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When we use simulations to estimate the performance of stochastic systems, the simulation is often driven by
input models estimated from finite real-world data. A complete statistical characterization of system perfor-
mance estimates requires quantifying both input model and simulation estimation errors. The components
of input models in many complex systems could be dependent. In this paper, we represent the distribution of
a random vector by its marginal distributions and a dependence measure: either product-moment or Spear-
man rank correlations. To quantify the impact from dependent input model and simulation estimation errors
on system performance estimates, we propose a metamodel-assisted bootstrap framework that is applicable
to cases when the parametric family of multivariate input distributions is known or unknown. In either case,
we first characterize the input models by their moments that are estimated using real-world data. Then,
we employ the bootstrap to quantify the input estimation error, and an equation-based stochastic kriging
metamodel to propagate the input uncertainty to the output mean, which can also reduce the influence of
simulation estimation error due to output variability. Asymptotic analysis provides theoretical support for
our approach, while an empirical study demonstrates that it has good finite-sample performance.
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1. INTRODUCTION

Stochastic simulation is used to estimate the performance of complex systems that are
driven by random input models. The distributions of these input models are often esti-
mated from finite real-world data. Therefore, a complete statistical characterization of
stochastic system performance requires quantifying both input and simulation estima-
tion error. Ignoring either source of uncertainty could lead to unfounded confidence in
the system performance estimate. In this paper, we focus on the system mean response,
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and our approach can be applied to other performance estimates, for example, variance
and probabilities.

The choice of input models directly impacts the system performance estimates. A
prevalent practice is to model the input processes as a collection of independent and
identically distributed (i.i.d.) univariate distributions. However, considering that com-
ponents of real inputs could be dependent, these simple models do not always faithfully
represent the physical processes. For example, in a project planning network, the ac-
tivity durations for different tasks could be correlated if they are affected by the same
nuisance factors, for example, weather conditions. In a supply chain system, the de-
mands of a customer for different products, for example, low-fat and whole milk, could
be related. In financial risk management, strong dependence between assets in a port-
folio could occur if their values are derived from common underlying assets. And in
a production-scheduling problem, the operation times for a particular job at a series
of processing stations could be dependent. Ignoring such dependence can lead to poor
estimates of system performance. Thus, it is desirable to build input models that can
faithfully capture the dependence through joint rather than univariate input distribu-
tions. In this paper we account for input models with random-vector distributions and
do not consider time-series input processes.

Biller and Ghosh [2006] reviewed various approaches to construct joint input distri-
butions. Considering the amount of information needed to specify the joint distribution,
almost all these methods suffer from some serious drawbacks. In light of this difficulty,
most input-modeling research focuses on methods that match only certain key prop-
erties of the input models, including the marginal distributions and some dependence
measure.

We assume that dependent input models are characterized by their marginal distribu-
tions and a dependence measure. Specifically, the marginal distributions have known
parametric families with parameter values unknown. The dependence between dif-
ferent components of input models can be measured by various criteria [Biller and
Ghosh 2006]. We focus on product-moment and Spearman rank correlations in this
paper. Product-moment correlation measures linear dependence and it is widely used
in engineering applications. The definition of product-moment correlation needs the
variances of the components to be finite. Thus, we also include the use of Spearman
rank correlation as a dependence measure, which finds wide application in business
studies, for example, decision and risk analysis [Clemen and Reilly 1999]. Instead of
measuring linear dependence, the Spearman rank correlation captures monotonic, pos-
sibly nonlinear dependence between different components of input models; it does not
require the variances of the components to be finite. Further, since it is based on ranks,
it is not sensitive to observation outliers. Notice that in general, dependence may be
more than just pairwise and monotonic, in which case a more complex characterization
may be needed [Wu and Mielniczuk 2010].

Since marginal distributions and dependence measures are estimated from real-
world data, their estimation error is called input uncertainty. Therefore, when we
use the simulation outputs to estimate system performance, there are two sources
of uncertainty: input and simulation error. To quantify the overall uncertainty about
the system performance estimate, we build on Xie et al. [2015], which proposed a
metamodel-assisted bootstrapping approach to form a confidence interval (CI) ac-
counting for the impact of input and simulation uncertainty. Further, a variance de-
composition was proposed to estimate the relative contribution of input to overall
uncertainty. However, our previous study in Xie et al. [2015] was based on the as-
sumption that the input distributions are univariate and mutually independent. The
independence assumption does not hold in general for input models in many stochastic
systems.
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This is a significant enhancement of Xie et al. [2015]. To efficiently and correctly
account for uncertainty in multivariate input models, we introduce a more general
metamodel-assisted bootstrapping framework; it can quantify the impact of dependent
input uncertainty and simulation estimation error on system performance estimates
while also reducing the influence of simulation estimation error due to finite simulation
effort.

Suppose that input models are characterized by marginal distributions and a cor-
relation matrix, and that the parameters are specified by a vector of moments, called
moment-based parameters; see Section 4.1 for the detailed definition. In this paper, we
consider two cases. First, when the full parametric joint distribution is known except
for the marginal distribution parameters and a correlation matrix, then we work with
the joint distribution directly, for example, multivariate Pearson distribution. Second,
when the parametric joint input distribution is unknown, we construct the joint distri-
bution by using the flexible NORmal To Anything (NORTA) representation [Cario and
Nelson 1997]. Since moment-based parameters are estimated with real-world data, the
bootstrap is used to quantify the input estimation error, and an equation-based stochas-
tic kriging (SK) metamodel propagates the input uncertainty to the output mean. We
can derive a CI that accounts for both simulation and input uncertainty by using this
generalized metamodel-assisted bootstrapping approach. Therefore, our approach al-
lows us to do statistical uncertainty analysis for stochastic systems with dependence
in the input models.

There are two central contributions of this : first, we generalize the metamodel-assisted
bootstrap framework [Xie et al. 2015] to stochastic simulation with dependent input
models; second, we propose a rigorous analysis for cases where the dependence is mea-
sured by product-moment or Spearman rank correlation.

The next section describes other research on dependent input modeling and input
uncertainty analysis. This is followed by a formal description of the problem of interest
in Section 3. In Section 4, we propose a generalized metamodel-assisted bootstrap-
ping framework and provide a procedure to build a CI accounting for both input and
simulation estimation error on system mean performance estimates. Our approach is
supported by asymptotic analysis. We then report results of finite sample behavior
from an empirical study in Section 5 and conclude in Section 6. All proofs are in the
Online Appendix.

2. BACKGROUND

For stochastic simulations, various approaches to account for input uncertainty have
been proposed; see Barton [2012] and Song et al. [2014] for reviews. The methods can be
divided into Bayesian and frequentist approaches, which have their underlying merits
and limitations [Xie et al. 2014a].

Johnson [1987] reviewed various parametric joint distributions useful in the simu-
lation that can be parameterized by marginal moments and a correlation matrix. For
example, the multivariate Johnson translation system matches the first four moments
for each marginal distribution and a correlation matrix. A flexible bivariate Gamma
distribution proposed in Schmeiser and Lal [1982] allows any Gamma marginal distri-
butions and associated correlations. The multivariate Pearson type II distribution is
characterized by the marginal means and a covariance matrix.

When only the marginal distribution families are known, Cario and Nelson [1997]
proposed a flexible NORTA distribution to represent and generate random vectors
with almost arbitrary marginal distributions and product-moment correlation matrix.
Clemen and Reilly [1999] used NORTA to represent the dependent input models for
decision and risk analysis with dependence measured by Spearman’s and Kendall’s
rank correlations.
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Biller and Corlu [2011] proposed a Bayesian approach to account for the param-
eter uncertainty for dependent input models. Correlated inputs are modeled with
NORTA and the dependence is measured by product-moment correlation. The un-
certainty around the NORTA distribution parameters estimated from real-world data
is quantified by posterior distributions. For complex stochastic systems with a large
number of correlated inputs, a fast algorithm draws samples from these posterior dis-
tributions to quantify the input uncertainty. Then, the direct simulation method is
used to propagate the input uncertainty to the output mean by running simulations at
each sample point, which could be computationally expensive for complex simulated
systems. Further, the direct simulation method does not incorporate the simulation
uncertainty into the Bayesian formulation; see Xie et al. [2014a].

