or their 

combinations. The result of an action is a numerical reward representing the improvement 

of health outcomes compared to the previous encounter. The cumulative reward is 



defined as the sum of the rewards along the course of EHR encounter records. RL has 

been well established as an efficient AI learning algorithm to maximize cumulative reward 

by selecting an optimal action at each encounter through a learning algorithm called Deep 

Q Networks (20; 21) with a multi-layer (deep) neural network. An important advantage of 

RL is that the action in every encounter is personalized to the patient's individual 

characteristics as they are observed, in a way that optimizes the cumulative reward. In 

this paper, we focus on glycemia (lowering A1c towards 6.5%) control, BP (lowering SBP 

towards 120mmHg) control, and CVD (minimizing CVD risk) prevention. We first optimize 

each outcome individually using three separate RL algorithms, referred to as RL-glycemia, 

RL-BP, and RL-CVD. We then train a multimorbidity management RL algorithm (RL-

multimorbidity) to optimize glycemia, BP and CVD risk simultaneously. The details of state, 

action and reward are described as following: 

• State: a list of observed patient characteristics including age, sex, race, smoking 

status; vitals and lab test values at current encounter and in the past 6 months 

including BMI, weight, SBP, DBP, triglycerides, TC, HDL, LDL, A1c and creatinine; 

prescription history in the past 6 months; and encounter histories including days 

since the previous encounter, and days since the first encounter. 

• Action: The action space consists of the pharmacologic subclasses and their 

combinations, referred to as the treatment regimen. The action space of RL-

glycemia contains 9 pharmacologic subclasses in the antihyperglycemic 

therapeutic class or their combinations. The action space of RL-BP contains 10 

pharmacologic subclasses in the antihypertensive therapeutic class or their 

combinations. The action space of RL-CVD contains 5 pharmacologic subclasses 



in the antihyperlipidemic therapeutic class or their combinations. The action space 

of RL-multimorbidity contains pharmacologic subclasses in all three therapeutic 

classes or their combinations.  

• Reward: The reward of a prescription is a numeric measure of treatment efficacies 

between two consecutive encounters. For RL-glycemia, if A1c<5.6% in both 

encounters, their rewards are zero, otherwise the reward is defined by the 

reduction in A1c. For RL-BP, if patients have no HTN symptom (<120 mmHg) in 

both encounters, the reward is zero, otherwise it is equal to the decrease in SBP. 

For RL-CVD, the reward is the reduction in global CVD Framingham Risk Score 

(FRS) (22), which is a function of age, TC, HDL, SBP, treatment for hypertension, 

smoking, and T2DM status (all yes). Sex-specific risk equations were applied to 

males and females separately. For RL-multimorbidity, the reward is defined as the 

average of standardized rewards values of RL-BP, RL-glycemia, and RL-CVD 

(model and training details in Supplementary Materials).  

2.3 Model Evaluation  

We evaluated the RL-recommended therapy by comparing its effect with the observed 

clinician’s prescriptions on the test cohort of NYULH EHR samples. In each encounter, 

the RL algorithm recommends a treatment regimen for the patient. If the recommendation 

is the same as the observed clinician’s prescription in the data, we say that RL is 

“consistent” with the clinicians. When RL is discrepant with the clinician’s prescription, the 

efficacy of the RL-recommended treatment is not directly observed. For this reason, we 

impute the outcome of the RL-recommended treatment using kNN regression, an 

approach commonly used for causal inference in observational studies (23). In short, the 



imputation works by averaging the outcomes of the 𝑘 most similar patient encounters, in 

terms of patient characteristics, in which the RL-recommended therapy had been 

administered by clinicians. The similarity between patient encounters was estimated by 

Euclidean distance as in Bertsimas et al. (16). To assess the performance of the 

imputation, we first compared imputed outcomes with observed outcomes under 

clinician’s treatments, and found 87-95% correlation between them, indicating that the 

imputation algorithm can effectively estimate unobserved health outcomes (Table 1). We 

varied the number k of nearest neighbors and found the performance of the imputation 

(for any of the three health outcomes) was insensitive when k was between 8 and 10. We 

estimated the efficacy of the recommendations made by RL first in the whole set of test 

samples, then for individual gender, racial and age subgroups.   

Table 1 Counterfactual outcome versus true clinical outcome comparison based on kNN regression. 

Biomarkers Counterfactual Outcome True Outcome Pearson Correlation 

BP Systolic 128.55 (0.017) 128.68 (0.022) 0.89 

BP Diastolic 74.27 (0.010) 74.29 (0.014) 0.89 

Triglycerides 152.85 (0.118) 153.74 (0.14) 0.87 

Total Cholesterol 174.05 (0.056) 174.31 (0.061) 0.93 

HDL Cholesterol 51.37 (0.022) 50.37 (0.024) 0.95 

LDL Cholesterol 92.73 (0.047) 92.85 (0.052) 0.92 

A1c 7.02 (0.002) 7.05 (0.002) 0.92 



2.4 Feature Importance 
To better understand which features have the most impact on treatment 

recommendations, we used SHAP (SHapley Additive exPlanations) (24; 25) to estimate 

and rank the contributions of clinician features explaining RL and clinician prescriptions.  

 

3. RESULTS 

Overall, 16,665 patients in NYULH ambulatory care EHR samples had a query based 

T2DM diagnosis in 2009 to 2017, with 1,278,785 encounters (median 12 encounters per 

patient). The number of T2DM patients was robust to variations in the T2DM phenotyping 

algorithm resulting from changes in the required number of encounters with T2DM ICD-

10s and the medications. The demographic and clinic characteristics of the analysis 

cohort are shown in Table 2. Overall, the patients were 65.6 years old, comprised of 8,278 

females (54.6%). On average, T2DM patients showed A1c 7.1% and SBP 128.9 mmHg. 

Antihyperglycemic, antihypertensive medications and antihyperlipidemic medications 

were prescribed in 665,768 (52.1%), 849,328 (66.4%) and 428,427 (33.5%) encounters 

respectively. The median follow-up time was 2.6 years since T2DM diagnosis 

(interquartile range [IQR]: 1.9-3.9 years). We first trained the RL algorithms using 530,786 

(60%) T2DM patient encounters, and then assessed their performance using the 

remaining 394,447 (40%) T2DM patient encounters.  

