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Abstract

When we use simulation to evaluate the performance of a stochastic system, the
simulation often contains input distributions estimated from real-world data; therefore,
there is both simulation and input uncertainty in the performance estimates. Ignoring
either source of uncertainty underestimates the overall statistical error. Simulation
uncertainty can be reduced by additional computation (e.g., more replications). Input
uncertainty can be reduced by collecting more real-world data, when feasible.

This paper proposes an approach to quantify overall statistical uncertainty when
the simulation is driven by independent parametric input distributions; specifically,
we produce a confidence interval that accounts for both simulation and input uncer-
tainty by using a metamodel-assisted bootstrapping approach. The input uncertainty
is measured via bootstrapping, an equation-based stochastic kriging metamodel prop-
agates the input uncertainty to the output mean, and both simulation and metamodel
uncertainty are derived using properties of the metamodel. A variance decomposi-
tion is proposed to estimate the relative contribution of input to overall uncertainty;
this information indicates whether the overall uncertainty can be significantly reduced
through additional simulation alone. Asymptotic analysis provides theoretical support
for our approach, while an empirical study demonstrates that it has good finite-sample
performance.

Keywords: Input uncertainty, confidence intervals, bootstrap, stochastic kriging, simulation
output analysis, metamodel

1



1 Introduction

Stochastic simulation is used to characterize the behavior of complex systems that are driven
by random input processes. By “input process” we mean a sequence of one or more random
variables with a fully specified joint distribution. In this paper we consider independent and
identically distributed (i.i.d.) input processes that are themselves mutually independent,
which means that the input processes can be full specified by their individual marginal
distributions.

The distributions of these input processes are often estimated from real-world data. Thus,
a complete statistical characterization of stochastic system performance requires quantifying
both simulation and input estimation errors.1 There are robust methods that are adequate
for quantifying simulation error for many practical problems. However, the impact of input
estimation error (which we call “input uncertainty”) can overwhelm the simulation error, as
demonstrated in Barton and Schruben (2001); ignoring it may lead to unfounded confidence
in the simulation assessment of system performance, which could be the basis for critical
and expensive decisions. What we call input and simulation uncertainty are also known
as epistemic and aleatory uncertainty, respectively; see for instance Kleijnen (2008). Our
method accounts for both sources of error.

In this paper we address problems with parametric input distributions that are mutually
independent with parameters that are estimated from a finite sample of real-world data.
Of course, there exist practical problems in which the input processes are not independent,
and there may also be significant uncertainty about the correct parametric distribution as
well as its parameter values. Nevertheless, the case of i.i.d. input processes represented by a
parametric distribution is prevalent in practice, making our contribution a useful step. We
build on Barton et al. (2014), which proposed a metamodel-assisted bootstrapping approach
that forms a confidence interval (CI) to account for the impact of input uncertainty when
estimating the system’s mean performance. In that paper, bootstrap resampling of the real-
world data was used to approximate the input uncertainty, while a metamodel predicted
the simulation’s mean response at different parameter settings corresponding to bootstrap
resampled data sets.

In a metamodel-assisted bootstrapping framework there are three types of error: the
input estimation error, the simulation estimation error and the error in the metamodel
itself. The latter two types of error are not easily separated, so we call their combined effect
“metamodel uncertainty.”

Barton et al. (2014) showed that metamodel uncertainty can be ignored when the sim-
ulation budget is not tight and an appropriate type of metamodel and experiment design
are used; they provided a follow-up test to insure that the metamodel fit is close enough.
In this setting their method yields a valid CI. However, if the true mean response surface is
complex, especially for high-dimensional problems (i.e., many input distributions), and the
computational budget is tight, then the impact of metamodel uncertainty can no longer be

1As with any mathematical or computer model, simulations are also subject to a host of non-statistical
errors in abstraction; these are not considered in this paper.

2



ignored without underestimating the error, which manifests itself in a CI that is too short.
Computationally intensive stochastic simulations are the norm for a number of fields: Spatial
stochastic simulations, e.g., of oil reservoirs, can take hours for a single run, and depend on
many stochastic parameters (Bangerth et al. 2006, Wang et al. 2012). Simulations of semi-
conductor manufacturing (Fowler and Rose 2004) and biological systems (Ghosh et al. 2011,
Kastner et al. 2002) can be similarly intensive.

This paper is a significant enhancement of Barton et al. (2014). Here we propose an ap-
proach to form an interval estimate that accounts for both input and metamodel uncertainty
in estimating a stochastic system’s mean performance. When there is little metamodel un-
certainty the new method performs like Barton et al. (2014), but it does not experience a
degradation in coverage when metamodel uncertainty is significant.

When the statistical error measured by our CI is too large for the estimate to be useful,
then the decision maker may want to know how the error can be reduced. Our approach
leads naturally to a measure of the relative contribution of input to overall uncertainty that
indicates whether the error can be reduced by an additional computational investment.

The next section describes other approaches to attack the input uncertainty problem and
contrasts them with our method. This is followed in Section 3 by a formal description of the
problem of interest and a brief review of the metamodel-assisted bootstrapping approach in
Section 4. In Section 5 we provide an algorithm to build an interval estimator accounting
for both input and metamodel uncertainty, and give a method to estimate their relative
contributions. We then report results from an empirical study of a difficult problem in
Section 6 and conclude the paper in Section 7. All proofs are in the Appendix.

2 Background

Various approaches to account for input uncertainty have been proposed. The Bayesian
methods use the posterior distributions of the inputs given the real-world data to quantify
the input distribution uncertainty, and the impact on the system mean is estimated by draw-
ing samples from these posterior distributions and running simulations at each sample point
(Chick 2001; Chick and Ng 2002; Zouaoui and Wilson 2003, 2004). This could be computa-
tionally expensive when the time for each simulation run is significant because simulations
need to be run at a large number of posterior sample points. In addition, for each input
prior distribution we need to derive a corresponding posterior distribution which might be
nonstandard and complex.

A second approach is based on direct bootstrapping; it quantifies the impact of input
uncertainty using bootstrap resampling of the input data, and runs simulations at each boot-
strap resample point to estimate the impact on the system mean (Barton and Schruben 1993,
2001; Barton 2007; Cheng and Holland 1997). Compared with the Bayesian approach, the
direct bootstrap can be adapted to any input process without additional analysis and it is
suitable for complex and nonstandard input distributions. However, similar to the Bayesian
approach, this method also runs simulations at each resample point. Since the number of
bootstrap resample points to construct a CI is recommended to be a few thousand, the di-
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rect bootstrapping method is also computationally expensive. More subtly, since the statistic
that is bootstrapped is the random output of a simulation it is not a smooth function of the
input data; this violates the asymptotic validity of the bootstrap.

Differing from the previous two approaches that estimate the system mean response at
each sample point by running simulations, a third approach introduces an equation-based
metamodel of the mean response (see Cheng and Holland (2004) and references therein).
Specifically, it assumes that the parametric families of the inputs are known, uses maximum
likelihood estimators (MLEs) of the unknown parameters, and represents input-parameter
uncertainty by the large-sample normal distribution of the MLEs. This uncertainty is prop-
agated to the output mean by a linear function of the parameters that is based on a Taylor
series approximation. Since the metamodel can be constructed using simulation results from
a small number of runs, this method does not need substantial computational effort. How-
ever, a metamodel based on a locally linear approximation is only appropriate when there
is a large quantity of real-world data so that the MLEs locate in a small neighborhood of
the true parameters with high probability; it is not suitable when the underlying response
surface is highly non-linear and only a modest quantity of real-world data are available. In
addition, the asymptotic normal approximation for the input distribution parameters can be
poor with sample sizes encountered in some applications.

The metamodel-assisted bootstrapping approach introduced by Barton et al. (2014) ad-
dresses some of the shortcomings in the prior work. Compared with Cheng and Holland
(2004), the bootstrap provides a more accurate approximation of the input uncertainty than
the asymptotic normal distribution of the parameter estimates in many situations (Horowitz,
2001). Further, the use of a general-form metamodel provides higher fidelity than a locally
linear approximation. Compared with Bayesian and direct bootstrap approaches, the use of
a metamodel reduces the impact of simulation error on the accuracy of CIs and reduces the
computational effort because it does not run simulations at a large number of sampled or
resampled points; instead, an equation-based metamodel is constructed based on a designed
experiment at a smaller number of parameter settings. In addition, employing a metamodel
makes the bootstrap statistic a smooth function of the input data so that the asymptotic
validity concerns faced by the direct bootstrap method disappear. The numerical results in
Barton et al. (2014) provide evidence that metamodel-assisted bootstrapping is effective and
superior to competitors when there is little metamodel uncertainty, motivating its extension
in this paper to more general and complex input-uncertainty problems in which the impact
of metamodel uncertainty can no longer be ignored. The end result is a robust method for
quantifying statistical uncertainty.

3 Problem Description

To make the description of the input uncertainty problem and our solution to it easier to fol-
low we will use the queueing network in Figure 1 as an example and return to it in our empiri-
cal study in Section 6. Consider estimating the steady state expected number of customers in
this network. The interarrival times follow a gamma distribution, A ∼ gamma(αA, βA), and
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Figure 1: Queueing network example.

the service times at the ith station also follow a gamma distribution, Si ∼ gamma(αSi , βSi).
Customers finishing service at stations 1, 2, 3 must make decisions about their next station.
These routing decisions follow Bernoulli distributions Pi ∼ Ber(pi), i = 1, 2, 3. The param-
eters of the input distributions, αA, βA, {(αSi , βSi), i = 1, 2, 3, 4} and {pi, i = 1, 2, 3} are
all unknown and estimated from real-world data. Notice that the inputs include both con-
tinuous and discrete distributions. Our goal is to build a CI that covers the steady-state
expected number of customers in the system when the input parameters assume their true
but unknown values. We assume that at these “true values” the system is in fact stable, and
if we have enough real-world data (which we may not) then the simulation with estimated
parameters will also be stable.

More generally, the stochastic simulation output is a function of random numbers and L
independent input distributions F ≡ {F1, F2, . . . , FL}. For notation simplification, we do not
explicitly include the random numbers. The output from the jth replication of a simulation
with input distribution F can be written as

Yj(F ) = µ(F ) + εj(F ) (1)

where µ(F ) = E[Yj(F )] denotes the unknown output mean and εj(F ) represents the simula-
tion error with mean zero. Notice that the simulation output depends on the choice of input
distributions. The true “correct” input distributions, denoted by F c ≡ {F c

1 , F
c
2 , . . . , F

c
L}, are

unknown and are estimated from a finite sample of real-world data. Our goal is to quantify
the impact of the statistical error by finding a (1− α)100% CI [QL, QU ] such that

Pr{µ(F c) ∈ [QL, QU ]} = 1− α. (2)

This is a relatively general statement of the problem which could encompass multivariate
input distributions (i.e., if one or more of F c

` are multivariate) and also unknown distribution
families.