Direct bootstrapping uses bootstrap resampling of the real-world data to represent
the input uncertainty and propagates it to the output mean by direct simulation [Barton
and Schruben 1993, 2001]; Barton 2007; Cheng and Holland 1997]. Compared with
the Bayesian approaches, the direct bootstrap can be adapted to any input models
without additional analysis, and it does not need to resort to computationally expensive
approaches to draw posterior samples to quantify the input uncertainty. However, direct
simulation cannot efficiently use the computational budget to reduce the impact from
simulation estimation error. Further, since the statistic that is bootstrapped is the
random output of a simulation, it is not a smooth function of input data; this violates
the asymptotic validity of the bootstrap.

The metamodel-assisted bootstrapping approach was introduced by Barton et al.
[2014]. The input uncertainty is measured by bootstrapping and an equation-based
SK metamodel propagates the input uncertainty to the output mean. This approach
addresses some of the shortcomings of the direct bootstrap. Specifically, the metamodel
can reduce the impact of simulation estimation error. Further, metamodeling makes the
bootstrap statistic a smooth function of the input data so that the asymptotic validity
concerns faced by the direct bootstrap method disappear. However, Barton et al. [2014]
assumed that the simulation budget is not tight and the metamodel uncertainty can be
ignored. If the true mean response surface is complex, especially for high-dimensional
problems with many input distributions, and the computational budget is tight, then
the impact of metamodel uncertainty can no longer be ignored.

The metamodel-assisted bootstrapping approach was improved in Xie et al. [2015] to
build a CI accounting for the impact from both input and metamodel uncertainty on the
system mean estimates. Further, a variance decomposition was proposed to estimate
the relative contribution of input to overall uncertainty, which is very useful for decision
makers to determine where to put more effort to reduce the estimator error. The
metamodel-assisted bootstrapping approach demonstrates robust performance even
when there is a tight computational budget and simulation estimation error is large.
However, Xie et al. [2015] is based on the assumption that input models are a collection
of mutually independent univariate distributions.

The success of metamodel-assisted bootstrapping for stochastic simulations with
independent univariate input distributions in Xie et al. [2015] motivates us to extend
it to more complex cases with dependence in the input models.

3. PROBLEM STATEMENT

The stochastic simulation output is a function of random numbers and the input model
denoted by F. For notation simplification, we do not explicitly include the random
numbers. The output from the jth replication of a simulation with input model F can
be written as

Yj(F) = μ(F) + ε j(F),

ACM Transactions on Modeling and Computer Simulation, Vol. 27, No. 1, Article 5, Publication date: October 2016.



Multivariate Input Uncertainty in Output Analysis for Stochastic Simulation 5:5

where μ(F) = E[Yj(F)] denotes the unknown output mean and ε j(F) represents the
simulation error with mean zero. Notice that the simulation output depends on the
choice of input model.

In general, F could be composed of mutually independent univariate and multi-
variate joint distributions. For simplification, suppose that F is composed of a sin-
gle multivariate distribution with dimension d > 1. The marginal distributions of
F are denoted by {F1, F2, . . . , Fd}. In this paper, we focus on continuous marginal
distributions.

Suppose that F is characterized by the marginal distributions and a dependence
measure: either product-moment or Spearman rank correlation matrix. Specifically,
let a d × 1 random vector X ∼ F having d × d product-moment and Spearman rank
correlation matrix denoted, respectively, by ρX and RX with

ρX(i, j) = corr(Xi, Xj) = Cov(Xi, Xj)√
Var(Xi)Var(Xj)

,

RX(i, j) = corr(Fi(Xi), Fj(Xj)) = E[Fi(Xi)Fj(Xj)] − E[Fi(Xi)]E[Fj(Xj)]√
Var(Fi(Xi))Var(Fj(Xj))

for i, j = 1, 2, . . . , d. Suppose these correlation matrices are positive definite. Since
the correlation matrices are symmetric and their diagonal terms are 1, we can view
a d × d correlation matrix as an element of d∗ ≡ d(d − 1)/2 dimensional Euclidean
space. Therefore, the product-moment and Spearman rank correlation matrix can be
uniquely specified by d∗ × 1 vectors denoted by Vρ

X and VR
X , respectively.

We assume that the families of marginal distributions {F1, F2, . . . , Fd} are known,
but not their parameter values. Let an hi ×1 vector θθθ i denote the unknown parameters
for the ith marginal distribution Fi. By stacking θθθ i with i = 1, 2, . . . , d together, we
have a d† × 1 dimensional parameter vector θθθ� ≡ (θθθ�

1 , θθθ�
2 , . . . , θθθ�

d ) with d† ≡ ∑d
i=1 hi.

Input models characterized by marginal distributions and correlation matrices can
be specified by ϑϑϑ ≡ (θθθ ; VX) that includes d′ ≡ d† + d∗ elements, where VX = Vρ

X or VR
X .

We call ϑϑϑ the input model parameters. By abusing notation, we can rewrite μ(F) as
μ(ϑϑϑ). The true input parameters ϑϑϑc are unknown and estimated from finite samples of
real-world data. Thus, our goal is finding a (1 − α)100% CI [QL, QU ] such that

Pr{μ(ϑϑϑc) ∈ [QL, QU ]} = 1 − α. (1)

The unknown input model parameters are estimated by the real-world data, denoted

by Xm ≡ {X(1), X(2), . . . , X(m)}, where the d × 1 random vector X(i) i.i.d∼ Fc with i =
1, 2, . . . , m. Under the assumption that the first hi marginal moments are finite for i =
1, 2, . . . , d, we estimate marginal distribution parameters by the moment estimators,
denoted by θ̂θθm [Xie et al. 2015]. The usual estimators for the product-moment and
Spearman rank correlations are

ρ̂X,m(i, j) =
∑m

k=1

(
X(k)

i − X̄i
)(

X(k)
j − X̄j

)
/(m− 1)

Si Sj
(2)

R̂X,m(i, j) =
∑m

k=1

(
r(X(k)

i ) − r(Xi)
)(

r(X(k)
j ) − r(Xj)

)√[ ∑m
k=1

(
r(X(k)

i ) − r(Xi)
)2] · [ ∑m

k=1

(
r(X(k)

j ) − r(Xj)
)2] (3)

for i, j = 1, 2, . . . , d, where X̄i = ∑m
k=1 X(k)

i /m and S2
i = ∑m

k=1

(
X(k)

i − X̄i
)2

/(m − 1).
We denote the rank function by r(·) ≡ rank(·). In this paper, we use the uprank to
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estimate the Spearman rank correlations. It is defined by r(X(k)
i ) ≡ ∑m

j=1 I(X( j)
i ≤ X(k)

i )
and r(Xi) = ∑m

k=1 r(X(k)
i )/m with I(·) denoting an indicator function. Then, based on

Equations (2) and (3), we can find corresponding correlation estimators V̂ρ

X,m and V̂R
X,m.

Given the input-model parameter estimator ϑ̂ϑϑm = (̂θθθm; V̂ρ

X,m) or (̂θθθm; V̂R
X,m) that is a

function of real-world data Xm, its sampling distribution can be used to quantify input
uncertainty.

The impact of input uncertainty on the system mean performance estimate is quan-
tified by the sampling distribution of μ(ϑ̂ϑϑm). Further, since the underlying response
surface μ(·) is unknown, at any ϑ̂ϑϑ , let μ̂(ϑ̂ϑϑ) denote the corresponding mean response
estimator. Thus, there are both input and simulation estimation errors in the system
mean performance estimates.

For stochastic systems with dependent input models, our objective is to create an
approach to quantify the overall impact of both input and simulation estimation error
on system mean performance estimates and then build a CI satisfying Equation (1).
Further, since each simulation run could be computationally expensive and we may have
a tight computational budget, we want to reduce the influence of simulation estimation
error.

4. METAMODEL-ASSISTED BOOTSTRAPPING FRAMEWORK

For problems with parametric input distributions that are univariate and mutually in-
dependent, the metamodel-assisted bootstrapping framework was used to account for
the impact of both input and simulation estimation errors on the system performance
estimates in Xie et al. [2015]. In this section, we generalize the metamodel-assisted
bootstrapping approach for stochastic simulations with dependence in the input
models.

To make this section easy to follow, we start with an overall description of the general-
ized metamodel-assisted bootstrapping framework. We employ the bootstrap to capture
the estimation error of moment-based input parameters in Section 4.1, and propagate
the input uncertainty to the output mean by using an equation-based stochastic kriging
metamodel that is built based on the simulation outputs at a few well-chosen design
points; see Section 4.3. At each design point, we need to construct a full joint input dis-
tribution, generate samples of X to drive simulations, and estimate the system mean
responses. We consider cases with the family of parametric joint distribution known
or unknown, respectively, in Section 4.2. Then, since both simulation and metamodel
uncertainty can be estimated using properties of an SK metamodel, we propose a
procedure to deliver a CI that accounts for both simulation and input uncertainty in
Section 4.4. Asymptotic analysis provides theoretical support for our approach.