Table 2 Demographics and clinic characteristics of NYULH-EHR patients with type 2 diabetes. 

Demographics and clinic characteristics 
Number of Patients 

(N=16,665) 

Age (years, Mean (SD)) 65.62 (13.66) 

Male (N (%)) 6876 (45.37) 

Race (N(%))   

African American 5,146 (33.96) 

native American 55 (0.36) 

Asian 692 (4.57) 



Caucasian (White) 7,888 (52.05) 

smoker (ever and current, (N%)) 1,043 (6.88) 

Systolic Blood Pressure (mmHg, Mean (SD)) 128.93 (14.60) 

Diastolic Blood Pressure (mmHg, Mean (SD)) 74.19 (8.88) 

Body Mass Index (kg/m2, Mean (SD) 31.56 (6.86) 

Triglycerides (mg/dL, Mean (SD)) 155.06 (91.97) 

Creatinine (mg/dL, Mean (SD)) 1.02 (0.44) 

Total Cholesterol (mg/dL, Mean (SD)) 173.37 (39.82) 

Low-density Lipoproteins (mg/dL, Mean (SD)) 91.99 (33.53) 

High-density Lipoproteins (mg/dL, Mean (SD)) 51.00 (15.25) 

A1c (%, Mean (SD)) 7.11 (1.46) 

Medications 
Number of Patient 

Encounters (n=1,278,785) 

Antihyperglycemic Class (N(%)) 665,768 

biguanide type (BIG)  250,438 (37.62) 

insulin release stimulant type (INSR)  110,139 (16.54) 

insulins (INSO)  106,356 (15.97) 

DPP-4 inhibitors (DPP4)  64,090 (9.63) 

DPP-4 inhibitor and biguanide (DPP4-BIG)  53,337 (8.01) 

incretin mimetic (GLP-1 receptor agonist) (GLP1)  35,696 (5.36) 

sodium-glucose cotransport-2 inhibitors (SGLT2)  23,021 (3.46) 

PPARs agonist thiazolidinedione (PPARg)  12,573 (1.89) 

insulin release stimulant and biguanide (INSR-BIG)  10,118 (1.52) 

Antihypertensive Class (N(%)) 849,328 

beta-adrenergic blocking agents (BAB)  200,114 (23.56) 

calcium channel blocking agents (CCB)  151,701 (17.86) 

ACE inhibitors (ACE)  149,561 (17.61) 

angiotensin receptor antagonists (ARA)  138,705 (16.33) 

angiotensin receptor antagonists with thiazide diuretic (ARA-TD)  67,964 (8.00) 

alpha/beta-adrenergic blocking agents (ABAB)  57,426 (6.76) 

thiazide and related diuretics (TD)  57,196 (6.73) 

ACE inhibitor with thiazide or thiazide-like diuretic (ACE-TD)  14,486 (1.71) 

potassium-sparing diuretics in combination (PSD)  6,246 (0.74) 

angiotensin receptor antagonists with calcium channel blocking agents (ARA-
CCB)  

5,929 (0.70) 

lipid-lowering Class (N(%)) 428,427 

HMG-CoA reductase inhibitors (HMG)  379,924 (88.68) 

lipotropics (LIP)  40,173 (9.38) 

bile salt sequestrants (BSS)  5,262 (1.23) 



HMG-CoA reductase inhibitors and cholesterol absorption inhibitors (HMG-CA)  2,286 (0.53) 

proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9)  782 (0.18) 

Categorical variables are summarized with frequencies (percentages) unless otherwise indicated. 
Continuous variables are summarized as the mean (standard deviation) of biomarkers. 

 

Table 3 Performance of RL algorithms with comparison between RL and clinicians for glycemic 

control, hypertension control, and CVD prevention.  

RL-glycemia 

Encounters for which algorithm’s recommendation 
differed from observed Clinician's prescription (N(%)) 

15,578 (13.9) 

 RL-glycemia Clinician's prescription P-value 

A1c (Mean(SE)) 7.80 (0.01) 8.09 (0.01) <0.001 

A1c > 8% (N(%)) 5,421 (34.8) 6,617 (42.5) <0.001 

RL-BP 

Encounters for which algorithm’s recommendation 
differed from observed Clinician's prescription (N(%)) 

20,251 (17.1) 

 RL-BP Clinician's prescription P-value 

SBP(Mean(SE)) 131.77(0.06) 132.35 (0.11) <0.001 

SBP > 140 mmHg (N(%)) 3,256 (16.1) 5,390 (26.6) <0.001 

RL-CVD 

Encounters for which algorithm’s recommendation 
differed from observed Clinician's prescription (N(%)) 

946 (1.6) 

 RL-CVD Clinician's prescription P-value 

FHS (Mean(SE)) 13.65 (0.26) 17.18 (0.36) <0.001 

FHS > 20% (N(%)) 237 (25.1) 299 (31.6) <0.001 

RL- multimorbidity 

Encounters for which algorithm’s recommendation 
differed from observed Clinician's prescription (N(%)) 

102,184 (28.9) 

 RL-multimorbidity Clinician's prescription P-value 

A1c (Mean(SE)) 7.14 (0.003) 7.19 (0.005) <0.001 

A1c > 8% (N(%)) 16,436 (16.08) 20,879 (20.43) <0.001 

SBP (Mean(SE)) 129.40 (0.03) 129.58 (0.05) <0.001 

SBP > 140 mmHg (N(%)) 9,800 (9.59) 20,957 (20.51) <0.001 

FHS (Mean(SE)) 21.89 (0.04) 25.61 (0.05) <0.001 

FHS > 20% (N(%)) 48,283 (47.3) 55,957 (54.8) <0.001 



The performance of the RL algorithms on the test dataset is summarized in Table 3. The 

RL-glycemia algorithm was consistent with clinicians' prescriptions in 86.1% of 

encounters. In the remaining 15,578 (13.9%) encounters, the mean A1c under clinician-

prescription was 8.09% (95% CI: 8.06-8.12), while the mean A1c under RL-glycemia was 

7.80% (95% CI: 7.78-7.82), showing a 0.30% (95% CI: 0.28-0.32) reduction (P<0.001). 