However, in this paper we assume that the input distributions are univariate, the families
are known, but the parameter values are not. Therefore, the input distributions F can be
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completely characterized by the collection of parameters denoted by x with dimension d.
We will define what we mean by “parameters” below. By abusing the notation, we rewrite
Equation (1) as

Yj(x) = µ(x) + εj(x) (3)

where x ∈ Ψ and Ψ ≡ {x ∈ <d: the random variable Y (x) is defined and µ(x) is finite}
denotes the region of interest. The collection of true parameters is denoted by xc and is
assumed to be in the interior of Ψ. We also assume µ(x) is continuous for x ∈ Ψ. Thus, our
goal can be restated as finding a (1− α)100% CI such that

Pr{µ(xc) ∈ [QL, QU ]} = 1− α. (4)

Let m` denote the number of i.i.d. real-world observations available from the `th input

process Z`,m` ≡ {Z`,1, Z`,2, . . . , Z`,m`} with Z`,i
i.i.d∼ F c

` , i = 1, 2, . . . ,m`. Let Zm = {Z`,m` , ` =
1, 2, . . . , L} be the collection of samples from all L input distributions in F c, where m =

(m1,m2, . . . ,mL). The real-world data are a particular realization of Zm, say z
(0)
m . Since

the unknown input distributions are estimated from z
(0)
m , we assume the parameters are

functions of Zm denoted by Xm = X(Zm). Therefore, input uncertainty is fully captured
by the sampling distribution of µ(Xm).

Since the underlying response surface µ(·) is unknown, we approximate it by a metamodel
fitted to a set of stochastic simulation outputs. Let µ̂(·) denote the metamodel. Fitting the
metamodel introduces a source of uncertainty in propagating the sampling distribution of
Xm to the output mean: metamodel uncertainty. The contributions of this paper are to
construct an interval estimator that accounts for both input and metamodel uncertainty, and
to quantify the relative impact of each contributor.

4 Metamodel-Assisted Bootstrapping Framework

Barton et al. (2014) introduced the metamodel-assisted bootstrapping approach to quantify
input uncertainty. We review it here.

The representation of the L input distributions plays an important role in the imple-
mentation of metamodel-assisted bootstrapping. Since this paper focuses on problems with
independent parametric distributions having unknown parameters, F can be uniquely char-
acterized by the corresponding collection of each distribution’s parameters or, in many cases,
its moments. The `th input distribution includes h` unknown parameters. Suppose that this
h`-parameter distribution is uniquely specified by its first (finite) h` moments, which is true
for the distributions that are most often used in stochastic simulation. The moments are
chosen as the independent variables for the metamodel because when they are close, the
corresponding distributions will be similar and therefore generate similar outputs. An ex-
tended argument for choosing moments instead of the natural distribution parameters as
independent variables can be found in Barton et al. (2014). This characterization will not
work for all distributions, including some so-called “heavy-tailed” distributions.
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Let x[`] denote an h`× 1 vector of the first h` moments for the `th input distribution and

d =
∑L

`=1 h`. By stacking x[`] with ` = 1, 2, . . . , L together, we have a d × 1 dimensional
independent variable x. Notice that F is completely characterized by the collection of
moments x, and from here on µ(·) will be a function of distribution moments organized in
this way. Denote the true moments by xc.

For the queueing network in Figure 1, there are L = 8 input distributions including
arrivals, services at stations 1, 2, 3, 4 and the three routing processes. Thus, h1 = h2 = h3 =
h4 = h5 = 2 and h6 = h7 = h8 = 1. The distributions for the three routing processes can be
completely specified by their corresponding means. The distributions for the arrival and ser-
vice processes can be uniquely characterized by the corresponding first two standardized mo-
ments: mean and standard deviation. To avoid a scaling effect, the standard deviation is used
instead of the second raw moment. For the `th process, let τ` denote the first moment (mean)
and ς` denote the standard deviation. Then x = (τ1, ς1, τ2, ς2, τ3, ς3, τ4, ς4, τ5, ς5, τ6, τ7, τ8)

>

with d = 13.
The true moments xc are unknown and estimated based on a finite sample Zm from F c.

As noted above, Xm is a d×1 dimensional moment estimator that is a function of Zm written
as Xm = X(Zm). Specifically, X`,m` = X`(Z`,m`) and XT

m = (XT
1,m1

,XT
2,m2

, . . . ,XT
L,mL

). Let
F c
Xm

represent the true, unknown distribution of Xm. Then “input uncertainty” refers to

the distribution of µ(Xm) with Xm ∼ F c
Xm

. Given a finite sample of real-world data z
(0)
m ,

Barton et al. (2014) used bootstrap resampling to approximate F c
Xm

and a metamodel to
represent µ(x).

4.1 Bootstrap Resampling

We use distribution-free bootstrapping, meaning that we resample from the empirical dis-
tribution of the data rather than a fitted parametric distribution. Under some regularity
conditions, the bootstrap can provide an asymptotically consistent approximation for the
sampling distribution of a moment estimator (Shao and Tu, 1995). For the general per-
formance of the bootstrap in representing the sampling distribution of an estimator, see
Horowitz (2001).

Implementation of the bootstrap in metamodel-assisted bootstrapping is as follows.

1. Draw m` samples with replacement from z
(0)
`,m`

, denoted by Z
(1)
`,m`

, and calculate the cor-

responding h`×1 vector of bootstrap moment estimates denoted by X̂
(1)
`,m`

= X`(Z
(1)
`,m`

)
for ` = 1, 2, . . . , L. Then stack the results for all L processes to obtain a d× 1 vector
X̂

(1)
m .

2. Repeat the previous step B times to generate X̂
(b)
m , b = 1, 2, . . . , B.

The bootstrap resampled moments are drawn from the bootstrap distribution denoted by
F̂Xm(·|z(0)

m ).
The most straightforward approach to propagate input uncertainty to the output mean is

direct bootstrapping. Given a total computational budget of N simulation replications, the
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system mean response at each of B bootstrap resamples is estimated by the sample mean of
n = bN/Bc replications, denoted by Ȳ (X̂

(b)
m ) =

∑n
j=1 Yj(X̂

(b)
m ), b = 1, 2, . . . , B. From these

mean estimates a CI is formed. Direct bootstrapping consumes the total simulation budget
to estimate the simulation mean responses and to form the CI. Thus, for direct bootstrapping
the impact of Monte Carlo estimation error on the CI and the impact of simulation estimation
error on the mean responses are not separable.

Barton et al. (2014) assume that there is enough computational budget available so that

the difference between µ̂(x) and µ(x) can be ignored; i.e. µ̂(x) ≈ µ(x). Let µ̂b ≡ µ̂(X̂
(b)
m ) for

b = 1, 2, . . . , B. Barton et al. (2014) quantified input uncertainty by a (1−α)100% bootstrap
percentile interval induced by the sorted responses [Q∗L, Q

∗
U ] = [µ̂(dα

2
Be), µ̂(d(1−α

2
)Be)], where

µ̂(i) is the ith smallest value of µ̂1, µ̂2, . . . , µ̂B. Here, the superscript “*” indicates that the
input distribution is approximated with the bootstrap. This interval provides asymptotically
correct coverage when all input distributions meet certain moment conditions and the meta-
model is continuously differentiable with nonzero gradient in a neighborhood of xc (Barton
et al., 2014). Specifically, they establish the iterated limit

lim
m→∞

lim
B→∞

Pr{µ(xc) ∈ [Q∗L, Q
∗
U ]} = 1− α

where as m→∞ we have m`/m→ 1, for ` = 1, 2, . . . , L.
However, with a tight computational budget for building the metamodel we cannot guar-

antee that µ̂(x) ≈ µ(x) holds for arbitrarily complex systems especially for problems with
many input distributions. Thus, we desire an interval estimator that accounts for both input
and metamodel uncertainty. Stochastic kriging (SK), introduced by Ankenman et al. (2010),
facilitates this. SK is flexible. Unlike the locally linear approximation in Cheng and Holland
(2004), it does not require any strong assumption about the form of the underlying true
response surface µ(·). Based on our previous study (Xie et al., 2010), a SK metamodel fit
to a small number of simulation runs can provide good global predictions and also a charac-
terization of metamodel uncertainty for a wide variety of examples. The characterization of
metamodel uncertainty is a key contribution of the new method presented here.

Compared with direct bootstrapping, metamodel-assisted bootstrapping separates the choice
of B from the budget N and reduces the influence of simulation estimation error. Instead
doing simulations at B samples from the bootstrap, we run simulations at well-chosen design
points and build an equation-based metamodel µ̂(x) to predict the mean response at different
input distributions represented by bootstrap resampled moments. Notice that once we have
the metamodel, we can use any B we want to control the Monte Carlo estimation error
of the interval estimator, even B > N . Further, the metamodel can efficiently use the
computational budget to reduce the uncertainty introduced when propagating the input
uncertainty to the output mean.

4.2 Stochastic Kriging Metamodel

Kriging is a widely used interpolation method. Since the outputs from stochastic simulations
include simulation variability that often changes significantly across the design space, SK was
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introduced to distinguish the uncertainty about the response surface from the simulation
error inherent in stochastic simulation output. This section provides a brief review of SK.

Suppose that the underlying true (but unknown) response surface can be thought of as a
realization of a stationary Gaussian Process (GP). This fiction has been shown to provide a
very useful framework for quantifying uncertainty about the unknown surface implied by a
deterministic computer experiment and has been successfully employed in a wide variety of
applications (see, for instance, Santner et al. (2003)). SK extends this framework to include
the variability of the simulation output Y using the model

Yj(x) = β0 +W (x) + εj(x). (5)

The independent variable x is interpreted as a location in space. In this paper, x denotes a
d× 1 vector of moments that uniquely characterize the input distributions. The variation in
the simulation output over the x space is divided into extrinsic (response-surface) uncertainty
W (x) and intrinsic (simulation output) uncertainty εj(x). The term “intrinsic” uncertainty
refers to the variability inherent in the sampling that generates stochastic simulation outputs
and “extrinsic” uncertainty refers to our lack of knowledge about the response surface.

SK uses a mean-zero, second-order stationary GP W (x) to account for the spatial depen-
dence of the response surface. Thus, the uncertainty about the true response surface µ(x)
is represented by a GP M(x) ≡ β0 +W (x) (note that β0 can be replaced by a more general
trend term f(x)>β without affecting our method). For many, but not all, simulation settings
the output is an average of a large number of more basic outputs, so a normal approximation
can be applied: ε(x) ∼ N(0, σ2

ε (x)). Of course, normality of the simulation output will not
always hold, but could be empirically tested if there is a concern.