Notice that direct simulation, by running the simulations at each bootstrapped
sample of input moments to estimate the system performance, could be used to
propagate the input uncertainty to the output. Our previous study [Xie et al. 2014a]
demonstrates the advantages by using an SK metamodel over direct simulation.
Given a finite simulation budget, the SK metamodel efficiently reduces the impact
of simulation estimation uncertainty. In addition, bootstrap consistency requires
the statistic to be a smooth function of the data. Direct simulation violates this
requirement. This issue does not exist in our metamodel-assisted bootstrapping
approach; see Barton et al. [2014] and Xie et al. [2015].

4.1. Bootstrap for Input Uncertainty

In this section, we describe how to employ the bootstrap to quantify the input un-
certainty. The way we choose to represent input models plays an important role in
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the implementation of metamodel-assisted bootstrapping. Moment-based parameters,
denoted by M, are used to characterize the input model with dependence. Instead
of using the natural parameters θθθ to characterize the marginal distributions, we can
use moments; see Barton et al. [2014] for an explanation. Suppose that the para-
metric marginal distribution Fi can be uniquely characterized by its first hi finite
moments denoted by the hi × 1 vector ψψψ i for i = 1, 2, . . . , d. By stacking ψψψ i with
i = 1, 2, . . . , d together, we have a d† × 1 dimensional vector of marginal moments
ψψψ� ≡ (ψψψ�

1 ,ψψψ�
2 , . . . ,ψψψ�

d ). Therefore, the input models can be characterized by the col-
lection of moments M = (ψψψ ; VX) with VX = Vρ

X or VR
X . Suppose there is a one-to-one

continuous mapping between marginal moments and parameters, denoted by θθθ = h(ψψψ).
Thus, the input parameters ϑϑϑ and moments M are interchangeable. Abusing notation
again, we rewrite μ(ϑϑϑ) as μ(M).

The true moments of dependent input models, denoted by Mc, are unknown and
estimated based on a finite sample Xm. Specifically, we use standardized sample mo-
ments as estimators for marginal distributions, denoted by ψ̂ψψm; see Xie et al. [2015].
The correlation estimator V̂ρ

X,m or V̂R
X,m is obtained by using Equation (2) or (3). The

estimation error of input models can be quantified by the sampling distribution of
M̂m = (ψ̂ψψm; V̂ρ

X,m) or (ψ̂ψψm; V̂R
X,m), denoted by Fc

Mm
. Therefore, the impact of input uncer-

tainty on the system mean performance estimate can be measured by the sampling
distribution of μ(M̂m) with M̂m ∼ Fc

Mm
.

Since it could be hard to derive the sampling distribution Fc
Mm

, we use bootstrap re-
sampling to approximate it [Shao and Tu 1995]. Let A ≡ {1, 2, . . . , m}. Implementation
of bootstrap resampling in the metamodel-assisted bootstrapping is as follows:

(1) Draw m samples with replacement from set A and obtain bootstrapped indexes
{i1, i2, . . . , im}; choose corresponding samples from real-world data Xm and get
X̃(1)

m ≡ {X(i1), X(i2), . . . , X(im)}. Use X̃(1)
m to calculate the bootstrapped moment esti-

mate, denoted by M̃(1)
m ≡ (ψ̃ψψ

(1)
m ; (Ṽρ

X,m)(1)) or (ψ̃ψψ
(1)
m ; (ṼR

X,m)(1)).
(2) Repeat Step (1) for B times to generate M̃(b)

m with b = 1, 2, . . . , B.

The bootstrap resampled moments are drawn from the bootstrap distribution, denoted
by F̃Mm(·|Xm), with M̃m ∼ F̃Mm(·|Xm). For estimation of a percentile CI quantifying the
impact of input uncertainty, B is recommended to be a few thousand; see Xie et al.
[2014a]. In this paper, âdenotes a quantity estimated from real-world data, while a˜
denotes a quantity estimated from bootstrapped data.

Theorem 4.1 shows that when the amount of real-world data increases to infinity,
the bootstrap provides a consistent estimator for the true input moments Mc.

THEOREM 4.1. Suppose the following conditions hold:

(1) We have X(k) i.i.d∼ Fc with k = 1, 2, . . . , m.
(2) The marginal distribution Fc

i is uniquely characterized by its first hi moments and
it has finite first 4hi moments for i = 1, 2, . . . , d.

(3) E(X4
i X4

j ) < ∞ for i, j = 1, 2, . . . , d.

Then, as m → ∞, the bootstrap moment estimator M̃m converges a.s. to the true moments
Mc.

The proof of Theorem 4.1 is provided in the Online Appendix.
Notice that under some situations, such as when the input model does not have

enough finite moments, the normal approximation obtained by the Central Limit The-
orem may perform better than the bootstrap; see Hall [1988]. For this case, we could

ACM Transactions on Modeling and Computer Simulation, Vol. 27, No. 1, Article 5, Publication date: October 2016.
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easily extend our framework by using the normal approximation to quantify the input
uncertainty.

4.2. Construction of Joint Input Distributions

Given feasible moment-based parameters, we describe the procedure to construct the
joint input distribution in this section. We first consider the case when the full paramet-
ric joint distribution is known except the marginal parameters and a correlation matrix
in Section 4.2.1. Then, when the parametric family is unknown, we use a NORTA rep-
resentation to construct the joint distribution in Section 4.2.2. Notice that unless the
true distribution is NORTA, there is unmeasured error due to incorrect input models.
That error is not addressed in this paper.

4.2.1. Parametric Joint Input Distributions. In this section, we consider multivariate para-
metric input distributions F with the distribution family known. The input model is
specified by marginal parameters θθθ and a correlation matrix ρX; see Schmeiser and
Lal [1982] and Johnson [1987] for multivariate families useful in simulation. The un-
derlying correct parameters (θθθ c; (Vρ

X)c) are unknown and estimated by finite real-world
data.

We use a multivariate Pearson type II distribution [Johnson 1987] as an illustrative
example. It has the density function

f (x) = �(d/2 + κ + 1)
�(κ + 1)πd/2 |�|−1/2[1 − (x − μμμ)′�−1(x − μμμ)]κ .

Suppose that the shape parameter κ is given. Then, the Pearson type II distribution is
specified by parameters μμμ and � with

E(X) = μμμ and Cov(X) = �

2κ + d + 2
.

It can also be specified by the moment vector M, including the first two marginal
moments and the correlation vector Vρ

X.
For a general parametric joint distribution F that could be specified by marginal

parameters θθθ and a correlation matrix ρX, Theorem 4.2 shows that for any moment
vector M in a small neighborhood centered at Mc, we could find a feasible multivariate
parametric distribution F.

THEOREM 4.2. Let F be a parametric multivariate input distribution specified by
marginal parameters θθθ and a correlation matrix ρX. Let ��� ⊆ �d†

be the feasible domain
for marginal distribution parameters θθθ . Suppose the following conditions hold:

(1) Any parameter vector ϑϑϑ with θθθ ∈ ��� and positive semidefinite ρX has a feasible
multivariate parametric joint distribution F.

(2) θθθ c is an interior point in ���, and ρc
X is positive definite.

(3) There is a one-to-one continuous mapping between marginal moments and param-
eters, θθθ = h(ψψψ).

Then the true moment vector Mc = (ψψψc; (Vρ

X)c) is an interior point of the feasible region:
in the d′ dimensional Euclidean space, there exists a constant δ > 0 such that any
moment combination M in the open ball Bδ(Mc) has a feasible parametric multivariate
distribution F.

The proof of Theorem 4.2 is provided in the Online Appendix.
Notice that if the marginals have the same family, we may find an existing parametric

multivariate distribution to use; see Johnson [1987]. For marginals having different
families, we typically cannot use a standard multivariate parametric distribution, and
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we need to consider the transformation-based approaches, for example, NORTA and
multivariate Johnson distributions.

4.2.2. NORTA Representation. In this section, suppose that the parametric family of
joint input distribution F is unknown. Given the partial characterization specified by
marginal distributions and a pairwise dependence measure, either product-moment
or Spearman rank correlations, we now describe how to employ the NORTA repre-
sentation for constructing the joint distributions and generating samples of random
vector X.