Significantly fewer encounters showed uncontrolled A1c (A1c>8%) under RL-glycemia 

than under clinicians (35% vs 43%, P < 0.001).  The RL-BP algorithm was consistent with 

clinicians’ prescriptions in 82.9% of encounters. In the remaining 20,251 encounters 

(17.1%) with discrepant recommendations, RL-BP achieved a 0.58 mmHg (95% CI: 0.37, 

0.79) reduction in SBP relative to clinicians' prescriptions (131.77 vs 132.35 mmHg, 

P<0.001). Fewer encounters showed uncontrolled HTN (SBP>140mmHg) under RL-BP 

than under clinicians' prescriptions (16% vs 27%, P < 0.001).  The RL-CVD was 

consistent with clinicians’ prescriptions in 98.4% of encounters. In the remaining 946 

encounters (1.6%) with discrepant recommendations from RL and clinicians’, the mean 

FRS reduced 3.53% (95% CI: 2.94, 4.12) under RL-CVD from under clinician-prescription 

(13.65% vs 17.18%, P<0.001), with fewer encounters showing high FRS risk (>20%) (25% 

vs 31%, P < 0.01). These results collectively showed high concordance between the 

optimized RL algorithms and clinicians’ prescriptions for single target management for 

patients with T2DM. However, there were more frequent discrepancies between RL-

multimorbidity and clinicians. The RL-multimorbidity algorithm was consistent with 

clinicians' prescriptions in 71.1% of encounters. In the remaining 102,184 encounters 

(28.9%) with discrepant prescriptions, 16,436 (16.1%), 9,800 (9.6%) and 48,283 (47.3%) 

encounters had uncontrolled A1c, uncontrolled HTN and high FRS risk that were 



significantly lower than observed outcomes under clinician’s prescriptions (20.4%, 20.5% 

and 54.8% respectively).  

To understand when and how RL makes different prescriptions from clinicians, Table 4 

compares consistent and discrepant encounters by patient demographics and clinic 

characteristics. The most significantly associated factor was the severity at the time of the 

encounter. For RL-glycemia, encounters with higher A1c were more likely to have 

different recommendations (average A1c 8.1% for discrepant encounters vs 7.5% for 

consistent encounters, P<0.001). For RL-BP, encounters with higher SBP were more 

likely to have different recommendations (average SBP 132.85 vs 131.00 mmHg, 

P<0.001).  

The efficacy of the RL prescriptive algorithms was consistently observed across T2DM 

patient, gender, racial and age subgroups (Table 5-7). Specifically, African American (AA) 

T2DM patients, and T2DM patients of age older than 60 observed higher efficacies from 

the RL algorithms than clinicians’ prescriptions as compared to the observed efficacies in 

white patients and in patients of age 60 and younger. For example, A1c under RL-

glycemia for AA patients were 0.39% lower than under clinician’s treatment. In contrast, 

A1c under RL-glycemia were 0.28% lower than that under clinician’s treatment for white 

patients. Patients of age 60 and younger observed higher efficacy, with A1c under RL-

glycemia 0.47% lower than that under clinician’s treatment, than those older than 60 with 

A1c under RL-glycemia 0.19% lower than that under clinician’s treatment.  

 



Table 4 Comparison of RL and clinicians for glycemic control, BP control and CVD prevention. 

Demographic characteristics of patients having encounters at which RL and clinicians prescribed 

consistently versus differently. 

Features 
T2DM 

(n=15578) 

HTN 

(n=20251) 

CVD 

(n=946) 

Multimorbidity 

(n=102184) 

Prescriptions 
Consistency (%) 

No 

(13.89) 

Yes 

(86.11) 

No 

(17.08) 

Yes 

(82.82) 

No 

(1.63) 

Yes 

(98.37) 

No 

(28.88) 

Yes 

(71.12) 

Age (years) 
65.89 

(13.77) 
64.25 

(13.69) 
69.42 

(12.54) 
68.79 

(12.79) 
68.39 

(11.65) 
68.87 

(12.10) 
66.24 

(13.36) 
65.87 

(13.64) 

Percent male 47.21 45.34 43.39 43.65 54.50 46.41 45.59 44.89 

Percent black 33.53 34.61 31.15 32.45 16.27 26.85 33.40 33.68 

Percent native 
American 

0.51 0.44 0.28 0.23 0.53 0.32 0.39 0.37 

Percent Asian 4.47 4.26 4.04 3.88 3.57 4.14 4.54 4.32 

Percent white 53.91 52.07 57.80 56.62 72.88 61.49 53.30 53.18 

Percent smoke 6.98 6.82 5.64 6.01 8.99 6.14 6.89 6.67 

Systolic BP (SBP) 
(mmHg) 

127.59  

(14.35) 

127.28  

(13.73) 

132.85  

(16.68) 

131.00  

(14.99) 

125.72 

(14.08) 

127.52 
(13.63) 

131.10  

(15.89) 

128.65  

(14.30) 

Diastolic BP (DBP) 
(mmHg) 

74.38 
(8.68) 

74.13 
(8.51) 

75.25 
(10.12) 

74.36 
(9.27) 

73.63 
(8.26) 

73.47 
(8.28) 

74.13 
(9.52) 

74.02 
(8.72) 

BMI (kg/m2) 
31.84 
(6.92) 

32.01 
(7.19) 

32.33 
(6.88) 

31.49 
(6.81) 

29.98 
(5.69) 

30.76 
(6.63) 

32.06 
(6.67) 

31.51 
(6.94) 

Triglycerides 
(mg/dL) 

163.57 
(104.98

) 

157.51 
(96.43) 

155.81 
(86.83) 

150.20 
(81.06) 

197.54 
(163.01) 

159.31 
(97.69) 

159.19 
(94.16) 