In SK, the covariance between W (x) and W (x′) quantifies how knowledge of the surface
at some design points affects the prediction of the surface. A parametric form of the spatial
covariance, denoted by Σ(x,x′) = Cov[W (x),W (x′)] = τ 2r(x − x′), is typically assumed
where τ 2 denotes the variance and r(·) is a correlation function that depends only on the
distance x − x′. Based on our previous study (Xie et al., 2010), we use the product-form
Gaussian correlation function

r(x− x′) = exp

(
−

d∑
j=1

θj(xj − x′j)2
)

for the empirical evaluation in Section 6; however, our results do not require it. Let θθθ =
(θ1, θ2, . . . , θd) represent the correlation parameters; for different correlation functions the
dimension of θθθ could change. In any event, M(x) can be represented by a Gaussian process
M(x) ∼ GP(β0, τ

2r(x− x′)).
To reduce the uncertainty about µ(x) we choose an experiment design consisting of

pairs D ≡ {(xi, ni), i = 1, 2, . . . , k} at which to run simulations and collect observations,
where (xi, ni) denotes the location and the number of replications, respectively, at the ith
design point. The design that we recommend is described in more detail in the Appendix,
but it is not the only design that could be effective. The simulation outputs at D are
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YD ≡ {(Y1(xi), Y2(xi), . . . , Yni(xi)); i = 1, 2, . . . , k} and the sample mean at design point
xi is Ȳ (xi) =

∑ni
j=1 Yj(xi)/ni. Let the sample means at all k design points be ȲD =

(Ȳ (x1), Ȳ (x2), . . . , Ȳ (xk))
T . Since the use of common random numbers is detrimental to

prediction (as opposed to optimization; see Chen et al. (2012)), the simulations at different
design points are independent and the variance of ȲD is represented by a k × k diagonal
matrix C = diag {σ2

ε (x1)/n1, σ
2
ε (x2)/n2, . . . , σ

2
ε (xk)/nk}.

Let Σ be the k × k spatial covariance matrix of the design points and let Σ(x, ·) be the
k × 1 spatial covariance vector between each design point and a fixed prediction point x. If
the parameters (τ 2, θθθ, C) are known, then the metamodel uncertainty can be characterized
by a refined GP Mp(x) that denotes the conditional distribution of M(x) given all simulation
outputs,

Mp(x) ∼ GP(mp(x), σ2
p(x)) (6)

where mp(·) is the minimum mean squared error (MSE) linear unbiased predictor

mp(x) = β̂0 + Σ(x, ·)>(Σ + C)−1(ȲD − β̂0 · 1k×1), (7)

and the corresponding variance is

σ2
p(x) = τ 2 − Σ(x, ·)>(Σ + C)−1Σ(x, ·) + η>[1>k×1(Σ + C)−11k×1]

−1η (8)

where β̂0 = [1>k×1(Σ + C)−11k×1]
−11>k×1(Σ + C)−1ȲD and η = 1 − 1>k×1(Σ + C)−1Σ(x, ·)

(Ankenman et al., 2010). With the parameters (τ 2, θθθ, C) known, Mp(x) depends on the sim-
ulation outputs only through ȲD. Thus, Mp(x) is a random function having the conditional
distribution of M(x) given ȲD. Notice that σ2

p(x) reflects both metamodel and simulation

error, including the constant term β̂0, with the intrinsic simulation sampling error affecting
σ2
p(x) through the matrix C.

Since in reality the spatial correlation parameters τ 2 and θθθ are unknown, MLEs are
typically used for prediction with the log-likelihood function

`(β0, τ
2, θθθ) = − ln[(2π)k/2]− 1

2
ln[|Σ + C|]− 1

2
(ȲD − β0 · 1k×1)>[Σ + C]−1(ȲD − β0 · 1k×1)

where Σ is a function of τ 2 and θθθ. The sample variance is used as an estimate for the
simulation variance at design points C. By plugging (β̂0, τ̂

2, θ̂θθ, Ĉ) into Equations (7) and (8)
we can obtain the estimated mean m̂p(x) and variance σ̂2

p(x). Thus, the metamodel we use
is µ̂(x) = m̂p(x) with marginal variance estimated by σ̂2

p(x).
Ankenman et al. (2010) demonstrate that m̂p(x) is still an unbiased predictor even with

the plug-in estimator Ĉ, and further that the variance inflation of σ2
p(x) caused by using

Ĉ is typically small. We performed an empirical study whose results indicate that if we
use an adequate experiment design, such as the one-stage space-filling design used in this
paper, then the performance of metamodel-assisted bootstrapping is also not sensitive to the
estimation error in τ̂ 2 and θ̂θθ; see the Appendix. However, it is known that the estimator (8)
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with plug-in MLEs may sometimes underestimate the prediction variance; see Den Hertog
et al. (2006).

In the derivations that follow we will assume that the parameters (τ 2, θθθ, C) are known.
This is necessary (and common in the kriging literature) because including the effect of
parameter estimation is mathematically intractable. To apply the methods in practice (in-

cluding our empirical study below), we form plug-in estimators by inserting τ̂ 2, θ̂θθ, Ĉ.

5 Confidence Interval and Variance Decomposition

Our approach is to use metamodel-assisted bootstrapping to provide a CI for the true mean
performance. To be robust the CI should account for both input and metamodel uncertainty.
Since mp(x) is an unbiased predictor under the Gaussian process assumption, σ2

p(x) = 0 for
all x would imply that there is no metamodel uncertainty due either to a finite number of de-
sign points xi or finite number of replications ni; that is, mp(x) = µ(x). Unfortunately, with
anything short of complete information, there will always be some metamodel uncertainty;
and if the budget is tight relative to the complexity of the true response surface, then the
effect of metamodel uncertainty could be substantial, resulting in significant undercoverage
of the confidence interval of Barton et al. (2014) as we show in Section 6. The new interval
introduced here does not suffer this degradation, and therefore is robust to the amount of
simulation effort that can be expended and can be recommended for general use.

The kriging literature is the foundation for our work; see for instance Santner et al. (2003).
Kriging provides inference about the value of an unknown function µ(·) at a fixed prediction
point x0 where the function has not been evaluated based on values of the function at a set
of design points. Kriging models uncertainty about the function as a GP M(·) by assuming
µ(·) is a realization of M(·). An interval constructed to cover the conditional distribution
of M(x0) given the values at the design points is often interpreted as a CI for µ(x0) (e.g.,
Picheny et al. (2010)). The success of this paradigm is not because the function of interest
is actually random—it is not—but because in many problems the conditional GP appears
to be a robust characterization of the remaining response-surface uncertainty.

We adopt the kriging paradigm but with two key differences: our prediction point xc is
also unknown and must be estimated from real-world data, and our function µ(·) can only
be evaluated in the presence of stochastic simulation noise. Given the simulation outputs
ȲD, the remaining uncertainty about µ(·) is characterized by the conditional GP Mp(·). To
account for the impact from both input and metamodel uncertainty, we construct an interval
[CL, CU ] covering Mp(xc) with probability (1− α)100%; that is,

Pr{Mp(xc) ∈ [CL, CU ]} = 1− α. (9)

Since the conditional coverage is 1 − α, the unconditional coverage of M(xc) is 1 − α as
well. The revised objective (9) is connected to our objective (4) through the assumption
that the function µ(·) is a realization of the GP M(·). A procedure that delivers an interval
satisfying (9) will be a good approximation for a CI procedure satisfying (4) if Mp(·) faithfully
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represents the remaining uncertainty about µ(·). This is clearly an approximation because in
any real problem µ(·) is a fixed function, therefore we refer to [CL, CU ] as an approximation
for the CI (ACI).

In a practical setting, what is the next step if the interval [CL, CU ] is so wide that we
are uncomfortable making decisions based on estimates with that level of error? We suggest
gaining some sense of the relative contribution from each source of uncertainty as a guide
toward either running more simulations or collecting more real-world input data or both.
For many problems collecting additional input data is not feasible or we would have done so
already; in such cases knowing that input uncertainty is substantial and cannot be reduced
allows us to exercise caution in how we use the simulation results.

In this section, we first present a procedure to build an ACI that satisfies Equation (9)
asymptotically. The asymptotic consistency of this interval is proved under the assumption
that the true response surface is a realization of a GP with all parameters known except
β0. Next a variance decomposition is proposed to measure the relative contribution of in-
put uncertainty to overall statistical uncertainty, and we study its asymptotic properties
as well. This is a measure of input uncertainty due to all input distributions. A method
for attributing the input uncertainty to the L distributions is provided by Song and Nelson
(2013). Finally, we address problems that can arise when the system’s mean performance
fails to exist, or the system is undefined, for some values of the sample moments, and explain
why metamodel-assisted bootstrapping tends to be tolerant of the former situation and can
be adjusted for the latter.

Assumptions that are needed for the asymptotic analysis are the following:

Assumptions:

1. The `th input distribution is uniquely determined by its first h` moments and it has
finite first 4h` moments for ` = 1, 2, . . . , L.

2. We have i.i.d observations Z
(0)
`,1 , Z

(0)
`,2 , . . . , Z

(0)
`,m`

from the `th distribution for ` = 1, 2, . . . , L.
As m→∞, we have m`/m→ c`, ` = 1, 2, . . . , L, for a constant c` > 0.

3. The εj(x)
i.i.d.∼ N(0, σ2

ε (x)) for any x, and M(x) is a stationary, separable GP with a
continuous correlation function satisfying

1− r(x− x′) ≤ c

|log(‖ x− x′ ‖2)|1+γ
for all ‖ x− x′ ‖2≤ δ (10)

for some c > 0, γ > 0 and δ < 1, where ‖ x− x′ ‖2=
√∑d

j=1(xj − x′j)2.

4. The input processes Z
(0)
`j , simulation noise εj(x) and GP M(x) are mutually indepen-

dent and the bootstrap process is independent of all of them.

Assumptions 1–2 give sufficient conditions for the almost sure (a.s.) consistency of boot-

strap moment estimators X̂m
a.s.→ xc as m → ∞ (see Lemma 1 in the Appendix). Under

12



Assumption 3, a GP M(·) with a correlation function satisfying Condition (10) has continu-
ous sample paths almost surely (Adler 2010, Theorem 3.4.1). Condition (10) is satisfied by
many correlation functions used in practice, and in particular any power exponential corre-

lation function r(x − x′) = exp
(
−
∑d

j=1 θj|xj − x′j|p
)

with 0 < p ≤ 2 and θj > 0 (Santner

et al., 2003). Assumption 4 indicates that input data are collected independently of the
simulation model, and that our uncertainty about the mean response surface as represented
by M(x) is independent of the stochastic simulation noise (although both can depend on x).