To find a NORTA representation for F, we represent X as a transformation of a
d-dimensional standard multivariate normal (MVN) vector Z = (Z1, Z2, . . . , Zd)� with
product-moment correlation matrix denoted by ρZ,

X� = (
F−1

1 [�(Z1);θθθ1], F−1
2 [�(Z2);θθθ2], . . . , F−1

d [�(Zd);θθθd]
)
, (4)

where �(·) denotes the cdf for the standard normal distribution. If the marginal distri-
bution families are given, as we assume here, then the NORTA representation for F
can be specified by (θθθ, ρZ). For a standard normal random vector Z, there is a closed-
form relation between product-moment correlation ρZ and Spearman rank correlation
RZ [Clemen and Reilly 1999]:

RZ(i, j) = 6
π

sin−1
(

ρZ(i, j)
2

)
, (5)

with i, j = 1, 2, . . . , d.
Since the NORTA implementations for cases where the dependence is measured

by Spearman rank and product-moment correlations are different, we describe them
separately.

If the dependence in the input models is measured by the Spearman rank correla-
tion, we have RX = RZ since it is invariant under monotone one-to-one transformation
F−1

i [�(·)] for i = 1, 2, . . . , d. Therefore, given moment-based parameters M = (ψψψ ; VR
X ),

we can find ϑϑϑ = (θθθ ; VR
X ) by moment matching. The procedure to find a NORTA repre-

sentation and generate samples for X is as follows:

(1) From VR
X , get the Spearman rank correlation matrix for Z, RZ = RX, and obtain

corresponding product-moment correlation ρZ(i, j) = 2 sin(π RZ(i, j)/6) for i, j =
1, 2, . . . , d.

(2) Generate Z
i.i.d.∼ MVN(0, ρZ) and obtain X by using Equation (4).

By repeating this procedure, we generate samples for X, use them to drive simulations,
and estimate the mean response μ(M).

Notice that when we use Spearman rank correlation to measure the pairwise depen-
dence between the components of input models, the choice of marginal distributions
and correlation is separable. However, for F specified by a combination of feasible
θθθ and a positive definite Spearman rank correlation matrix RX, we may not find a
NORTA representation because the nonlinear transformation of positive definite RZ,
ρZ(i, j) = 2 sin[π RZ(i, j)/6], could lead to a nonpositive definite correlation matrix ρZ;
see Ghosh and Henderson [2002a] and Li and Hammond [1975].

If the dependence between the components of input models is measured by product-
moment correlation, then the procedure to find a NORTA representation becomes more
complex because the choice of marginal distributions influences the feasibility of the
correlation matrix. Specifically, there is a pairwise relation between product-moment
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correlation matrices of X and Z:

ρX(i, j) = Cij[ρZ(i, j);θθθ ]

≡
∫ ∫

F−1
i [�(zi);θθθ i]F−1

j [�(zj);θθθ j]ϕρZ(i, j)(zi, zj)dzidzj − E(Xi)E(Xj)√
Var(Xi)Var(Xj)

, (6)

where ϕρZ(i, j) denotes the standard bivariate normal density with correlation ρZ(i, j)
and Cij denotes a pairwise transformation from ρZ(i, j) to ρX(i, j) for i, j = 1, 2, . . . , d.
Given θθθ and ρX, we solve d∗ correlation-matching Equation (6) to find ρZ. Unlike
Spearman rank correlation, the marginal distributions characterized by parame-
ters θθθ play an important role in determining the value and feasibility of correlation
matrix ρZ.

Given M = (ψψψ ; Vρ

X), we can find ϑϑϑ = (θθθ ; Vρ

X) by moment matching. If there exists a
feasible NORTA representation, the procedure to find it and generate samples for X is
as follows:

(1) Given Vρ

X, solve Equation (6) for correlation matrix ρZ.

(2) Generate Z
i.i.d.∼ MVN(0, ρZ) and obtain X by using Equation (4).

By repeating this procedure, we generate samples for X and then use them to drive
simulations to estimate μ(M). When we solve for ρZ in Step (1), typically there is
no closed-form analytical solution except for some special marginal distributions, for
example, uniform distribution, and we need to resort to numerical search to obtain ρZ.

Notice that when we use product-moment correlation to characterize the pairwise
dependence between the components of input models, the nonlinear transformation
between ρX and ρZ in Equation (6) may not guarantee the positive semidefinite property
for ρZ. There may not exist a NORTA representation for every feasible combination of
θθθ and positive definite ρX. Therefore, the previous procedure only works under the
condition that the correlation matrix ρZ obtained in Step (1) is positive semidefinite,
which may not hold in general. Based on the study by Ghosh and Henderson [2002b],
this infeasibility is more likely in high dimensions and with correlations close to ±1.
When this happens, we can find a NORTA feasible correlation matrix that is close
to ρX.

If ρZ obtained by nonlinear transformation ρZ(i, j) = 2 sin[π RZ(i, j)/6] or by solving
d∗ in Equation (6) is positive semidefinite, ϑϑϑ = (θθθ ; VX) with VX = VR

X or Vρ

X is called
NORTA feasible; otherwise, it is called NORTA infeasible. Theorem 4.3 gives a property
of the NORTA feasible region: if the true moment combinationMc has a NORTA feasible
representation with positive definite ρc

Z, then there exists a neighborhood centered at Mc

in the d† + d∗ dimensional Euclidean space such that every moment combination M
in the neighborhood has a NORTA feasible representation. This property is useful
when we show the asymptotic consistency of the CI built by the metamodel-assisted
bootstrapping to quantify both input and simulation uncertainty in Section 4.4.

THEOREM 4.3. Let ��� ⊆ �d†
be the feasible domain for marginal distribution parame-

ters θθθ and suppose θθθ c is an interior point in ���. Suppose there is one-to-one continuous
mapping between marginal moments ψψψ i and parameters θθθ i for i = 1, 2, . . . , d. Suppose
the following conditions hold:

(1) Fc has a NORTA feasible representation (θθθ c, ρc
Z) with ρc

Z positive definite.
(2) At any x, the marginal distributions Fi(x;θθθ i), density functions fi(x;θθθ i), and inverse

distributions F−1
i (x;θθθ i) are continuously differentiable over θθθ i for i = 1, 2, . . . , d on

���.
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(3) For any θθθ ∈ ���, the marginal cdfs F1(x;θθθ1), F2(x;θθθ2), . . . , Fd(x;θθθd) are continuous
and strictly increasing in x.

Then the true moment vector Mc = (ψψψc; Vc
X) with VX = Vρ

X or VR
X is an interior point

of the NORTA feasible region: in the d† + d∗ dimensional Euclidean space, there exists
a constant δ > 0 such that every moment combination M in the open ball Bδ(Mc) has a
NORTA feasible representation.

The proof of Theorem 4.3 is provided in the Online Appendix.

4.3. Stochastic Kriging Metamodel

In the metamodel-assisted bootstrapping framework, after quantifying the input uncer-
tainty with the bootstrap as described in Section 4.1, an equation-based SK metamodel
introduced by Ankenman et al. [2010] is used to propagate the input uncertainty to the
output mean. The succinct review of SK in this section is based on Ankenman et al.
[2010].

Dependent input models characterized by finite moment-based parameters M com-
posed of marginal standard moments and component-pairwise correlations can be inter-
preted as a location x in a d′ = (d† +d∗) dimension space. The p-norm distance could be
used to measure the difference between moment-based parameters x and x′ defined by

d(x, x′) = ‖x�ζζζx′‖1/p
p =

⎡⎣ d′∑
j=1

ζ j
(
xj − x′

j

)p

⎤⎦1/p

, (7)

with p ≥ 1, where x is a d′ × 1 moment vector and ζζζ denotes a d′ × d′ diagonal matrix
with nonnegative diagonal terms ζ1, ζ2, . . . , ζd′ . In this paper, the distance between
different estimates of input models is measured by a weighted Euclidean distance
on moment-based parameters with p = 2. Since the marginal moments and pairwise
correlations could have different impacts on the system performance, the weights ζζζ
quantify their relative effects. For example, if the marginal moments have dominant
effects, the corresponding weights tend to be higher.