154.27 
(89.03) 

Creatinine (mg/dL) 
0.96 

(0.38) 
0.99 

(0.41) 
1.05 

(0.44) 
1.07 

(0.48) 
1.05 

(0.43) 
1.02 

(0.43) 
1.06 

(0.45) 
1.02 

(0.45) 

Total Cholesterol 
(mg/dL) 

172.25 
(39.40) 

172.97 
(38.85) 

173.76 
(38.87) 

172.81 
(38.75) 

180.62 
(46.24) 

176.05 
(42.67) 

170.21 
(39.66) 

173.57 
(39.70) 

LDL Cholesterol 
(mg/dL) 

90.81 
(32.68) 

91.27 
(32.80) 

93.00 
(33.05) 

92.03 
(32.70) 

93.38 
(37.30) 

93.46 
(35.92) 

89.77 
(33.36) 

92.04 
(33.45) 

HDL Cholesterol 
(mg/dL) 

49.59 
(15.07) 

50.89 
(15.56) 

50.20 
(14.71) 

51.32 
(15.31) 

49.77 
(16.04) 

51.46 
(14.86) 

49.29 
(14.34) 

51.29 
(15.34) 

A1c (%) 
8.11 

(1.81) 
7.51 

(1.62) 
6.95 

(1.30) 
6.84 

(1.25) 
6.85 

(1.29) 
6.82 

(1.24) 
7.09 

(1.38) 
7.08 

(1.43) 

Categorical variables are summarized with frequencies (percentages). Continuous variables are 
summarized as the mean (standard deviation) of biomarkers. 
 
 
 
 
 
 



Table 5 Subgroup results of glycemic control RL algorithm. 

Subgroup 
Number of 
encounters 

RL benefit relative to clinician policy  

A1c under RL A1c under clinician Benefit 

Male 7072 7.87 (0.01) 8.20 (0.02) -0.33 (0.02) 

Female 8506 7.73 (0.01) 8.00 (0.02) -0.27 (0.02) 

Age > 60 9548 7.63 (0.01) 7.82 (0.02) -0.19 (0.01) 

Age ≤ 60 6030 8.06 (0.02) 8.53 (0.03) -0.47 (0.02) 

White 8427 7.54 (0.01) 7.81 (0.02) -0.28 (0.02) 

Black 5181 8.16 (0.02) 8.55 (0.03) -0.39 (0.02) 

Other Race 1970 7.94 (0.03) 8.10 (0.04) -0.16 (0.04) 

Smoke 1026 8.08 (0.04) 8.40 (0.06) -0.32 (0.05) 

Non-Smoke 14552 7.78 (0.01) 8.07 (0.01) -0.30 (0.01) 

 

Table 6 Subgroup results of BP control RL algorithm. 

Subgroup 
Number of 
encounters 

RL benefit relative to clinician policy  

SBP under RL SBP under clinician Benefit 

Male 8108 131.32 (0.09) 132.45 (0.17) -1.13 (0.17) 

Female 12143 132.07 (0.08) 132.29 (0.14) -0.22 (0.14) 

Age > 60 16151 131.43 (0.07) 132.34 (0.12) -0.90 (0.12) 

Age ≤ 60 4100 133.12 (0.13) 132.43 (0.25) 0.68 (0.24) 

White 11925 130.35 (0.07) 131.22 (0.14) -0.87 (0.14) 

Black 6536 134.19 (0.11) 135.12 (0.20) -0.93 (0.19) 

Other Race 1790 132.41 (0.23) 129.79 (0.39) 2.62 (0.38) 

Smoke 951 132.34 (0.31) 132.55 (0.54) -0.21 (0.53) 

Non-Smoke 19300 131.74 (0.06) 132.35 (0.11) -0.60 (0.11) 

 

Table 7 Subgroup results of multimorbidity control RL algorithm. 

Subgroup 

Number of 
encounters 

RL benefit relative to clinician policy (standard of care) 

A1c Systolic 
BP 

Triglyceri
des 

Total 
Cholester

ol 

LDL 
Cholester

ol 

HDL 
Cholester

ol 

CVD Risk 

Male 43816 
-0.09 
(0.01) 

-0.32 
(0.07) 

-5.27 
(0.50) 

-0.10 
(0.17) 

0.08 
(0.14) 

0.71 
(0.06) 

-5.09 
(0.09) 

Female 58368 
-0.02 
(0.01) 

-0.07 
(0.06) 

-1.99 
(0.33) 

-1.23 
(0.16) 

-0.61 
(0.14) 

-0.41 
(0.06) 

-2.68 
(0.05) 

Age > 60 75924 
0.01 

(0.00) 
-0.59 
(0.05) 

-0.43 
(0.29) 

-0.05 
(0.13) 

0.27 
(0.12) 

-0.24 
(0.05) 

-5.70 
(0.06) 



Age ≤ 60 26260 
-0.23 
(0.01) 

1.02 
(0.09) 

-11.97 
(0.72) 

-2.75 
(0.25) 

-1.99 
(0.21) 

0.98 
(0.08) 

2.03 
(0.07) 

White 60029 
-0.02 
(0.00) 

-0.02 
(0.06) 

-3.78 
(0.37) 

-1.60 
(0.15) 

-1.12 
(0.13) 

0.16 
(0.06) 

-4.04 
(0.07) 

Black 31775 
-0.12 
(0.01) 

-0.92 
(0.09) 

1.79 
(0.47) 

-0.52 
(0.22) 

-0.43 
(0.19) 

-0.64 
(0.08) 

-3.39 
(0.08) 

Other Race 10380 
-0.02 
(0.01) 

1.17 
(0.15) 

-17.02 
(1.08) 

3.50 
(0.39) 

4.70 
(0.33) 

1.78 
(0.13) 

-2.82 
(0.14) 

Smoke 5747 
-0.10 
(0.02) 

-0.52 
(0.20) 

-16.54 
(1.71) 

-1.31 
(0.55) 

-0.73 
(0.46) 

2.14 
(0.17) 

-10.41 
(0.26) 

Non-
Smoke 

96437 
-0.05 
(0.00) 