5.1 ACI Procedure

Based on a hierarchical approach, we propose the following procedure to build (1− α)100%
bootstrap percentile ACIs to achieve (9):

1. Given real-world data z
(0)
m , choose experiment design D = {(xi, ni), i = 1, 2, . . . , k} as

described in the Appendix.

2. Run simulations at design points to obtain outputs YD. Compute the sample av-
erage Ȳ (xi) and sample variance S2(xi) of the simulation outputs, i = 1, 2, . . . , k.
Fit the SK metamodel parameters (β0, τ

2, θθθ, C) to obtain m̂p(x) and σ̂2
p(x) using(

Ȳ (xi), S
2(xi),xi

)
, i = 1, 2, . . . , k.

3. For b = 1 to B

(a) Generate bootstrap resample Z
(b)
m

i.i.d.∼ z
(0)
m and compute sample moments X̂

(b)
m .

(b) Let µ̂b ≡ m̂p(X̂
(b)
m ).

(c) Draw M̂b ∼ N
(
m̂p(X̂

(b)
m ), σ̂2

p(X̂
(b)
m )
)

.

Next b

4. Report estimated CI and ACI, respectively,

CI0 ≡
[
µ̂(dB α

2
e), µ̂(dB(1−α

2
)e)

]
CI+ ≡

[
M̂(dB α

2
e), M̂(dB(1−α

2
)e)

]
where µ̂(1) ≤ µ̂(2) ≤ · · · ≤ µ̂(B) and M̂(1) ≤ M̂(2) ≤ · · · ≤ M̂(B) are the sorted values.

In this procedure, Step 1 provides an experiment design to build a SK metamodel, which
is central to the metamodel-assisted bootstrapping approach. Since the input uncertainty is
quantified with bootstrap resampled moments, we want the metamodel to correctly predict
the responses at these points X̂m ∼ F̂Xm(·|z(0)

m ). Thus, the metamodel needs to be accurate
and precise in a design space that covers the “most likely” bootstrap moment estimates,
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which can be achieved by the experiment design proposed by Barton et al. (2014). Their
design is data-driven; specifically, they first find the smallest ellipsoid denoted by E that
covers the most likely bootstrap resampled moments. They then generate a space-filling
design that covers E. This design methodology, which is summarized in the Appendix,
yielded accurate metamodels in the examples they studied.

Based on the experiment design provided in Step 1, we run simulations and construct
a metamodel in Step 2 by fitting (β0, τ

2, θθθ, C). Given the metamodel, we predict the sim-
ulation’s mean responses at different input settings corresponding to bootstrap resampled
moments and construct interval estimators as shown in Step 3. Notice that Step 3(a) accounts
for the input uncertainty and Step 3(c) accounts for the input and metamodel uncertainty.
Thus, this procedure provides two types of intervals:

• CI0, proposed in Barton et al. (2014), returns an estimate of [QL, QU ] in Equation (4)
by assuming m̂p(x) = µ(x); that is, it only accounts for input uncertainty and will be
in error if there is substantial metamodel uncertainty.

• CI+ returns an estimate of [CL, CU ] in Equation (9). This ACI accounts for both input
and metamodel uncertainty.

As the metamodel uncertainty decreases, CI0 and CI+ become closer and closer to each
other. Before evaluating the finite-sample performance of CI+ in Section 6, we establish its
asymptotic consistency for objective (9).

In Theorems 1–3 that follow, we replace µ̂b and M̂b in Steps 3(b)–(c) of the ACI procedure
with

µb ≡ mp(X̂
(b)
m ) and Mb ∼ N

(
mp(X̂

(b)
m ), σ2

p(X̂
(b)
m )
)

recalling that mp(·) and σ2
p(·) are the marginal mean and variance of the conditional GP

Mp(·) when (τ 2, θθθ, C) are known.

Theorem 1. Suppose that Assumptions 1–4 hold. Then the interval [M(dB α
2
e),M(dB(1−α

2
)e)]

is asymptotically consistent, meaning the iterated limit

lim
m→∞

lim
B→∞

Pr{M(dBα/2e) ≤Mp(xc) ≤M(dB(1−α/2)e)} = 1− α. (11)

In brief, under the assumption that µ(x) is a realization of a GP, Mp(x) characterizes the
remaining metamodel uncertainty after observing ȲD. And since the input uncertainty is
asymptotically correctly quantified by the bootstrap moment estimator X̂m, the distribution
of Mp(X̂m) accounts for both input and metamodel uncertainty. Theorem 1 shows that this
interval satisfies objective (9) asymptotically. We are particularly interested in situations
when the simulation effort is limited (Barton et al. (2014) addressed the ample budget case),
so the consistency result in Theorem 1 is only with respect to the real-world data. The
detailed proof is provided in the Appendix.

In practice, including our empirical evaluation in Section 6, (τ 2, θθθ, C) must be estimated,
and the impact of parameter estimation (other than xc and β0) is not covered by Theorem 1.
We address sensitivity to parameter estimation in the Appendix.
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5.2 Variance Decomposition

CI+ accounts for input and metamodel uncertainty. When the width of CI+ is too large to
be useful, it is important to know the relative contribution from each source. Since the total
output variability is the convolution of the input uncertainty and simulation/metamodel
uncertainty, it is hard to separate the effects from these sources. To estimate the relative
contributions Zouaoui and Wilson (2003), Ng and Chick (2006), Ankenman and Nelson
(2012) and Song and Nelson (2013) assume that the simulation noise has a constant variance.
In this section, we propose a variance decomposition that does not require the homogeneity
assumption.

Suppose that the parameters (τ 2, θθθ, C) are known, the metamodel uncertainty can be
characterized by a GP and the simulation error follows a normal distribution. Then the
metamodel uncertainty, given the simulation result ȲD, is characterized by a GP Mp(x) ∼
N(mp(x), σ2

p(x)). Conditional on ȲD, both mp(x) and σ2
p(x) are fixed functions. For notation

simplification, all of following derivations are conditional on the simulation outputs ȲD, but
we will suppress the “|ȲD”.

The random variable Mp(Xm) accounts for input uncertainty through the sampling dis-
tribution of Xm and the metamodel uncertainty through the random function Mp(·). To
quantify the relative contribution of input and metamodel uncertainty, we decompose the
total variance of Mp(Xm) into two parts:

σ2
T ≡ Var[Mp(Xm)]

= E{Var[Mp(Xm)|Xm]}+ Var{E[Mp(Xm)|Xm]}

= E[σ2
p(Xm)] + Var[mp(Xm)]. (12)

The term σ2
M ≡ E[σ2

p(Xm)] is a measure of the metamodel uncertainty: the expected
metamodel variance weighted by the density of moment estimator Xm. This weighting
makes sense because the accuracy of the metamodel in regions with higher density is more
important for the estimation of system mean performance. The term σ2

I ≡ Var[mp(Xm)] is a
measure of input uncertainty when we replace the unknown true response surface µ(·) with
its best linear unbiased estimate mp(·).

What is the contribution of each term to ACI coverage? If the metamodel uncertainty
disappears (i.e., σ2

p(·) = 0), then σ2
M = 0, CI0 and CI+ coincide and they provide asymp-

totically consistent coverage (Barton et al., 2014). Metamodel uncertainty is reduced by
simulation effort. On the other hand, as m → ∞ (more and more real-world input data),
Xm

a.s.→ xc and since mp(x) is continuous we have σ2
I = 0; therefore, the width of CI0 shrinks

to zero as does coverage since there is remaining metamodel uncertainty in general. However,
because CI+ accounts for metamodel uncertainty it still provides asymptotically consistent
coverage. This effect is demonstrated by the empirical study in Section 6.

Our decomposition allows us to express the total variance in Equation (12) as the sum of
two variances measuring input and metamodel uncertainty: σ2

T = σ2
I+σ2

M . In the metamodel-
assisted bootstrapping framework, we can estimate each variance component as follows:
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• Total variance: σ̂2
T =

∑B
b=1(Mb − M̄)2/(B − 1), where M̄ =

∑B
b=1Mb/B.

• Input variance: σ̂2
I =

∑B
b=1(µb − µ̄)2/(B − 1), where µ̄ =

∑B
b=1 µb/B.

• Metamodel variance: σ̂2
M =

∑B
b=1 σ

2
p(X̂

(b)
m )/B.

The ratio σ̂I/σ̂T provides an estimate of the relative contribution from input uncertainty
on CI+. If it is close to 1, the contribution from metamodel uncertainty can be ignored. Thus,
this ratio can help a decision maker determine where to put more effort: If the input variance
dominates, then get more real-world data (if possible). If the metamodel variance dominates,
then it can be reduced by more simulation, which can be a combination of additional design
points and additional replications at existing design points. If neither dominates, then both
activities are necessary to reduce CI+ to a practically useful size.

The asymptotic properties of these variance component estimators are shown in the
following theorems.

Theorem 2. Suppose that Assumptions 1–4 hold. Then conditional on ȲD the variance
component estimators σ̂2

M , σ̂
2
I , σ̂

2
T are consistent as m,B → ∞, where as m → ∞ we have

m`/m→ c`, ` = 1, 2, . . . , L, for a constant c` > 0. Specifically,

• As m→∞, the input uncertainty disappears:

lim
m→∞

σ2
M = σ2

p(xc), lim
m→∞

σ2
I = 0 and lim

m→∞
σ2
T = σ2

p(xc).

• As m → ∞ and B → ∞ in an iterated limit, the variance component estimators are
consistent:

lim
m→∞

lim
B→∞

σ̂2
M = lim

m→∞
σ2
M = σ2

p(xc),

lim
m→∞

lim
B→∞

σ̂2
I = lim

m→∞
σ2
I = 0,

lim
m→∞

lim
B→∞

σ̂2
T = lim

m→∞
σ2
T = σ2

p(xc).

Theorem 2 demonstrates that the variance components estimators σ̂2
I , σ̂

2
M and σ̂2

T are
consistent. However, we can see that when m→∞ the input uncertainty disappears. Since
limm→∞ σ

2
I = limm→∞ limB→∞ σ̂

2
I = 0 is not interesting, we study the consistency of scaled

versions of σ2
I and σ̂2

I in Theorem 3, showing that mσ2
I and mσ̂2

I converge to the same
non-zero constant.