This distance measure was used to measure the difference between moment es-
timates for univariate parametric input models in Barton et al. [2014]. In terms of
distance measures for a correlation matrix, Higham [2002] used weighted Euclidean
distance, while Ghosh and Henderson [2002b] used other norms, including L1 and L∞.
We choose the weighted Euclidean distance because each individual correlation can
matter and different correlation elements could have different impacts on the system
mean performance. The distance measures L1 and L∞ do not capture that. Notice that
since the correlation matrix is required to be positive semidefinite, there exist implicit
constraints on the elements of the correlation matrix.

The input models with closer moments tend to have closer mean responses. Suppose
that the underlying true (but unknown) response surface is a continuous function of
moment-based parameters x and μ(·) is a realization of a stationary Gaussian Process
(GP). We model the simulation output Y by

Yj(x) = β0 + W(x) + ε j(x). (8)

This model includes two sources of uncertainty: the simulation output uncertainty ε j(x)
and mean response uncertainty characterized by the GP W(x). For many, but not all,
simulation settings, the output is an average of a large number of more basic outputs,
so a normal approximation can be applied: ε(x) ∼ N(0, σ 2

ε (x)). For example, when we
study the steady-state expected waiting time in a queue, each simulation output is the
average of waiting times for many customers.
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Since stochastic systems with dependent input models having similar key prop-
erties tend to have close mean responses, a zero-mean, second-order stationary GP
W(·) is used to account for this spatial dependence. Therefore, the uncertainty about
the unknown true response surface μ(x) is represented by a GP M(x) ≡ β0 +W(x) (note
that β0 can be replaced by a more general trend term f(x)�β). Its spatial dependence
is characterized by the covariance function, �(x, x′) = Cov[W(x), W(x′)] = τ 2γ (x − x′),
where τ 2 denotes the variance and γ (·) is a correlation function that depends only on
the distance x − x′. Based on prior information about the smoothness of μ(·), we can
choose the form of correlation function [Xie et al. 2010]. Considering that mean response
surfaces for most system engineering problems have a high order of smoothness and
Gaussian correlation function demonstrates good performance [Mukhopadhyay et al.
2016], we use the product-form Gaussian correlation function

γ (x − x′) = exp
(

−
d′∑

j=1

ζ j(xj − x′
j)

2
)

(9)

for the empirical evaluation in Section 5. In SK, the weights ζζζ = (ζ1, ζ2, . . . , ζd′ ) are
also called correlation parameters that quantify the relative effects of elements in the
moment-based parameters on the system mean response. Before having any simulation
result, the uncertainty about μ(x) can be represented by a Gaussian process M(x) ∼
GP(β0, τ

2γ (x − x′)).
To reduce the uncertainty about μ(x), we choose an experiment design consist-

ing of pairs D ≡ {(xi, ni), i = 1, 2, . . . , K} with (xi, ni) denoting the location and the
number of replications at the ith design point. The simulation outputs at D are
YD ≡ {(Y1(xi), Y2(xi), . . . , Yni (xi)); i = 1, 2, . . . , K} and the sample mean at design
point xi is Ȳ (xi) = ∑ni

j=1 Yj(xi)/ni. Let the sample means at all K design points be
ȲD = (Ȳ (x1), Ȳ (x2), . . . , Ȳ (xK))T and its variance be represented by a K × K diago-
nal matrix C = diag{σ 2

ε (x1)/n1, σ
2
ε (x2)/n2, . . . , σ

2
ε (xK)/nK} because the use of common

random numbers is detrimental to prediction [Chen et al. 2012].
The simulation outputs YD and spatial dependence characterized by the covariance

function �(·, ·) can be used to improve system mean prediction at any fixed point x.
Specifically, let � be the K × K spatial covariance matrix of the design points and let
�(x, ·) be the K × 1 spatial covariance vector between each design point and x. If the
parameters (τ 2, ζζζ , C) are known, then the metamodel uncertainty can be characterized
by a refined GP Mp(x) that denotes the conditional distribution of M(x) given all
simulation outputs,

Mp(x) ∼ GP(mp(x), σ 2
p(x)), (10)

where mp(·) is the minimum mean squared error (MSE) linear unbiased predictor

mp(x) = β̂0 + �(x, ·)�(� + C)−1(ȲD − β̂0 · 1K×1), (11)

and the corresponding variance is

σ 2
p(x) = τ 2 − �(x, ·)�(� + C)−1�(x, ·) + η�[1�

K×1(� + C)−11K×1]−1η, (12)

where β̂0 = [1�
K×1(� + C)−11K×1]−11�

K×1(� + C)−1ȲD and η = 1 − 1�
K×1(� + C)−1�(x, ·)

[Ankenman et al. 2010]. Notice that misspecified correlation functions could cause
biased β̂0.

Since in reality the spatial correlation parameters τ 2 and ζζζ are unknown, maximum
likelihood estimates (MLEs) are typically used for prediction, and the sample variance
is used as an estimate for the simulation variance at design points C [Ankenman et al.
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2010]. By substituting parameter estimates (̂τ 2, ζ̂ζζ , Ĉ) in Equations (11) and (12), we
can obtain the estimated mean m̂p(x) and variance σ̂ 2

p(x). Thus, the metamodel we use
is μ̂(x) = m̂p(x) with variance estimated by σ̂ 2

p(x).
In our study, we do not account for the estimation error of SK parameters (τ 2, ζζζ , C).

This is common in the kriging literature because fully including the effect of these
parameters’ estimation error would make the distribution of SK metamodel M(·) math-
ematically and computationally intractable. The impact of SK parameter estimation
uncertainty on the metamodel fit in a general situation has not been comprehensively
studied. The studies in Das et al. [2012] and Bachoc [2013] show the asymptotic con-
sistency of kriging parameter estimates via weighted least square (WLS), MLE, or
cross-validation. The studies in Xie et al. [2015] and Yin et al. [2009] indicate that
when we use the space-filling design with a reasonable number of design points [Jones
et al. 1998; Loeppky et al. 2009] and the simulation estimation uncertainty does not
dominate the information from the underlying response surface, the metamodel fit
is robust to the SK parameter estimation uncertainty. This does not hold when the
model is used for extrapolation. In our study, we construct a design space that covers
the most likely bootstrapped input moments, which avoids the extrapolation issue; see
Section 4.4.

4.4. Procedure to Build a CI

Since there are both input and simulation estimation errors in the system mean perfor-
mance estimates, in this section, we propose a procedure to build a CI quantifying the
overall uncertainty for μ(Mc). We show that as m, B → ∞, the CI has asymptotically
consistent coverage.

Based on a hierarchical sampling approach, we propose the following procedure to
build a (1 − α)100% bootstrap percentile CI. We do bootstrapping over moment-based
parameters to quantify the input uncertainty. Since each simulation run could be ex-
pensive, to efficiently propagate the input uncertainty quantified by B bootstrapped
moment samples, M̃(b)

m with b = 1, 2, . . . , B, to outputs, we construct an SK meta-
model in Steps (1) through (3) that covers the most likely bootstrapped samples. Then,
Step (4) uses the SK metamodel to propagate the input uncertainty to output means,
with part (a) accounting for the input uncertainty and part (b) accounting for the simu-
lation estimation uncertainty. Therefore, the CI built in Step (5) quantifies the overall
uncertainty for μ(Mc) estimation.

(1) Identify a design space E for the moment-based parameters M over which to fit
the metamodel. Since the metamodel is used to propagate the input uncertainty
measured by the bootstrapped moments M̃m to the output mean, the design space is
chosen to be the smallest ellipsoid covering the most likely bootstrapped moments.

(2) Use a maximin distance Latin hypercube design (LHD) to embed K design points
into the design space E. Assign equal replications to K design points to exhaust
the simulation budget N and obtain an experiment design D = {(M(i), n), i =
1, 2, . . . , K}.

(3) At K design points, generate samples of X by using the approaches described
in Section 4.2. Use these samples to drive simulations and obtain outputs yD.
Compute the sample average ȳ(M(i)) and sample variance s2(M(i)) of the simula-
tion outputs, i = 1, 2, . . . , K. Fit an SK metamodel to obtain m̂p(·) and σ̂ 2

p(·) using
(ȳ(M(i)), s2(M(i)),M(i)), i = 1, 2, . . . , K; see Section 4.3.

(4) For b = 1 to B:
(a) Generate bootstrap moments M̃(b)

m by following the procedure in Section 4.1.
(b) Draw M̂b ∼ N(m̂p(M̃(b)

m ), σ̂ 2
p(M̃(b)

m )).
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Next b:
(5) Report CI: [M̂(�Bα

2 �), M̂(�B(1− α
2 )�)], where, M̂(1) ≤ M̂(2) ≤ · · · ≤ M̂(B) are the sorted

values.