-0.16 
(0.05) 

-2.61 
(0.28) 

-0.71 
(0.12) 

-0.29 
(0.10) 

-0.05 
(0.05) 

-3.31 
(0.05) 
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Patterns of most frequent discrepant RL recommendations and clinicians’ 
prescriptions for RL-glycemia (A), RL-BP (B) and RL-multimorbidity (C). Each cell 
and the numbers represent patients for whom RL (labels on horizontal axis) 
recommended a different regimen from the one given by clinicians (labels on vertical axis). 
The color in each cell quantifies the improvement in health outcomes achieved by the RL 
recommendation relative to clinician’s prescription, with blue indicating benefits of the RL 
recommendation and orange indicating worsening outcomes relative to clinician’s 
prescription. (A) indicates the mean A1c reduction (%) of RL-glycemia (labels on 
horizontal axis) than clinicians (labels on vertical axis); (B) indicates the mean SBP 
decrease (mmHg) of RL-BP (labels on horizontal axis) than clinicians (labels on vertical 
axis), and (C) indicates the mean difference of multimorbidity reward from RL-
multimorbidity (labels on horizontal axis) than clinicians (labels on vertical axis). RL-CVD 
was consistent with clinicians’ prescriptions for the vast majority of encounters, thus was 
not shown in this Figure. 
 

The patterns of different treatment recommendations, along with the resulting differences 

in health outcomes, are illustrated in Fig. 1 for RL-glycemia, RL-BP and RL-multimorbidity. 

In the case of RL-glycemia, the most frequently observed discrepancy (1,167 encounters) 

was that clinicians prescribed insulin monotherapy (INSO) while RL prescribed biguanide 

type (BIG). On these encounters, RL-glycemia achieved on average 1.22% lower A1c 

than clinicians. In the case of RL-BP, the most frequently observed discrepancy (1,010 

encounters) was that clinicians prescribed ACE inhibitors (ACE) while RL prescribed 

beta-adrenergic blocking agents (BAB). On these encounters, RL-BP achieved 6.78 

C. 



mmHg lower SBP. The most frequently observed discrepancy between RL-multimorbidity 

and clinician’s prescription was biguanide type (BIG) prescribed by clinicians and HMG-

CoA reductase inhibitors (HMG) prescribed by RL-multimorbidity observed on 1,272 

patient encounters. On these discrepant encounters, RL-multimorbidity achieved 0.15% 

higher A1c, but 2.42% lower CVD risk and 0.30 mmHg lower SBP. Overall, RL algorithms 

tended to prescribe fewer medications than clinicians (Fig. 2).  

Fig 2. 

 

 
Prescription medication use by RL versus clinicians. (A) total number of drugs 
prescribed for blood glucose control; (B) total number of drugs prescribed for BP 
control; (C) total number of drugs prescribed for multimorbidity management. 

A. B. 

C. 



Fig. 3 shows the importance of features associated with RL-multimorbidity algorithm and 
clinicians’ prescriptions. In general, there was reasonable agreement between the 
feature-importance estimates of RL-multimorbidity and those identified by the clinicians. 
A1c is the most important feature for clinicians while RL-multimorbidity was most 
influenced by recent therapies, age, BMI and A1c. One difference is the importance of 
creatinine in the clinicians’ prescription, while it was not as important for RL-multimorbidity. 
Another difference is the reduced role of the time since first encounter in RL-
multimorbidity as compared to clinicians’ prescriptions.  
Fig 3 

     
 
Feature-importance of RL-multimorbidity (A) and clinician prescription (B).  
 

4. DISCUSSION 

To our best knowledge, this is the first reinforcement learning assisted prescriptive 

algorithm for personalized single and multimorbidity outcome management for patients 

with T2DM. Using an EHR database, the developed RL algorithm can efficiently 

recommend treatment regimens to optimize patient health outcomes incorporating their 

individual demographic and treatment history. Compared with other machine-learning 

methods, the reinforcement learning approach has a particular advantage as it can 

efficiently learn complex dynamic drug-disease and drug-drug interactions in the 

A. B. 



presence of high temporal variation, uncertain outcomes and long-term treatment effects 

(15; 19). RL recommendations showed high levels of concordance with clinicians’ 

prescriptions for single outcome optimizations of glycemia, blood pressure and CVD risk 

control. This demonstrates the feasibility of using RL for T2DM management and 

indicates that clinicians make near-optimal decisions with regard to single-outcome 

management.  

RL-multimorbidity recommendations showed more frequent discrepancy with clinicians' 

prescriptions, as well as the recommendations by single-outcome RL algorithms. This 

provides data-driven evidence that optimizing multimorbidity management is different 

from optimizing single outcomes in parallel. For example, on the1,272 patient encounters 

with the most frequently observed discrepancy between RL-multimorbidity and clinicians, 

their average A1c was 7.0%, SBP was 127.2 mmHg, and CVD risk was 12.6%. For these 

encounters, clinicians prescribed BIG to prioritize glycemic control while RL-

multimorbidity prescribed HMG for lipid-lowering. This indicates challenges and 

uncertainties of multimorbidity management for patients with borderline and balanced 

levels of severities in multiple chronic conditions (26; 27). RL-multimorbidity showed 

overall improvements in managing the three outcomes simultaneously, significantly 

reducing the number of encounters with uncontrolled glycemia, uncontrolled HTN and 

high FRS CVD risk.  

Although both clinicians and RL-multimorbidity place high importance on similar factors, 

these factors are differently ranked. RL algorithms did not weigh features that were not 

included in the reward functions, such as creatinine, as much as clinicians who consider 

it as an important renal function biomarker. This indicates a potential challenge of the RL 



algorithms using single-directed reward outcomes as the optimization goal. Ideally, a 

comprehensive reward function should incorporate domain knowledge and adverse 

events, such as hypoglycemia and kidney comorbidity, to achieve optimized outcomes 

while balancing risks of adverse events (28).  