Theorem 3. Suppose that Assumptions 1–4 and the following additional assumptions hold:

5. The first three derivatives of the correlation function of the GP M(x) exist and the
third derivative is bounded; and

6. m`/m→ 1 for ` = 1, 2, . . . , L.
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Then limm→∞mσ
2
I = limm→∞ limB→∞mσ̂

2
I = σ2

µ almost surely, where σ2
µ is a positive con-

stant.

Theorems 2–3 give the asymptotic properties of the variance component estimators, guar-
anteeing σ̂I/σ̂T is a consistent estimator for the relative contribution of input to overall un-
certainty. We will empirically evaluate its finite-sample performance in Section 6 where we
form the variance component estimators by inserting (τ̂ 2, θ̂θθ, Ĉ) for the unknown parameters
(τ 2, θθθ, C).

5.3 Unstable and Undefined Moments

A fundamental assumption of simulation is that the expectation µ(xc) exists. This assump-

tion does not imply, however, that it exists for all possible values of x, Xm or X̂
(b)
m that

might be realized. The prototype example is a congestion-related performance measure of a
queueing system as time goes to infinity when congestion increases without bound for some
values of its interarrival-time and service-time parameters. We refer to systems for which
µ(x) is ±∞ for some values of x as potentially unstable.

Recall that µ(x) = E[Y (x)]. A second problem arises when for some values of x the
random variable Y (x) is undefined. The prototype example is a network for which we
want to estimate some start-to-finish performance measure, but the start and finish are not
connected for certain values of x. We refer to such systems as potentially undefined.

Below we use illustrative examples to describe what happens to metamodel-assisted boot-
strapping in each case, why we expect to be robust to unstable systems, and what needs to be
done for undefined systems. We assume that xc is an interior point of the space Ψ for which
µ(xc) is stable and Y (xc) is defined so both problems disappear asymptotically (m → ∞),
but they may occur when we apply the metamodel-assisted bootstrapping approach to a
finite sample of real-world data.

5.3.1 Unstable Moments

Consider the simulation of an M/M/1 queue. Let x1 and x2 denote the mean interarrival time
and mean service time, respectively, and let x = (x1, x2)

>. The unknown mean response µ(x)
is the steady-state expected number of customers in the system. The true values xc1 and xc2
are unknown and must be estimated from real-world data; xc1 > xc2 so the system is actually
stable. We denote the unstable and stable regions of x by U = {(x1, x2) : 0 < x1 ≤ x2} and
Ū = {(x1, x2) : x1 > x2 > 0}, respectively, and xc is an interior point of Ū .

As described in the Appendix, we use an initial set of bootstrap resampled moments
to define an ellipsoid in which to embed our experiment design to fit the metamodel, and
then generate a second set at which we evaluate the metamodel to form a two-sided, equal-
probability bootstrap percentile interval. The conditional probability that a bootstrap re-
sampled moment X̂

(b)
m is located in the unstable region given the real-world data is

PU ≡ Pr
{

X̂(b)
m ∈ U

∣∣∣ z(0)
m

}
. (13)
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For the M/M/1 queue we know U so we know which bootstrap moments are in the unsta-
ble region; therefore, we could map the mean response for unstable moments (symbolically)
to ∞ and only fit or use the metamodel to predict the mean response at stable moments. If
PU is large this could lead to a one-sided lower confidence interval (infinite upper limit) that
would be interpreted as “the real system may be unstable;” this is an appropriate conclusion
if input uncertainty is substantial.

Unfortunately, in general stochastic systems it could be difficult or impossible to deter-
mine which moments are in the unstable region either analytically or empirically (Wieland
et al., 2003). Thus, in the experiment design phase we might simulate the system at an
x ∈ U to fit the metamodel, and in the bootstrapping phase we might evaluate the resulting
metamodel at an x ∈ U to estimate the CI. What is the effect of doing this when PU > 0,
possibly even large?

Suppose we start each replication of the M/M/1 queue with an empty and idle system.
Let µ(x, t) denote the true expected number of customers in the system at time t ≥ 0.
Then except for the case x1 = x2, which we ignore, it can be shown that µ(x, t) satisfies the
differential equation

dµ(x, t)

dt
=

1

x1
− 1− p0(t)

x2

where p0(t) is the probability that the system is empty at t and p0(0) = 1. If x ∈ Ū then
p0(t)→ 1− x2/x1 as t→∞; however, if x ∈ U then p0(t)→ 0 as t→∞. Thus, for large t,

dµ(x, t)

dt
≈
{

0, if x ∈ Ū
1
x1
− 1

x2
> 0, if x ∈ U. (14)

For any finite run length T and warm-up period T0 < T the simulation provides an unbiased
estimator of

µ̄(x, T0, T ) =
1

T − T0

∫ T

T0

µ(x, t) dt. (15)

Notice that this quantity is finite for any positive values of x1 and x2, whether stable or
not. However, if x ∈ Ū then µ̄(x, T0, T ) converges to µ(x) for large T ; while if x ∈ U then
µ̄(x, T0, T ) is increasing in T for T large enough.

The key point is this: The expected value of any simulation-based estimator will be finite,
even if the true steady-state mean is not. Further, the expected value of the simulation
estimator at unstable x will tend to be larger than at near-by stable x. This means that the
simulation estimates corresponding to unstable x will tend to be the largest ones observed,
but still not infinite.

Consider the design points or bootstrap resampled moments that are in U . When
PU < α/2 and the run length is long enough, the unstable design points used to fit the
metamodel, or bootstrap moments at which it is evaluated, tend not to adversely affect
either the metamodel or the interval estimate because they are in the right tail beyond the
α/2 quantile. On the other hand, when PU ≥ α/2 the large estimates corresponding to
unstable design points or bootstrap moments tend to lengthen the interval estimate beyond
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what is required to cover µ(xc); this causes overcoverage rather than undercoverage. Thus,
metamodel-assisted bootstrapping will often be robust to unstable moments in the sense of
not being too short, but possibly too long; we demonstrate this empirically in Section 6.

5.3.2 Undefined Moments

Consider the queueing network example in Figure 1. For simplicity, suppose that the routing
probabilities p1, p2, p3 are the only input parameters. Let x = (x1, x2, x3)

> = (p1, p2, p3)
>.

The true parameters xc are unknown and estimated by finite samples from Bernoulli distri-
butions (1 if the customer takes a particular route, 0 otherwise). Suppose that the mean
response of interest, µ(x), is the steady-state expected time for a customer to traverse the
network, which exists and is well-defined at xc. Unfortunately, Y (x) may not be defined for

every possible bootstrap resampled moment x. For instance, if X̂
(b)
m = (0, 0.665, 0)> then

Stations 1 (start) and 4 (end) are disconnected and no simulation output for time to tra-
verse the network will ever be generated. Thus, the system corresponding to this bootstrap
moment is undefined.

In practical problems for which we can obtain real-world input data, we should know
a priori that the system performance measure is well defined (e.g., we would not include a
route unless we actually observed a customer take it). Further, it should not be difficult to
detect moments for which the system output is undefined, either because we understand the
system logic (as in this example) or because the simulation simply fails to run. Therefore,
a reasonable solution to the problem of undefined systems is to reject (and sample again)

bootstrap moments X̂
(b)
m that imply an undefined output. This makes our assessment of

uncertainty conditional on the system performance measure being defined, which makes
sense.

6 Empirical Study

In this section we use the queueing network described in Section 3 to evaluate the performance
of our metamodel-assisted bootstrapping approach. The performance measure is the steady-
state expected number of customers in the system. Both interarrival and service times follow
gamma distributions and the routing decisions follow Bernoulli distributions. Thus, it is a 13-
dimensional problem with L = 8 input processes that include both continuous and discrete
distributions. The true parameters of the input distributions are αA = 1, βA = 0.25, αSi = 1,
βSi = 0.2 for i = 1, 2, 3, 4 and p1 = p2 = 0.5, p3 = 0.75. These parameter values imply a
tractable Jackson network with steady-state number of customers in system µ(xc) = 12.67.
The maximum traffic intensity at any station is 0.8.

In the experiments we assume that all parameters for all input distributions are unknown
and are estimated from a finite sample of real-world data. Notice that αA, βA, αSi , βSi for
i = 1, 2, 3, 4 are estimated from continuous measurements, while the routing probabilities
p1, p2, p3 are estimated from 0 or 1 observations that would correspond to customer routing
decisions. The model with estimated input parameters is almost surely not a Jackson network
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Figure 2: Experiment design.

and it could be unstable. Our measure of uncertainty is a 95% CI for µ(xc) as defined by (4)
because this is the objective desired in practice.

To evaluate the robustness of the metamodel-assisted bootstrapping approach, we sys-
tematically examine the effect of the quantity of real-world data and the number of design
points and replications per design point used to fit the metamodel; see Figure 2. We con-
sider a wide range for the quantity of real-world data m = 50, 500, 5000, letting m` = m
for ` = 1, 2, . . . L. The levels for the number of design points are k = 20, 40, 80, 130. For a
13-dimensional problem k = 20 is a very small design. The studies by Jones et al. (1998) and
Loeppky et al. (2009) recommend that the number of design points should be 10 times the
dimension of the problem for kriging; we take this as the maximum number of design points.
The same number of replications are assigned to all design points and we try n = 10, 50, 100.

Barton et al. (2014) demonstrated that CI0 has good performance when the impact of
metamodel uncertainty is negligible. In this empirical study we focus on situations where
metamodel uncertainty may be significant. However, rather than creating a problem that
actually takes hours or days to run, we instead construct a problem with high metamodel
uncertainty by using short run lengths for each replication: 20 time units after the warm
up, which is roughly equivalent to 80 finished customers. To avoid the influence from initial
bias, all simulations start loaded with the number of customers at each station being their
steady-state expected values (rounded) under xc. Furthermore, a long warmup period of 200
time units is used. The net effect is that the point estimators of the steady-state number in
the network have low bias, but may be quite variable.

To make the description of the empirical results easy to follow, we start with overall
conclusions:

1. The new ACI CI+ is robust to different levels of real-world data m, number of design
points k and number of replications n.

20



Table 1: Percentage of unstable bootstrap resampled moments.

m = 50 m = 500 m = 5000

mean of P̂U 44.4% 2.3% 0

SD of P̂U 31.7% 7.9% 0

2. When metamodel uncertainty is significant, CI0 tends to have undercoverage that
becomes more serious as m increases. Since CI+ accounts for metamodel uncertainty,
it does not exhibit this degradation although it sometimes has slight overcoverage.

3. Metamodel-assisted bootstrapping continues to deliver at least the nominal coverage
when the probability of an unstable system PU is large.