To construct the design space E for the SK metamodel, we first generate a test
set of bootstrapped moments, denoted by DT , by following the procedure described
in Section 4.1. Then, we find the smallest ellipsoid E that can cover the most likely
bootstrapped moments, say, 99%. The ellipsoid’s center and shape are the sample
mean and covariance matrix of the elements in DT . The size of DT is determined by a
hypothesis test. See Barton et al. [2014] for more detailed information. By Theorem 4.1,
as m → ∞, we have a consistent moment estimator M̃m

a.s.→ Mc. Thus, the design space
E automatically shrinks to a smaller and smaller region around Mc. When m is large
enough, by Theorems 4.3 and 4.2, any M in the design space E eventually has either
a feasible NORTA representation or multivariate parametric joint distribution.

The CI [M̂(�Bα
2 �), M̂(�B(1− α

2 )�)] provided by our framework characterizes the impact from
both input and metamodel uncertainty on a system performance estimate. A variance
decomposition in Xie et al. [2015] can be used to assess their relative contributions
and guide a decision maker as to where to put more effort: if the input uncertainty
dominates, then get more real-world data if possible; if the metamodel uncertainty
dominates, then run more simulations; if neither dominates, then do both activities to
improve the estimation accuracy of μ(Mc).

If SK parameters (τ 2, ζζζ , C) are known and we replace M̂b in Step (4.b) of the CI
procedure with Mb ∼ N(mp(M̃(b)

m ), σ 2
p(M̃(b)

m )), the CI obtained is [M(�Bα
2 �), M(�B(1− α

2 )�)].
Theorem 4.4 shows that [M(�Bα

2 �), M(�B(1− α
2 )�)] is asymptotically consistent.

THEOREM 4.4. Suppose conditions for Theorems 4.1, 4.3, and 4.2 and the following
additional assumptions hold.

(1) ε j(x)
i.i.d.∼ N(0, σ 2

ε (x)) for any x, and M(x) is a stationary, separable GP with a
continuous correlation function satisfying

1 − γ (x − x′) ≤ c
|log(‖ x − x′ ‖2)|1+δ1

for all ‖ x − x′ ‖2≤ δ2 (13)

for some c > 0, δ1 > 0, and δ2 < 1, where ‖ x − x′ ‖2=
√∑d′

j=1(xj − x′
j)2.

(2) The input processes, simulation noise ε j(x), and GP M(x) are mutually independent
and the bootstrap process is independent of all of them.

Then the interval [M(�Bα
2 �), M(�B(1− α

2 )�)] is asymptotically consistent, meaning the iter-
ated limit

lim
m→∞ lim

B→∞
Pr{M(�Bα/2�) ≤ Mp(Mc) ≤ M(�B(1−α/2)�)} = 1 − α. (14)

The detailed proof of Theorem 4.4 is provided in the Online Appendix.

Remark 4.5. Theorem 4.4 is based on the assumption that the Gaussian process
can correctly characterize the estimation uncertainty of the underlying true response
surface given the prior information on μ(·) and the information obtained from the sim-
ulation experiments. The interval [M(�Bα

2 �), M(�B(1− α
2 )�)] constructed by our framework

is a CI in the frequentist sense. SK reduces the uncertainty about μ(Mc) by simu-
lating at a set of design points. The conditional distribution of M(·) given simulation
outputs at design points YD allows more precise inference about μ(Mc). In SK, the
distribution M(·)|YD characterizes the remaining uncertainty about μ(·). The interval
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Fig. 1. A queueing system.

[M(�Bα
2 �), M(�B(1− α

2 )�)] in Equation (14) could be considered as an interval to cover M(Mc)
since limm→∞ limB→∞

∫
Pr{M(Mc) ∈ [M(�Bα

2 �), M(�B(1− α
2 )�)]|YD}dPYD = 1 − α; it is inter-

preted as a CI for μ(Mc) because SK treats μ(·) as a realization of M(·), where PYD
denotes the joint distribution of simulation responses YD. Notice that this asymptotic
consistency is different from the typical asymptotically valid coverage in the simulation
studies that considers the asymptotic performance as the simulation budget goes to
infinity.

The metamodel-assisted bootstrapping builds a metamodel based on the simulation
results at well-chosen design points and uses the metamodel to propagate the input
uncertainty quantified by the bootstrapped samples, M̃(b)

m with b = 1, 2, . . . , B, to the
output mean. To run simulations, we need to construct feasible joint input distribu-
tions at each design point. When the parametric distribution for F is unknown, some
bootstrapped moments may be NORTA infeasible. Therefore, for finite real-world data,
the design space E built to cover the most likely bootstrapped samples could include
moment combinations M that are also NORTA infeasible. However, when the dimen-
sion of the correlated random vector is relatively low, say, d ≤ 5, and the pairwise
correlation is not so extreme or close to ±1, the NORTA infeasible problem typically is
not an issue for the sample sizes of real-world data encountered in many applications.
Therefore, we remove any NORTA infeasible design points in the design space E in
Step (2) and assign equal replications to the remaining points. Then, we construct an
SK metamodel and use it to estimate mean responses at all bootstrapped samples M̃(b)

m
with b = 1, 2, . . . , B. The experiment results in Section 5 indicate that directly throw-
ing away the NORTA infeasible design points does not have an obvious impact on the
performance of the metamodel-assisted bootstrapping approach. Notice that since the
bootstrapped samples of input moments converge to Mc and the ellipsoid design space
also shrinks around Mc, an interior point of the NORTA feasible region, the NORTA
infeasibility could be reduced by obtaining more real-world data for the input models.

5. EMPIRICAL STUDY

In this section, we use the queueing system in Figure 1 to examine the finite-sample per-
formance of our metamodel-assisted bootstrapping approach. Starting with an empty
system, we are interested in the expected number of customers in the system over a
time interval [0, T ] with T = 100 time units. The interarrival times follow an expo-
nential distribution, A ∼ exp(λ), and the service times at stations 1 and 2 also follow
exponential distributions S1 ∼ exp(μ1) and S2 ∼ exp(μ2). There exists component-wise
dependence in X = (A, S1, S2).

We assume that Fc is NORTA. For the marginal distributions, the arrival rate λc = 1
and the service rates μc

1 = μc
2 = 1.2. We consider two cases with dependence mea-

sured by either Spearman rank or product-moment correlations. The true correlation
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Table I. Estimated System Mean Response

ρc
X = Q ρc = 0 ρc = 0.2 ρc = 0.4 ρc = 0.6 ρc = 0.8

Estimated μ(ϑϑϑc) mean 6.921 6.411 5.913 5.411 4.96
Estimated μ(ϑϑϑc) SE 0.01 0.009 0.007 0.0054 0.0036

Rc
X = Q ρc = 0 ρc = 0.2 ρc = 0.4 ρc = 0.6 ρc = 0.8

Estimated μ(ϑϑϑc) mean 6.93 6.475 5.977 5.472 4.993
Estimated μ(ϑϑϑc) SE 0.01 0.009 0.007 0.006 0.004

matrices Rc
X or ρc

X are

Q ≡
( 1 ρc ρc

1 ρc

1

)
.

For illustration, we set off-diagonal elements in the correlation matrices as a constant
value. Therefore, the number of parameters characterizing the input model F is d′ =
d† + d∗ = 3 + (3 × 2)/2 = 6. Since the true mean response μ(ϑϑϑc) is unknown, we run
105 replications to estimate it with results shown in Table I, which records the mean
and standard error (SE) of the estimated system response for different values of ρc.
Notice that the dependence level quantified by ρc significantly impacts the system
mean response. In this section, we present the empirical results for ρc = 0.4 or 0.8,
which are representative of the performance of our metamodel-assisted bootstrapping
approach.

To evaluate metamodel-assisted bootstrapping, we pretend that the input model
parameters (θθθ c, Rc

X) or (θθθ c, ρc
X) are unknown and that they are estimated by m i.i.d.

observations from Fc; this represents obtaining “real-world data.” The goal is to build
a CI quantifying the impact of both input and simulation estimation error on the system
mean response estimate.