Typical limitations with EHR data are their unobserved medication adherence, partially 

observed clinical data at each encounter and uncontrolled time span between encounters 

(29). However, the RL algorithms were designed to incorporate these uncertainties under 

real-world scenarios. Particularly, if there were observable patient characteristics that 

associated with higher non-adherence to a certain treatment leading to lower levels of 

efficacy, RL would be able to identify it and prescribe different treatments for patients with 

those characteristics.  

Although our evaluation methodology controls for several confounding factors that could 

explain differences in treatment effects, we can only estimate counterfactual outcomes 

under RL recommendations for patients with discrepant prescriptions. In addition, the 

T2DM patient population from NYULH ambulatory care may not be representative of the 

U.S. T2DM population. To ultimately validate the efficacy of the RL algorithms, 

randomized clinical trials with patients randomly assigned to RL and clinician mechanism 

would be needed.   

 

5. CONCLUSIONS 

In this study, we demonstrated feasibility of using reinforcement learning prescriptive 

algorithms for patients with type 2 diabetes mellitus to manage their multimorbidity based 

on test data from an ambulatory care center. The RL-glycemia, RL-BP and RL-CVD 



algorithms showed high concordance (83%-98%) with clinicians’ prescriptions while RL-

multimorbidity showed relatively low concordance (71%) for multimorbidity management. 

For patient encounters in which the RL recommendations differed from the clinician 

prescriptions, RL prescriptions showed significantly improved health outcomes as 

compared to clinicians’ prescriptions. Potentially, the algorithm can be integrated into 

electronic health record platforms to assist physicians for T2DM management with 

dynamic real-time suggestions of personalized treatment paths.  
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Reinforcement Learning Algorithms 

A Markov decision process (MDP) was used to model the decision-making process and 

approximate individual patient health trajectories. We formalize the MDP by the tuple 

(𝒮, 𝒜, 𝑃, 𝑟, 𝛾), where  

• 𝒮 denotes a finite set of states, typically including patients’ personal information, 

current/historical health status, current/historical treatment; 

• 𝒜 denotes the finite set of actions available given state 𝑠, including the set of 

regimens, where each regimen may include one or multiple therapies; 

• 𝑃 represents the probability that taking action 𝑎 in state 𝑠 at time 𝑡 will lead to state 

𝑠′ at time 𝑡 +  1 (i.e., the patient’s health state changes to 𝑠′ at 𝑡 +  1 after taking 

regimen 𝑎 at time 𝑡), which describes the dynamics of the system; 

• 𝑟 represents the immediate reward received for transitioning to state 𝑠′ (biomarker 

improvement); 

• 𝛾 denotes the discount factor, which makes immediate rewards more valuable than 

long-term rewards and determines the temporal impact of the current action: 

greater 𝛾 indicates longer impact of current therapy action. 

The process is observed at discrete time steps. In each time 𝑡, the agent observes the 

current state 𝑠𝑡 ∈ 𝒮 which typically includes the reward 𝑟𝑡. It then chooses an action from 

the set of available drugs 𝑎𝑡 ∈ 𝒜  and the patient health conditions moves to a new 

state 𝑠𝑡+1 , and observes a feedback in form of a reward signal 𝑟𝑡+1  associated with 

the one-step transition (𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1). The medication selection rule is called the policy and 

denoted by a mapping 𝜋 from state space 𝒮  to action space 𝒜，i.e., 𝑎𝑡 =  𝜋(𝑠𝑡). The 

quality of a policy is measured using the value function 

𝑉𝜋(𝑠)  =  E[∑ 𝛾𝑡

∞

𝑡=1

𝑟𝑡|𝑠0, 𝜋] (1) 



which is defined as the expected cumulative discounted reward starting with state 𝑠0, 

given that policy 𝜋 is used to make decisions. Then, the goal of a reinforcement learning 

agent is to learn the optimal policy 𝜋∗  which maximizes the expected cumulative 

discounted reward, that is, max
𝜋

 𝑉𝜋(𝑠). 

 

The reward 𝑟𝑡+1(𝑠𝑡, 𝑠𝑡+1) at each time 𝑡 for each disease is defined as follows, 

(1) For T2DM, given current state 𝑠𝑡 and medication 𝑎𝑡, we define the reward of 𝑎𝑡  

based on A1c𝑡 ∈ 𝑠𝑡 and A1c𝑡+1 ∈ 𝑠𝑡+1  as 

𝑟𝑡
𝑇2𝐷𝑀 ≡ φ(𝑠𝑡, 𝑠𝑡+1, 𝜃, 𝜎) = {(𝐴1𝑐𝑡+1 − 𝐴1𝑐𝑡)

𝐴1𝑐𝑡 − 𝜃

𝜎
, 𝐴1𝑐𝑡 , 𝐴1𝑐𝑡+1 ≥ 𝜃;

0                             , otherwise
(2) 

where 𝜃 = 5.6 is the diagnosis threshold for T2DM (1) and 𝜎 = 1.58 is the standard 

deviation of A1c in the cohort. 

(2) For hypertension, given current state 𝑠𝑡 and medication 𝑎𝑡, we define the reward 

of 𝑎𝑡  based on SBP𝑡 ∈ 𝑠𝑡 and SBP𝑡+1 ∈ 𝑠𝑡+1 as 

𝑟𝑡
𝐻𝑇𝑁 ≡ φ(𝑠𝑡, 𝑠𝑡+1, 𝜃, 𝜎) = {(SBP𝑡+1 − SBP𝑡)

SBP𝑡 − 𝜃

𝜎
, SBP𝑡, SBP𝑡+1 ≥ 𝜃;

0                             , otherwise
(3) 

where 𝜃 = 120  is the diagnosis threshold for hypertension and 𝜎 = 17.7 is the 

standard deviation of SBP in the cohort. 

(3) For CVD, we use FRS global CVD function to predict total CVD outcomes (2) as 

indicator for CVD risk, denoted by 𝐹𝑅𝑆𝑡. The CVD risk factors considered in FRS 

include age, sex, race, ethnicity, smoking status and the following biomarkers: 

systolic BP (SBP), body mass index (BMI), A1c, total cholesterol (TC), and high-

density lipoprotein (HDL). Smoking behavior (yes) was defined as either a previous 

smoker or current smoker. Then the reward function of taking 𝑎𝑡 is defined by the 

difference 𝑟𝑡
𝐴𝑆𝐶𝑉𝐷 = 𝐹𝑅𝑆𝑡 − 𝐹𝑅𝑆𝑡+1. 