4. The ratio σ̂I/σ̂T is a useful measure of the relative contribution of input to overall
statistical uncertainty.

As discussed in Section 5.3.1, metamodel-assisted bootstrapping might behave differently
when PU < α/2 vs. PU ≥ α/2. Since PU only depends on m and xc, we ran a side experiment
to estimate it using

P̂U =
1

B

B∑
b=1

I
(
X̂(b)

m ∈ U
)
, (16)

where I(·) is the indicator function. The means and standard deviations (SD) of P̂U for
m = 50, 500, 5000 were estimated based on 1000 macro-replications and are displayed in
Table 1. In each macro-replication we independently generated a sample of size m of “real-
world data.” Then, conditional on these data, we drew B = 2000 bootstrap resampled
moments. Finally, we calculated the estimate of P̂U using Equation (16).

As m increases the bootstrap resampled moments become more closely centered around
xc. Thus, both the mean and SD of P̂U decrease with increasing m as shown in Table 1.
When m = 50, PU appears to be much larger than α/2 so the bootstrap moments X̂

(b)
m that

correspond to the upper confidence bound are located in the unstable region U with high
probability. When m = 500, PU appears to be close to α/2 = 2.5%, while when m = 5000
there is little chance of getting unstable bootstrap moments.

In the following sections we describe the overall performance of CI0 and CI+, including
the situation where PU > 0, and analyze the finite-sample performance of σ̂I/σ̂T as a measure
of the relative contribution of input to overall uncertainty.

6.1 Performance of CIs

Tables 2–3 show the results for CI0 and CI+ whenm = 50, 500, 5000, including the probability
of covering µ(xc), and the mean and SD of the interval widths. All results are based on 1000
macro-replications.
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When m = 50, PU is much greater than α/2 according to Table 1. This explains the very
large CI widths in Table 2. Nevertheless, both CI0 and CI+ have reasonable coverage overall,
an observation we explore further in Section 6.3. Notice that CI0 does exhibit undercoverage
when we use a very small experiment design of k = 20 points, while the coverage of CI+ is
much closer to the nominal value of 95% in this case. If we fix the number of replications n
and increase the number of design points k, the coverage of CI0 improves. For a fixed k the
effect of increasing n is not as obvious.

Table 3 shows the results for m = 500, 5000. Compared with the results for m = 50,
the mean and SD of the interval widths drop dramatically. The effects of k and n are
easier to discern especially when m = 5000, which has no unstable bootstrap moments.
Specifically, for a fixed quantity of real-world data m, if either the number of design points
k or replications per design point n is small then CI0 tends to have undercoverage because
it fails to account for substantial metamodel uncertainty, unlike CI+. However, because CI+
does incorporate metamodel uncertainty it sometimes has slight overcoverage.

The most troubling observation about CI0 is that, for fixed (n, k), as the amount of input
data m increases its undercoverage becomes more serious. The diminished coverage occurs
because as m → ∞ the width of CI0 shrinks to zero, which is not appropriate when there
is still metamodel uncertainty. Again, CI+ does not exhibit this degradation. As n and k
increase, the coverages of CI0 and CI+ become closer to each other.

The behavior of CI0 is what we would expect based on Barton et al. (2014), which intro-
duced CI0. Their procedure continued to add simulation effort (design points and replications)
until its effect on the confidence interval was negligible. Compared to CI0, the new interval,
CI+, is able to account for the effect of the remaining simulation estimation error. Therefore,
it can work under more general situations where the simulated systems are complex and the
simulation budget is tight.

6.2 Performance of σ̂I/σ̂T

Tables 2–3 also demonstrate that σ̂I/σ̂T provides a good measure of the relative contribution
of input to overall uncertainty, and behaves as it should:

• For a fixed amount of real-world data m, increasing the number of design points and
replications (n, k) drives σ̂I/σ̂T toward 1, indicating a decrease in metamodel uncer-
tainty.

• For fixed simulation effort (n, k), increasing the amount of real-world data m decreases
σ̂I/σ̂T , indicating that there is relatively less input uncertainty. Notice, however, that
the relationship is not simple because as m increases the design space over which we
fit the metamodel becomes smaller, so that even with the same simulation effort the
absolute level of metamodel uncertainty will decrease somewhat.

• When σ̂I/σ̂T is near 1, the behaviors (coverage and width) of CI0 and CI+ are similar
and both have coverage close to the nominal level; this is illustrated in Figure 3. Recall
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Table 2: Results for CI0, CI+ and σ̂I/σ̂T when m = 50.

m = 50 k = 20 k = 40
n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

Coverage of CI0 91.9% 92.3% 91.5% 93.8% 94.4% 93.4%
Coverage of CI+ 93.9% 94.9% 93.7% 94.9% 95.6% 95.9%

CI0 Width (mean) 326.4 332.4 339.5 319.1 328.6 326.5
CI+ Width (mean) 344.1 348.8 357.1 332.3 342.3 341.2

CI0 Width (SD) 183.1 173.6 180.7 176.4 167.6 175
CI+ Width (SD) 188 175.7 183.8 178.2 169.2 176.1

σ̂I/σ̂T 0.963 0.965 0.964 0.973 0.973 0.971

m = 50 k = 80 k = 130
n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

Coverage of CI0 94.6% 96.3% 95.4% 94.2% 95.1% 95.4%
Coverage of CI+ 95.9% 96.7% 96.1% 94.5% 96% 96.1%

CI0 Width (mean) 312.1 314.8 322.7 322 321.86 320
CI+ Width (mean) 322 325.7 334 330.2 331 329.4

CI0 Width (SD) 169.7 159.1 164.7 171.5 169.3 172.3
CI+ Width (SD) 171.2 159.4 165 172.7 169.5 172.7

σ̂I/σ̂T 0.982 0.98 0.978 0.985 0.985 0.983

that CI0 does not account for metamodel uncertainty, and that σ̂I/σ̂T ≈ 1 indicates
that input uncertainty is large relative to metamodel uncertainty, which is when CI0
will do best. Figure 3 also illustrates the general robustness of CI+.

6.3 Robustness to Unstable Moments

Recall the observation from Table 2 that when there is a small quantity of real-world data
(m = 50), resulting in a large probability of unstable bootstrap moments, then both CI0 and
CI+ had large mean and SD of their widths, yet provided reasonable coverage. Examining
the results, we found that most of the intervals that fail to cover the mean do so because the
lower confidence bound is above µ(xc); this is the case for both CI0 and CI+. Using all 1000
macro-replications, the estimated probability that the lower confidence bound is above the
mean (greater than µ(xc), meaning too large) is 4.4% for CI0 and 3.8% for CI+, while the
estimated probability that the upper confidence bound is below the mean (less than µ(xc),
meaning too small) is only 0.2% for CI0 and 0.1% for CI+; for two-sided equal percentile
intervals we would expect these to be around 2.5%.

We conclude that even though the metamodel predicts a finite mean when it should be
infinite, this will still tend to lead to overcoverage rather than undercoverage, and therefore
is conservative.
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Figure 3: The coverage errors for CI0 and CI+ vs. σ̂I/σ̂T when m = 5000 across all values of
n and k.

7 Conclusions

In this paper, a metamodel-assisted bootstrapping approach is used for statistical uncertainty
analysis. Input uncertainty is approximated by the bootstrap, an equation-based stochastic
kriging metamodel is used to propagate the input uncertainty to the output mean, and
the metamodel uncertainty is derived using properties of stochastic kriging. This approach
delivers an interval estimator that accounts for all statistical uncertainty, both simulation
and input. The asymptotic consistency of this interval is proved under the assumption that
the true response surface is a realization of a Gaussian process and certain parameters are
known.

An empirical study on a difficult problem demonstrates that our approach can have good
finite-sample performance even when there are several input distributions (both discrete-
valued and continuous-valued), a tight computational budget, and bootstrap moments cor-
responding to unstable systems. Thus, the new interval does not require a sequential exper-
iment to make metamodel uncertainty negligible, as in Barton et al. (2014).

If CI+ is too wide, then it is important to know the relative contributions from input and
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metamodel uncertainty as a guide to either collecting more real-world data or doing more
simulation or both. We give a measure of the relative contribution of input to overall statis-
tical uncertainty by using a variance decomposition and analyze its asymptotic properties.
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Table 3: Results for CI0, CI+ and σ̂I/σ̂T when m = 500 and m = 5000.

m = 500 k = 20 k = 40
n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

Coverage of CI0 90.5% 94.6% 95.1% 94.9% 96.7% 96.4%
Coverage of CI+ 95.7% 97.7% 97.8% 96.6% 98.3% 97.8%

CI0 Width (mean) 24.8 28.1 29.4 27.1 28.5 28.7
CI+ Width (mean) 28.9 30.8 32.2 29.6 30.3 30.5

CI0 Width (SD) 19.9 19.4 20.6 19.1 19.2 19.9
CI+ Width (SD) 20.6 20.4 21.7 19.7 19.9 20.6

σ̂I/σ̂T 0.88 0.932 0.933 0.932 0.957 0.958

m = 500 k = 80 k = 130
n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

Coverage of CI0 96.5% 97.5% 95.8% 95.4% 96.5% 95.9%
Coverage of CI+ 98% 98.3% 97.3% 97.5% 97.1% 96.9%

CI0 Width (mean) 26.3 28 28.7 26.4 27.9 27.6
CI+ Width (mean) 28 29 29.7 27.9 28.6 28.2

CI0 Width (SD) 17.4 18 19.3 18.8 19.6 19.3
CI+ Width (SD) 17.7 18.4 19.6 18.9 19.9 19.5

σ̂I/σ̂T 0.952 0.977 0.978 0.957 0.984 0.987

m = 5000 k = 20 k = 40
n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

Coverage of CI0 70.7% 89.2% 93.1% 81.5% 94.3% 94.8%
Coverage of CI+ 91.3% 96.3% 95.6% 96.5% 96.1% 96.3%

CI0 Width (mean) 3.29 3.97 4.14 3.93 4.23 4.3
CI+ Width (mean) 5.85 4.8 4.56 6.08 4.64 4.52

CI0 Width (SD) 1.89 1.2 1 1.64 0.87 0.83
CI+ Width (SD) 2.12 1.13 1 1.52 0.89 0.85

σ̂I/σ̂T 0.588 0.85 0.924 0.664 0.924 0.959

m = 5000 k = 80 k = 130
n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

Coverage of CI0 88.9% 93.6% 94.9% 89.5% 93.7% 94.8%
Coverage of CI+ 98.1% 95% 96% 98% 95.6% 95.5%

CI0 Width (mean) 4.54 4.29 4.29 4.52 4.35 4.32
CI+ Width (mean) 6.1 4.56 4.42 5.98 4.64 4.45

CI0 Width (SD) 1.37 0.85 0.77 1.28 0.9 0.79
CI+ Width (SD) 1.27 0.85 0.78 1.13 0.87 0.77

σ̂I/σ̂T 0.757 0.946 0.974 0.766 0.945 0.974
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8 Appendix (Intended for an Online Companion)

In this appendix we prove Theorems 1–3 and provide a brief description of the experiment
design used to build stochastic kriging metamodels.