We compare metamodel-assisted bootstrapping to the conditional CI and direct boot-
strapping. For the conditional CI, we fit the input distribution to the real-world data
by moment matching and allocate the entire computational budget of N replications to
simulating the resulting system. In direct bootstrapping, we run N/B replications of
the simulation at each bootstrap moment M̃(b)

m , record the average simulation output
Ȳb = Ȳ (M̃(b)

m ), and report the percentile CI [Ȳ(�Bα
2 �), Ȳ(�B(1− α

2 )�)]. In metamodel-assisted
bootstrapping, we evenly assign N replications to K design points, run simulations,
build an SK metamodel, and record the percentile CI [M̂(�Bα

2 �), M̂(�B(1− α
2 )�)] by following

the procedure in Section 4.4.
When we construct the stochastic kriging metamodel, we first use an LHD to find

potential design points to evenly cover the ellipsoid design space E. There may exist
NORTA infeasible design points. For ease of implementation, we throw away those
NORTA infeasible points and allocate all the computational budget to the remaining
design points, which is called “Design D1.” This experiment design would not cause
metamodel bias under the assumption that the true unknown response surface μ(·) is
a realization of a GP. To see if directly removing the NORTA infeasible design points
could impact the performance of our metamodel-assisted bootstrap approach, we also
make some modification and obtain “Design D2.” Since Ghosh and Henderson [2002b]
indicate that we could always find a close NORTA feasible approximation to a NORTA
infeasible point, we replace NORTA infeasible points with close new design points that
are NORTA feasible. Specifically, we find a close positive semidefinite approximation
for ρZ, denoted by ρ̄Z [Higham 2002], and let ρa

Z ≡ ρ̄Z + δ′Id×d, where Id×d denotes a
d× d identity matrix and δ′ is a small positive value. We use δ′ = 10−7 in the empirical
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Table II. Results for Nominal 95% CIs When m = 100, 500, 1, 000 When the Dependence Is
Characterized by Spearman Rank Correlations Rc

X = Q

m = 100 ρc = 0.4 ρc = 0.8

N = 103 N = 104 N = 103 N = 104

conditional CI coverage 5.2% 2.7% 7.6% 3.4%
CI width (mean) 0.322 0.099 0.158 0.052

CI width (SD) 0.117 0.034 0.043 0.014
direct bootstrap coverage 99.4% 96.3% 100% 96.8%

CI width (mean) 14.301 9.515 6.778 4.402
CI width (SD) 4.588 3.214 1.908 1.469

metamodel-assisted coverage 93.8% 94.2% 95.8% 95.1%
bootstrap CI width (mean) 9.248 8.954 3.978 4.095

CI width (SD) 3.43 3.084 1.307 1.393

m = 500 ρc = 0.4 ρc = 0.8

N = 103 N = 104 N = 103 N = 104

conditional CI coverage 12.3% 4% 15.5% 4.9%
CI width (mean) 0.298 0.094 0.151 0.048

CI width (SD) 0.053 0.017 0.019 0.006
direct bootstrap coverage 100% 99.1% 100% 99.2%

CI width (mean) 10.415 4.672 5.172 2.196
CI width (SD) 1.827 0.863 0.714 0.312

metamodel-assisted coverage 94.7% 94.4% 96.1% 94.6%
bootstrap CI width (mean) 3.587 3.518 1.562 1.52

CI width (SD) 0.795 0.693 0.3 0.246

m = 1000 ρc = 0.4 ρc = 0.8

N = 103 N = 104 N = 103 N = 104

conditional CI coverage 17.4% 6.9% 24.4% 7.8%
CI width (mean) 0.295 0.093 0.149 0.047

CI width (SD) 0.039 0.011 0.014 0.004
direct bootstrap coverage 100% 99.9% 100% 99.9%

CI width (mean) 9.881 3.911 4.968 1.874
CI width (SD) 1.265 0.493 0.504 0.184

metamodel-assisted coverage 95.3% 94.5% 95.2% 94.7%
bootstrap CI width (mean) 2.626 2.439 1.171 1.044

CI width (SD) 0.532 0.345 0.236 0.123

study. Then, we set ρa
Z as the correlation matrix for NORTA and generate samples of

X for simulation runs.
In direct bootstrapping, for the small percentage of NORTA infeasible bootstrap

resampled moments M̃(b)
m , we first find a close NORTA feasible approximation by fol-

lowing the approach used in Design D2. Then, we use this approximated input model
to drive the simulations and estimate the system performance.

For the input distribution with dependence characterized by either Spearman rank
or product-moment correlations, Tables II and III show the statistical performance of
conditional and direct bootstrapping CIs and metamodel-assisted bootstrapping with
m = 100, 500, 1,000 real-world observations and computational budget of N = 103, 104

replications. Since the studies by Jones et al. [1998] and Loeppky et al. [2009] rec-
ommend that the number of design points should be 10 times the dimension of the
problem for kriging, we set the number of design points K = 60. We ran 1,000 macro-
replications of the entire experiment. In each macro-replication, we first generate m
multivariate observations by using NORTA with parameters (θθθ c, Rc

X) or (θθθ c, ρc
X). Then,
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Table III. Results for Nominal 95% CIs When m = 100, 500, 1,000 When the Dependence
Is Characterized by Product-Moment Correlations ρc

X = Q

ρc = 0.4 ρc = 0.8

m = 100 N = 103 N = 104 N = 103 N = 104

conditional CI coverage 7.7% 2.1% 7.6% 2%
CI width (mean) 0.315 0.097 0.155 0.049

CI width (SD) 0.117 0.034 0.045 0.014
direct bootstrap coverage 99.1% 97.7% 99.8% 96.2%

CI width (mean) 13.87 9.279 6.448 4.072
CI width (SD) 4.53 3.074 1.922 1.398

metamodel-assisted coverage 93.3% 95.6% 95.4% 95.4%
bootstrap CI width (mean) 9.075 8.754 3.844 3.819

(Design D1) CI width (SD) 3.468 3.074 1.372 1.338
metamodel-assisted coverage 93.2% 95.6% 95.4% 95.3%

bootstrap CI width (mean) 9.08 8.754 3.841 3.812
(Design D2) CI width (SD) 3.466 3.073 1.388 1.335

ρc = 0.4 ρc = 0.8

m = 500 N = 103 N = 104 N = 103 N = 104

conditional CI coverage 14.4% 4.8% 14.9% 6.6%
CI width (mean) 0.287 0.09 0.145 0.046

CI width (SD) 0.051 0.016 0.02 0.006
direct bootstrap coverage 100% 98.8% 100% 99.2%

CI width (mean) 9.742 4.42 4.819 2.051
CI width (SD) 1.703 0.814 0.682 0.289

metamodel-assisted coverage 94.2% 94.7% 94.6% 95%
bootstrap CI width (mean) 3.419 3.386 1.45 1.435

(Design D1) CI width (SD) 0.751 0.671 0.266 0.23
metamodel-assisted coverage 94.5% 95% 95.3% 94.9%

bootstrap CI width (mean) 3.421 3.387 1.45 1.435
(Design D2) CI width (SD) 0.749 0.669 0.27 0.231

ρc = 0.4 ρc = 0.8

m = 1000 N = 103 N = 104 N = 103 N = 104

conditional CI coverage 20.4% 6.6% 20.7% 6.2%
CI width (mean) 0.282 0.089 0.145 0.046

CI width (SD) 0.035 0.011 0.014 0.004
direct bootstrap coverage 100% 99.9% 100% 100%

CI width (mean) 9.183 3.664 4.644 1.766
CI width (SD) 1.135 0.485 0.467 0.182

metamodel-assisted coverage 95.5% 94.8% 95.1% 93.9%
bootstrap CI width (mean) 2.450 2.328 1.088 1.001

(Design D1) CI width (SD) 0.449 0.332 0.194 0.125
metamodel-assisted coverage 95.5% 94.7% 95.2% 93.9%

bootstrap CI width (mean) 2.454 2.328 1.086 1.002
(Design D2) CI width (SD) 0.449 0.332 0.192 0.124

for the conditional CI, we run N replications at the estimated parameters (̂θθθm, R̂X,m) or
(̂θθθm, ρ̂X,m) and build CIs with nominal 95% coverage of the response mean. For direct
bootstrapping and metamodel-assisted bootstrapping, we use bootstrapping to generate
B = 1,000 sample moments to quantify the input uncertainty. Since μ(·) is unknown,
we use the fixed computational budget N to propagate the input uncertainty either via
direct simulation or via the SK metamodel to build percentile CIs with nominal 95%
coverage.
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Fig. 2. Scatter plots of conditional CIs and CIs obtained by direct bootstrapping and metamodel-assisted
bootstrapping with m = 500, N = 103, and ρc = 0.4, 0.8.