(4) Multimorbidity. The reward for multimorbidity is defined by the average rewards 

from T2DM, hypertension and CVD, i.e.  

𝑟𝑡 = ∑
𝑟𝑡

𝑘 − 𝑚𝑒𝑎𝑛(𝑟𝑡
𝑘)

𝑠𝑑(𝑟𝑡
𝑘)𝑘∈{T2DM,HTN,CVD}

, (4) 



where 𝑚𝑒𝑎𝑛(𝑟𝑡
𝑘) is the mean reward for 𝑘th disease and 𝑠𝑑(𝑟𝑡

𝑘) is the standard 

deviation of rewards for 𝑘th disease. 

 

Learning the Optimal Policy 

In reinforcement learning, many algorithms focus on estimating the so-called “Q-function” 

𝑄𝜋(𝑠, 𝑎)  of a policy 𝜋  rather than the value function. The Q-function represents the 

expected value of state-action pairs, and can be connected to the value function through 

the equation  

𝑉𝜋(𝑠) = max
𝑎

𝑄𝜋(𝑠, 𝑎) , (5) 

that is, the optimal action is found by maximizing the Q-function. Thus, the Q-function 

measures the expected return or discounted sum of rewards obtained from state 𝑠 by 

taking action 𝑎  first and following policy 𝜋  thereafter. The optimal Q-function is then 

defined as the maximum return that can be obtained starting from observation 𝑠, taking 

action 𝑎 and following the optimal policy 𝜋∗ thereafter. The optimal Q-function is known 

to obey the following Bellman optimality equation: 

𝑄𝜋∗
(𝑠, 𝑎) = E𝑠′ [𝑟𝑡(s, 𝑠′) + 𝛾 max

𝑎′
𝑄𝜋∗

(𝑠′, 𝑎′) |𝑠, 𝑎] . (6) 

We use a nonlinear function, such as a neural network with parameters 𝜃, to approximate 

the action-value function, i.e., 𝑄𝜋(𝑠, 𝑎) ≈ 𝑄𝜋(𝑠, 𝑎; 𝜃). Such a neural network is called a Q-

network (3). The approximation is trained by minimizing the difference (loss function) 

between the left- and right-hand side in Eq. (6), i.e. 

𝐿(𝑠, 𝑎) = E𝑠′~𝑝(∙|𝑠, 𝑎) [(𝑄𝜋(𝑠, 𝑎; 𝜃) − 𝑟𝑡(s, 𝑠′) − 𝛾 max
𝑎′

𝑄𝜋(𝑠′, 𝑎′; 𝜃))
2

|𝑠, 𝑎]， (7) 

or equivalently, 

𝐿(𝑠, 𝑎) = E𝑠′~𝑝(∙|𝑠, 𝑎)[ℓ𝜃(𝑠, 𝑎, 𝑠′)|𝑠, 𝑎]， (8) 

where  

ℓ𝜃(𝑠, 𝑎, 𝑠′) = (𝑄𝜋(𝑠, 𝑎; 𝜃) − 𝑟𝑡(s, 𝑠′) − 𝛾 max
𝑎′

𝑄𝜋(𝑠′, 𝑎′; 𝜃))
2

 

where target(𝑠′) = 𝑟𝑡(s, 𝑠′) + 𝛾 max
𝑎′

𝑄𝜋(𝑠′, 𝑎′; 𝜃)  is called the target value, 𝑄𝜋(𝑠, 𝑎; 𝜃) −

 target(𝑠′)  is called TD error and 𝑝(∙ |𝑠, 𝑎)  represents the state transition distribution. 

Ideally, we want the error to decrease, meaning that our current policy’s outputs are 

becoming more similar to the true Q values. 



 

Then, differentiating the loss function with respect to the weights with fixed target value 

we arrive at the following gradient 

∇𝜃𝑘
ℓ𝜃𝑘

(𝑠, 𝑎, 𝑠′) = (𝑄𝜋(𝑠, 𝑎; 𝜃) − target(𝑠′))∇𝜃𝑘
𝑄𝜋(𝑠, 𝑎; 𝜃). (9) 

When we update the target network, i.e., Q function 𝑄𝜋(𝑠′, 𝑎′; 𝜃̃) in target(𝑠′) , every 

iteration makes learning computationally less stable. Therefore, the target value is fixed 

by using  previous Q function parameter 𝜃̃ , i.e., target(𝑠′) = target(𝑠′; 𝜃̃) = 𝑟𝑡(s, 𝑠′) +

𝛾 max
𝑎′

𝑄𝜋(𝑠′, 𝑎′; 𝜃̃) and replacing the weight of the target network by the weight of the 

current Q-function 𝑄𝜋(𝑠, 𝑎; 𝜃) every 𝐶 iterations, i.e., 𝜃̃ = 𝜃𝑘.  

 

The Q-network model developed in our paper uses a multi-layer feed-forward architecture 

which evaluates each state-action pair (𝑠, 𝑎). Specifically, the Q-network model contains 

three intermediate layers with 256 neurons in the first layer, 512 neurons in the second 

layer, 256 in the third layer, and one output layer containing varying numbers of neurons 

(equal to the number of actions) for RL-glycemia, RL-BP and RL-CVD and RL-

multimorbidity. To prevent overfitting, we use the dropout method (4) as a regularization 

technique to selectively ignore single neurons during training. In the architecture, each 

dense layer is followed by a dropout layer with 0.5 dropout rate.  