To be self-contained, we first state some definitions, lemmas and theorems that are used

in the proofs. Let
D→ denote convergence in distribution.

• Borel-Cantelli Lemma (Billingsley, 1995): For events A1, A2, . . ., if
∑∞

n=1 Pr(An)
converges, then

Pr

(
lim sup

n
An

)
= 0

where
lim sup

n
An = ∩∞n=1 ∪∞k=n Ak

is the set of outcomes that occur infinitely many times.

• Lemma 2.11 (Van Der Vaart, 1998): Suppose that Xn
D→ X for a random vector X

with a continuous distribution function. Then the distribution function of Xn converges
uniformly to that of X: ‖ FXn − FX ‖∞→ 0, where ‖ h ‖∞ is the sup-norm of h on <,
‖ h ‖∞= supt |h(t)|.

• Portmanteau Lemma (Van Der Vaart, 1998): For any random vectors Xn and X
the following statements are equivalent.

1. Xn
D→ X.

2. E[f(Xn)]→ E[f(X)] for all bounded, continuous functions f .

• Theorem 2.3 (Van Der Vaart, 1998): Let g : <k → <m be continuous at every point
in a set C such that Pr{X ∈ C} = 1. Then

1. If Xn
D−→ X then g(Xn)

D−→ g(X).

2. If Xn
P−→ X then g(Xn)

P−→ g(X).

3. If Xn
a.s.−→ X then g(Xn)

a.s.−→ g(X).

In the proofs when we refer to the “continuous mapping theorem” we will mean The-
orem 2.3.

• Glivenko-Cantelli Theorem (Van Der Vaart, 1998): If X1, X2, . . . , Xn are i.i.d. ran-
dom variables with distribution function F and Fn is the empirical cdf ofX1, X2, . . . , Xn,
then ‖ Fn − F ‖∞

a.s.−→ 0 as n→∞.
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• Lemma 21.2 (Van Der Vaart, 1998): For cdf F , define the inverse cdf to be

F−1(p) = inf{t: F (t) ≥ p}.

Then a sequence of cdfs Fn(t)→ F (t) for every t where F is continuous if and only if
F−1n (p)→ F−1(p) for every p where F−1 is continuous.

• Theorem 13.1 (Severini, 2005): Let X1,X2, . . . denote a sequence of d-dimensional
random vectors such that, for some vector µ,

√
n(Xn − µ)

D→ N(0d×1,Σ) as n→∞,

where Σ is a d × d positive definite matrix with |Σ| < ∞. Let g: <d → <k denote a
continuously differentiable function and let ∇g(x) denote the d × k matrix of partial
derivatives of g with respect to x. Then

√
n(g(Xn)− g(µ))

D→ N(0k×1,∇g(µ)>Σ∇g(µ)) as n→∞.

• Theorem 3.8 (Shao and Tu, 1995): Let X1,X2, . . . ,Xm denote d-dimensional
i.i.d. random vectors and X̄m = m−1

∑m
i=1 Xi. Let X̄∗m = m−1

∑
i=1 X∗i where

{X∗1,X∗2, . . . ,X∗m} are randomly and independently drawn with replacement from
{X1,X2, . . . ,Xm}. Let g: <d → <k denote a continuously differentiable function
and ∇g(x) denote the d × k matrix of partial derivatives of g with respect to x. Let
Tm = g(X̄m) and denote the bootstrap variance estimator for Tm by v∗m = Var∗[g(X̄∗m)].

Suppose that E[X>1 X1] < ∞ and ∇g(µ) 6= 0d×k where µ = E[X1]. Suppose further
that

max
i1,...,im

|Tm(Xi1 , . . . ,Xim)− Tm|/τm
a.s.→ 0, (17)

where the maximum is taken over all integers i1, . . . , im satisfying 1 ≤ i1 ≤ · · · ≤
im ≤ m, and {τm} is a sequence of positive numbers satisfying lim infm τm > 0 and
τm = O(em

q
) with a q ∈ (0, 1/2). Then v∗m is strongly consistent, i.e., v∗m/σ

2
m

a.s.→ 1,
where σ2

m = m−1∇g(µ)>Σ∇g(µ) and Σ = Var(X1).

• Theorem 1.1 (Lehmann and Casella (1998), Chapter 6): Let X1, X2, . . . , Xm be i.i.d.
with E(X1) = µ, Var(X1) = σ2, and finite fourth moment, and suppose h is a function
of a real variable whose first four derivatives h′(x), h′′(x), h(3)(x) and h(4)(x) exist for
all x ∈ I, where I is an interval with Pr(X1 ∈ I) = 1. Furthermore, suppose that
|h(4)(x)| ≤M for all x ∈ I, for some M <∞. Then

E[h(X̄)] = h(µ) +
σ2

2m
h′′(µ) +Rm.

If, in addition, the fourth derivative of h2 is also bounded, then

Var[h(X̄)] =
σ2

m
[h′(µ)]2 +Rm.

In both cases the remainder Rm is O(1/m2).

30



• Multivariate Taylor Formula (Serfling (2002), page 44): Let the function g defined
on <d posses continuous partial derivatives of order n at each point of an open set
S ⊂ <d. Let x ∈ S. For each point y, y 6= x, such that the line segment L(x,y)
joining x and y lies in S, there exists a point z in the interior of L(x,y) such that

g(y) = g(x) +
n−1∑
k=1

1

k!

d∑
i1=1

· · ·
d∑

ik=1

∂kg(t1, . . . , td)

∂ti1 · · · ∂tik

∣∣∣∣∣
t=x

·
k∏
j=1

(yij − xij)

+
1

n!

d∑
i1=1

· · ·
d∑

in=1

∂ng(t1, . . . , td)

∂ti1 · · · ∂tin

∣∣∣∣∣
t=z

·
n∏
j=1

(yij − xij).

8.1 Asymptotic Consistency of CI+

To prove Theorem 1, we first establish three supporting lemmas.

Lemma 1. Suppose that Assumptions 1–2 hold. Then the bootstrap resampled moments
converge almost surely to the true moments X̂m

a.s.→ xc as m→∞.

Proof: Since all of the input processes are independent, we establish the result for one
input distribution F c without loss of generality. We prove the result for xc being the generic
hth-order moment, αh ≡ E(Zh) <∞, for Z ∼ F c.

The hth-order bootstrap resampled moment is

X̂m =
1

m

m∑
j=1

(Z(j;m))h with Z(j;m) i.i.d∼ Z(0)
m (18)

where “Z(j;m) ∼ Z
(0)
m ” denotes the jth independent sample with replacement from Z

(0)
m . We

use the Chebychev Inequality and the Borel-Cantelli Lemma to prove the result.
By the Chebychev Inequality, for every ε > 0, we have

Pr
{
|X̂m − αh| > ε

}
≤

E
[
(X̂m − αh)4

]
ε4

. (19)

Notice that

E
[
(X̂m − αh)4

]
= E

[
X̂4
m

]
− 4αhE

[
X̂3
m

]
+ 6α2

hE
[
X̂2
m

]
− 4α3

hE
[
X̂m

]
+ α4

h. (20)

We will analyze each term in Equation (20). First, we show that any ith bootstrap resampled
moment, denoted as α̂i, is unbiased,

E [α̂i] ≡ E

[
1

m

m∑
j=1

(Z(j;m))i

]
(21)

= E
[
E
[
(Z(j;m))i|Z(0)

1 , . . . , Z(0)
m

]]
= E

[
1

m

m∑
j=1

(Z
(0)
j )i

]
= αi.
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Thus, E[X̂m] = αh. Notice that

E
[
X̂2
m

]
= E

( 1

m

m∑
j=1

(Z(j;m))h

)2


=
1

m2
E

( m∑
j=1

(Z(j;m))h

)2


=
1

m2
E

[
m∑
j=1

(Z(j;m))2h +
∑
i 6=j

(Z(i;m))h(Z(j;m))h

]

=
1

m2

(
mα2h +m(m− 1)E

[
E[(Z(i;m))h|Z(0)

1 , . . . , Z(0)
m ] · E[(Z(j;m))h|Z(0)

1 , . . . , Z(0)
m ]
])

=
1

m2

(
mα2h +m(m− 1)E

[(
1

m

m∑
i=1

(Z
(0)
i )h

)2])

=
1

m2

(
mα2h +

m(m− 1)

m2
E

[ m∑
i=1

(Z
(0)
i )2h +

∑
i 6=j

(Z
(0)
i )h(Z

(0)
j )h

])

=
1

m2

(
mα2h +

m(m− 1)

m2
(mα2h +m(m− 1)α2

h)

)
=

1

m2
[(2m− 1)α2h + (m− 1)2α2

h]

=
2

m
α2h +

(
1− 2

m

)
α2
h +O(m−2)

where O(m−2) means terms at most order 1/m2. Similar derivations show that

E
[
X̂3
m

]
=

1

m4

(
[m(4m− 3) + (m− 1)(m− 2)]α3h

+ [3m(m− 1)2 + 3(m− 1)2(m− 2)]αhα2h + (m− 1)2(m− 2)2α3
h

)
=

6

m
αhα2h +

(
1− 6

m

)
α3
h +O(m−2)

and

E
[
X̂4
m

]
=

12

m
α2
hα2h +

(
1− 12

m

)
α4
h +O(m−2).
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Thus,

E
[
(X̂m − αh)4

]
= E[X̂4

m]− 4αhE[X̂3
m] + 6α2

hE[X̂2
m]− 4α3

hE[X̂m] + α4
h (22)

=
12

m
α2
hα2h +

(
1− 12

m

)
α4
h − 4αh

[
6

m
αhα2h +

(
1− 6

m

)
α3
h

]
+ 6α2

h

[
2

m
α2h +

(
1− 2

m

)
α2
h

]
− 3α4

h +O(m−2)

= 0 +O(m−2)

because all of the O(m−1) terms cancel. Therefore, combining Equations (19), (20) and (22),
we have

∞∑
m=1

Pr{|X̂m − αh| > ε} ≤
∞∑
m=1

c

m2ε4
<∞

where c is some finite constant. Thus, if α4h <∞, then X̂m
a.s.→ αh by the first Borel-Cantelli

Lemma in Section 4 of Billingsley (1995).
Since Assumption 2 guarantees m` → ∞ for each moment associated with the `th in-

put distribution, we can generalize the almost sure convergence to a vector of moments by
applying the converging together lemma. Therefore, we have X̂m

a.s.→ xc.