When we use the product-moment correlation to measure the dependence, the proba-
bility to get NORTA infeasible bootstrapped moments M̃(b)

m is negligible when ρc = 0.4.
For ρc = 0.8, the probability has mean 3.55% and standard deviation 2.65% when
m = 100, mean 3.14% and standard deviation 4.08% when m = 500, and mean 1.54%
and standard deviation 3.29% when m = 1,000. When we use the Spearman rank
correlation to measure the dependence, the probability to get NORTA infeasible boot-
strapped moments is negligible when ρc = 0.4, 0.8.

From Tables II and III, the results with dependence measured by either product-
moment or Spearman rank correlations are similar. We observe that under the same
computational budget N, the conditional CIs that only account for the simulation
uncertainty tend to have undercoverage. The CIs obtained by direct bootstrapping
are much wider and they typically have obvious overcoverage. The CIs obtained by
metamodel-assisted bootstrapping with Designs D1 and D2 have similar performance
and they have coverage much closer to the nominal level of 95%. As N increases and the
simulation estimation error decreases, the undercoverage problem for the conditional
CI becomes worse. Since direct bootstrap and metamodel-assisted bootstrap use the
same set of bootstrapped samples to quantify input uncertainty, the overcoverage for
the direct bootstrap represents the additional simulation uncertainty introduced while
propagating the input uncertainty to the output mean. Tables II and III show that the
metamodel can effectively use the computational budget and reduce the impact from
the simulation estimation error. Further, as the computational budget increases, the
difference between the CIs obtained by the two methods diminishes.

Figure 2 shows scatter plots of conditional CIs and CIs obtained by direct bootstrap-
ping and metamodel-assisted bootstrapping with m = 500, N = 103, and ρc = 0.4, 0.8
when we use either Spearman-rank or product-moment correlations. They include re-
sults from 100 macro-replications. The horizontal axis represents (QL + QU )/2, the
center of the CI, where QL and QU are the lower and upper bounds of the CIs. The
vertical axis is (QU − QL)/2, the half-width of the CIs. Region 1 contains points that cor-
respond to CIs having underestimation and Region 3 contains points corresponding to
overestimation, while Region 2 contains CIs that cover μ(Fc); see Kang and Schmeiser
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[1990]. The conclusions obtained for Spearman rank and product-moment correlations
are similar. Since the standard deviation of the system response estimate increases
with the mean, we observe that all CIs tend to be wider when the center is larger.
Conditional CIs have width too short and their centers have large variance. Therefore,
they have serious undercoverage. The variance for centers of CIs comes from the impact
of input uncertainty. Since metamodel-assisted bootstrapping accounts for both input
and simulation uncertainty, its CI width is large enough to avoid undercoverage. The
proportion of CIs in Region 2 is close to 95%, and CIs outside tend to have underestima-
tion based on results from 1,000 macro-replications. The CIs obtained by Designs D1
and D2 have similar performance. The width of CIs obtained by the direct bootstrap is
too large; all CIs are located in Region 2 and they have serious overcoverage.

6. CONCLUSIONS

In this paper, we extended the metamodel-assisted bootstrapping framework of Xie
et al. [2015] to stochastic simulation with dependent input models. The input models
are characterized by their marginal distribution parameters and dependence measured
either by Spearman rank or product-moment correlations, which are estimated from
real-world data. Metamodel-assisted bootstrapping uses the bootstrap to quantify the
estimation error of these joint distributions and propagates it to the output mean
by using an equation-based SK metamodel. We proposed a procedure to deliver a CI
quantifying the overall uncertainty of the system performance estimate. The asymp-
totic consistency of this interval is proved under the assumption that the true mean
response surface is a realization of a GP. Our metamodel-assisted bootstrap framework
is applicable to cases when the parametric family of multivariate input distribution is
known or unknown. When the parametric joint input distributions are unknown, we
construct the joint distributions by using the flexible NORTA representation.

An empirical study using a queueing example demonstrates that for the input dis-
tribution with dependence measured by either Spearman rank or product-moment
correlations, our metamodel-assisted bootstrap approach has good finite-sample per-
formance under various quantities of real-world data and simulation budget. When the
simulation budget is tight, compared with the direct bootstrap, the metamodel-assisted
bootstrap can make more effective use of the simulation budget.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

This research was partially supported by National Science Foundation Grant CMMI-1068473 and GOALI
sponsor Simio. The authors thank Cheng Li in the proof of Lemma A.3. Portions of this were previously
published in the Proceedings of the 2014 Winter Simulation Conference as Xie et al. [2014b].

REFERENCES

Bruce E. Ankenman, Barry L. Nelson, and Jeremy Staum. 2010. Stochastic kriging for simulation metamod-
eling. Operations Research 58 (2010), 371–382.

Eusebio Arenal-Gutiérrez, Carlos Matrán, and Juan A. Cuesta-Albertos. 1996. Unconditional Glivenko-
Gantelli-type theorems and weak laws of large numbers for bootstrap. Statistics & Probability Letters
26 (1996), 365–375.

Francois Bachoc. 2013. Cross validation and maximum likelihood estimations of hyper-parameters of Gaus-
sian processes with model misspecification. Computational Statistics & Data Analysis 66 (2013), 55–69.

Russell R. Barton. 2007. Presenting a more complete characterization of uncertainty: Can it be done? In Pro-
ceedings of the 2007 INFORMS Simulation Society Research Workshop. INFORMS Simulation Society,
Fontainebleau.

ACM Transactions on Modeling and Computer Simulation, Vol. 27, No. 1, Article 5, Publication date: October 2016.



Multivariate Input Uncertainty in Output Analysis for Stochastic Simulation 5:21

Russell R. Barton. 2012. Tutorial: Input uncertainty in output analysis. In Proceedings of the 2012 Winter
Simulation Conference, C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A. M. Uhrmacher (Eds.).
IEEE Computer Society, 67–78.

Russell R. Barton, Barry L. Nelson, and Wei Xie. 2014. Quantifying input uncertainty via simulation confi-
dence intervals. Informs Journal on Computing 26 (2014), 74–87.

Russell R. Barton and Lee W. Schruben. 1993. Uniform and bootstrap resampling of input distributions. In
Proceedings of the 1993 Winter Simulation Conference, G. W. Evans, M. Mollaghasemi, E. C. Russell,
and W. E. Biles (Eds.). IEEE Computer Society, 503–508.

Russell R. Barton and Lee W. Schruben. 2001. Resampling methods for input modeling. In Proceedings of the
2001 Winter Simulation Conference, B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer (Eds.).
IEEE Computer Society, 372–378.

Bahar Biller and Canan G. Corlu. 2011. Accounting for parameter uncertainty in large-scale stochastic
simulations with correlated inputs. Operations Research 59 (2011), 661–673.

Bahar Biller and Soumyadip Ghosh. 2006. Multivariate input processes. In Handbooks in Operations Re-
search and Management Science: Simulation, S. Henderson and B. L. Nelson (Eds.). Elsevier, Chapter 5.

Patrick Billingsley. 1995. Probability and Measure. Wiley-Interscience, New York.
Marne C. Cario and Barry L. Nelson. 1997. Modeling and Generating Random Vectors with Arbitrary

Marginal Distributions and Correlation Matrix. Technical report. Department of Industrial Engineering
and Management Sciences, Northwestern University.

Xi Chen, Bruce E. Ankenman, and Barry L. Nelson. 2012. The effect of common random numbers on
stochastic kriging metamodels. ACM Transactions on Modeling and Computer Simulation 22 (2012),
7:1–7:20.

Russell C. H. Cheng and Wayne Holland. 1997. Sensitivity of computer simulation experiments to errors in
input data. Journal of Statistical Computation and Simulation 57 (1997), 219–241.

Robert T. Clemen and Terence Reilly. 1999. Correlations and copulas for decision and risk analysis. Manage-
ment Science 45 (1999), 208–224.

Sourav Das, Tata S. Rao, and Georgi N. Boshnakov. 2012. On the Estimation of Parameters of Variograms of
Spatial Stationary Isotropic Random Processes. Research Report No. 2. The University of Manchester.

Soumyadip Ghosh and Shane G. Henderson. 2002a. Chessboard distributions and random vectors with
specified marginals and covariance matrix. Operations Research 50 (2002), 820–834.

Soumyadip Ghosh and Shane G. Henderson. 2002b. Properties of the NORTA method in higher dimensions.
In Proceedings of the 2002 Winter Simulation Conference, E. Yűcesan, C. H. Chen, J. L. Snowdon, and J.
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