 

We also used the early stopping (5; 6) to prevent overfitting. The objective of DQN is to 

minimize the mean squared TD error, i.e., ℓ𝜃(𝑠, 𝑎, 𝑠′) = (𝑄𝜋(𝑠, 𝑎; 𝜃) − 𝑟𝑡(s, 𝑠′) −

𝛾 max
𝑎′

𝑄𝜋(𝑠′, 𝑎′; 𝜃))
2

. Another metric of interest is the consistency of recommendations 

between doctor and RL, quantified by the proportion of encounters that RL’s 

recommendation agrees with clinicians’ recommendations. In the study, we noticed that 

this second metric tended to converge 2500-5000 iterations later than the TD error. Thus, 

during training, we monitored both metrics and set the early stopping criterion to be that 

“mean squared TD error is not improved in last 5000 iterations”. 

 

Our training scheme is as follows: 



1. We randomly selected 60% of the eligible patients as the training cohort to develop 

the RL algorithm and reserved the remaining 40% of patients as the test cohort to 

evaluate the performance of the RL algorithm.  

2. We randomly selected 20% of the training data as a validation cohort. Then we 

trained deep Q network on the remaining 80% training data, stop training when its 

performance “mean squared TD error” was kept unimproved in 5000 consecutive 

iterations, and recorded the last iteration as L. 

3. In the end, we obtained our final model by training the full Q network for L iterations. 

 

In reinforcement learning, learning an optimal policy from observational data is referred 

as to batch mode RL (7). This approach uses a set of one-step transition tuples: 𝒟 =

{(𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖
′): 𝑖 = 1, … , |𝒟|} to estimate the Q-function and thus obtain the prescription 

policy 𝜋: 𝑎 = arg max
𝑎′

𝑄𝜋(𝑠, 𝑎′; 𝜃). 

Algorithm: batch DQN with random sampling 

Initialize training data 𝒟. Initialize action-value function 𝑄𝜋(𝑠, 𝑎; 𝜃) with random weights 

𝜃0. Initialize target action-value function 𝑄̂𝜋(𝑠, 𝑎; 𝜃) with random weights 𝜃̃0. Set 𝐶  

for 𝑘 = 1, 2, … till convergence do 

1. Randomly sample minibatch of (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖
′) from 𝒟; 

2. Set target(𝑠𝑖
′) = 𝑟𝑖 + 𝛾 max

𝑎′
𝑄𝜋(𝑠𝑖

′, 𝑎′ ; 𝜃̃); 

3. Update 𝜃:  𝜃𝑘+1 ← 𝜃𝑘 + 𝛼𝑘∇𝜃𝑘
ℓ𝜃(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1; 𝜃̃)  with Eq.(9) by applying the 

“Adam” stochastic gradient descent method; 

4. Every 𝐶 iterations, set 𝜃̃ = 𝜃𝑘. 

end  

 

Data Imputation 

Our dataset contains a set of historically observed health states, but not every possible 

health state. In order to calculate an optimal policy, RL requires a way to estimate 

outcomes in any state, including those not in the original data. Following Lundberg et al. 



(8), we imputed data for such states based on the information present in previous 

encounters using an exponentially decaying weighted average (EDWA). Since the 

chronic diseases and their treatments usually have lagged effect, and patient health 

status does not greatly change in a short period of time, we fill in the missing values using 

EDWA with a three-month moving window, 0.5 decay rate and 30 days half-life time. The 

decay rate specifies how much impact each past time point has on the computed mean 

for the time series.  

 
Evaluation 

The electronic health records (EHR) usually present a large number of variables. These 

variables frequently correlate with each other and have different scales. To address this 

problem, we use principal component analysis (PCA), an orthogonal transformation to 

represent sets of potentially correlated variables with principal components (PC) that are 

linearly uncorrelated. PCs are ordered so that the first PC has the largest possible 

variance and only some components are selected to represent the correlated variables; 

see the reference (9). 

 

Then we apply 𝑘 nearest neighbor search (kNN) regression to predict the counterfactual 

health outcome for encounter denoted by (𝑠, 𝑎). For any given action 𝑎, we first query 

encounters in which the treatment regimen 𝑎 was prescribed by clinicians, then find 𝑘 

nearest encounters (in Euclidean distance) to these in input encounter 𝑠, the predicted 

health outcome of an encounter is assigned by the mean of its neighbors’ outcomes, i.e.  

𝑓(𝑠) = ∑ 𝑦𝑗

𝑗∈𝑁𝑘(𝑠,𝑎)

, (10) 

where 𝑁𝑘(𝑠, 𝑎)  represent the 𝑘  nearest neighbors of state 𝑠  given action 𝑎 , and 𝑦𝑗 

denotes the biomarkers of interest of 𝑗th sample in validation set, such as A1c, SBP and 

FRS-CVD risk. 

 



Specifically, given the validation data: 𝒟v = {(𝑠𝑖 , 𝑎𝑖, 𝑟𝑖, 𝑠𝑖
′): 𝑖 = 1, … , |𝒟v|}, that is a set of 

one-step transition tuples that were not used for training, we first use PCA (9) to reduce 

the set of intercorrelated variables (i.e., state 𝑠) into a few dimensions accounting for 90% 

of the variance of state variables. These dimensions are called components and have the 

properties of collecting highly correlated variables within each component and being 

uncorrelated with each other. Let 𝑐𝑖
𝑘 denote the 𝑘th principal component vector (PCs) for 

state 𝑠𝑖. Then the validation set of clinical encounters becomes  𝒟v = {(𝑐𝑖, 𝑎𝑖, 𝑟𝑖, 𝑐𝑖
′): 𝑖 =

1, … , |𝒟v|}, where 𝑐𝑖 = [𝑐𝑖
1, … , 𝑐𝑖

𝑘 ].  

 

For encounter 𝑖, we applied our prescriptive algorithm to recommend a therapy, denoted 

by 𝑎𝑖
𝐴𝐼 = 𝜋∗(𝑠𝑖). If that recommendation matched the prescribed standard of care therapy 

𝑎𝑖
𝐴𝐼 = 𝑎𝑖, we observed the true (historical) effect from the therapy. Otherwise, the outcome 

was imputed by k nearest neighbor search (kNN) regression by Eq. (10)., i.e., averaging 

the outcomes of the most similar patient encounters at which the recommended therapy 

𝑎𝑖
𝐴𝐼 was administered.  
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