Remark: The independent variables in our stochastic kriging metamodel consist of central
moments and standardized central moments. Since standardized moments are continuous
functions of raw moments, we can use the continuous mapping theorem to obtain corre-
sponding almost sure convergence of the standardized moments.

Given a fixed and finite number of design points x1,x2, . . . ,xk, let M =
(M(x1),M(x2), . . . ,M(xk))

>. The simulation error at design point xi is ε(xi), so let
ε̄(xi) =

∑ni
j=1 ε(xi)/ni for i = 1, 2, . . . , k denote the average. Therefore, the sample means

of simulation outputs at all design points can be represented as ȲD = M + ε̄, where
ε̄ = (ε̄(x1), ε̄(x2), . . . , ε̄(xk))

>. Finally, let Mp(·) be a GP having the conditional distribution
of M(·) given ȲD.

Lemma 2. Suppose Assumptions 3–4 hold. Then Mp(·) has continuous sample paths almost
surely.

Proof: Let (ΩM , PM) be the underlying probability space for the GP M(·), and (Ωε, Pε)
be the underlying probability space for ε̄. Notice that (Ωε, Pε) depends on the particular
design points x1,xk, . . . ,xk and corresponding numbers of replications n1, n2, . . . , nk which
we consider fixed and given, while (ΩM , PM) does not.

Let ωM ∈ ΩM be an elementary outcome and M(·, ωM) the resulting random func-
tion. For notational convenience, let M(ωM) = (M(x1, ωM),M(x2, ωM), . . . ,M(xk, ωM))>
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the random function evaluated at x1,x2, . . . ,xk. Similarly, ε̄ = ε̄(ωε) for elementary outcome
ωε ∈ Ωε. Notice that under Assumption 3, ε̄(ωε) has a multivariate normal distribution.

Theorem 3.4.1 of Adler (2010) asserts that there is a PM -measurable set Ωc
M ⊂ ΩM such

that Pr{ωM ∈ Ωc
M} = PM(Ωc

M) = 1, and for every ωM ∈ Ωc
M the function M(·, ωM) is

continuous.
The random variable ȲD maps Ω = ΩM × Ωε → <k as ȲD(ω) = M(ωM) + ε̄(ωε) for

ω = (ωM , ωε) ∈ Ω with probability measure P = PM · Pε since they are independent. Our
goal is to prove that

Pr{ωM ∈ Ω̄c
M |ȲD} = 0 (23)

almost surely.
We know that 0 ≤ Pr{ωM ∈ Ω̄c

M |ȲD} ≤ 1 with probability 1. But also

0 = Pr{ωM ∈ Ω̄c
M} = E

[
Pr{ωM ∈ Ω̄c

M |ȲD}
]
.

Therefore, (23) must hold.

Lemma 3. Suppose that Assumptions 1–4 hold. Then Mp(X̂m)
a.s.→ Mp(xc) as m→∞.

Proof: Under Assumption 3, the GP M(·) has continuous sample paths almost surely;
applying Lemma 2, Mp(·) also has continuous sample paths almost surely. Under Assump-

tions 1–2, X̂m
a.s.→ xc as m → ∞ by Lemma 1. And Mp(·) and X̂m are independent. The

result follows by applying the continuous mapping theorem.

Theorem 1. Suppose that Assumptions 1–4 hold. Then the interval [M(dB α
2
e),M(dB(1−α

2
)e)]

is asymptotically consistent, meaning

lim
m→∞

lim
B→∞

Pr{M(dBα/2e) ≤Mp(xc) ≤M(dB(1−α/2)e)} = 1− α. (24)

Proof: Define Km(t) ≡ Pr
{
Mp(X̂m) ≤ t

}
. Notice that the distribution Km(t) depends on

both the distributions of Mp(·) and X̂m. Specifically,

Km(t) =

∫
Pr
{
Mp(x) ≤ t|X̂m = x

}
dF̂Xm(x|z(0)

m )

=

∫
Φ

(
t−mp(x)

σp(x)

)
dF̂Xm(x|z(0)

m ).

Thus, Km(t) is a continuous distribution almost surely. Let K̂m be the empirical cdf of

M1,M2, . . . ,MB, which are i.i.d. from Km(t). Notice that K̂−1m (γ) = M(dBγe) for γ = α/2
and 1− α/2.

By the Glivenko-Cantelli Theorem (Van Der Vaart, 1998), ||Km − K̂m||∞
a.s.−→ 0 as B →

∞. Therefore, by Lemma 21.2 of Van Der Vaart (1998),

|M(dBγe) −K−1m (γ)| a.s.−→ 0
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as B →∞ for γ = α/2, 1− α/2. As a result,

lim
B→∞

Pr{M(dBα/2e) ≤Mp(xc) ≤M(dB(1−α/2)e)} = Pr{K−1m (α/2) ≤Mp(xc) ≤ K−1m (1− α/2)}.

Therefore, Equation (24) becomes

lim
m→∞

Pr{K−1m (α/2) ≤Mp(xc) ≤ K−1m (1− α/2)} = 1− α. (25)

To show Equation (25), we only need to show that

lim
m→∞

Pr{K−1m (α/2) > Mp(xc)} = α/2

because the proof of the upper bound is similar.
Since, conditional on ȲD, Mp(xc) ∼ N(mp(xc), σ

2
p(xc)), the cdf H(t) ≡ Pr{Mp(xc) ≤ t}

is continuous. By Lemma 3 and Lemma 2.11 in Van Der Vaart (1998),

sup
t
|Pr{Mp(X̂m) ≤ t} − Pr{Mp(xc) ≤ t}|

= ‖ Km −H ‖∞→ 0 as m→∞.

Therefore,

Pr{K−1m (α/2) > Mp(xc)}
= Pr{α/2 ≥ Km(Mp(xc))}
= Pr{α/2 ≥ H(Mp(xc))}+ o(1) (26)

= Pr{Mp(xc) ≤ H−1(α/2)}+ o(1)

= α/2 + o(1).

Equation (26) is obtained because

|Km(Mp(xc))−H(Mp(xc))| ≤‖ Km −H ‖∞→ 0 as m→∞.

Thus, we have

lim
m→∞

Pr{K−1m (α/2) ≤Mp(xc) ≤ K−1m (1− α/2)}

= lim
m→∞

Pr{Mp(xc) ≤ K−1m (1− α/2)} − lim
m→∞

Pr{Mp(xc) < K−1m (α/2)}

= (1− α/2)− α/2
= 1− α.
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8.2 Asymptotic Analysis of Variance Component Estimators

Theorem 2. Suppose that Assumptions 1–4 hold. Then the variance component estimators
σ̂2
M , σ̂

2
I , σ̂

2
T are consistent as m,B →∞.

Proof: When a GP M(·) has a continuous correlation function with all parameters finite,
the SK predictor

mp(x) = β̂0 + τ 2R(x)>[Σ + C]−1(ȲD − β̂0 · 1k×1), (27)

and corresponding variance

σ2
p(x) = τ 2 − τ 4R(x)>[Σ + C]−1R(x) + η>[1>k×1(Σ + C)−11k×1]

−1η

where R(x)> = (r(x− x1), r(x− x2), . . . , r(x− xk)) and η = 1− 1>k×1(Σ +C)−1τ 2R(x), are
continuous and bounded functions of x.

By the Strong Law of Large Numbers, the raw moment estimator Xm
a.s.→ xc as m→∞

under Assumptions 1–2. This almost sure convergence can be extended to central moments
and standardized central moments by the continuous mapping theorem. By applying the
Portmanteau Lemma in Van Der Vaart (1998), we have

lim
m→∞

σ2
M = lim

m→∞

∫
σ2
p(x) dF c

Xm
(x) = lim

m→∞
E[σ2

p(Xm)] = σ2
p(xc),

and

lim
m→∞

σ2
I = lim

m→∞

∫
(mp(x)− µ0)

2 dF c
Xm

(x)

= lim
m→∞

E
[(
mp(Xm)− E[mp(Xm)]

)2]
=

(
mp(xc)−mp(xc)

)2
= 0

where µ0 =
∫ ∫

ν dF (ν|x) dF c
Xm

(x) =
∫
mp(x) dF c

Xm
(x).

Recall that F (ν|x) is a normal distribution N(mp(x), σ2
p(x)). Let g(x) ≡

∫
(ν−µ0)

2 dF (ν|x).
Then

lim
m→∞

σ2
T = lim

m→∞

∫ ∫
(ν − µ0)

2 dF (ν|x) dF c
Xm

(x)

= lim
m→∞

∫
g(x) dF c

Xm
(x).

However,

g(x) =

∫
(ν −mp(x) +mp(x)− µ0)

2 dF (ν|x)

=

∫
(ν −mp(x))2 dF (ν|x) + (mp(x)− µ0)

2 + (mp(x)− µ0)

∫
(ν −mp(x)) dF (ν|x)

= σ2
p(x) + (mp(x)− µ0)

2 + 0.
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Since mp(x) and σ2
p(x) are continuous and bounded functions, so is g(x). Therefore,

lim
m→∞

σ2
T = lim

m→∞
E[g(Xm)] = g(xc) = σ2

p(xc)

by applying the Portmanteau Lemma.
Next, we will show consistency of the variance estimators. By Lemma 1, X̂m

a.s.→ xc. For
the metamodel uncertainty estimator, we have

lim
m→∞

lim
B→∞

σ̂2
M = lim

m→∞
lim
B→∞

1

B

B∑
b=1

σ2
p(X̂

(b)
m )

= lim
m→∞

E
[
σ2
p(X̂m)|Z(0)

m

]
= σ2

p(xc).

The last step follows by applying the Portmanteau Lemma.
For the input uncertainty estimator, we have

lim
m→∞

lim
B→∞

σ̂2
I = lim

m→∞
lim
B→∞

B

B − 1

[
1

B

B∑
b=1

m2
p(X̂

(b)
m )− µ̄2

]

= lim
m→∞

(
E
[
m2
p(X̂m)|Z(0)

m

]
− E2

[
mp(X̂m)|Z(0)

m

])
= m2

p(xc)−m2
p(xc) = 0.

The last step follows by applying Lemma 1 and the Portmanteau Lemma.
For the total variance estimator, we have

lim
m→∞

lim
B→∞

σ̂2
T = lim

m→∞
lim
B→∞

B

B − 1

(
1

B

B∑
b=1

M2
b − M̄2

)
= lim

m→∞
E
[
M2

p (X̂m)|Z(0)
m

]
− lim

m→∞
E2
[
Mp(X̂m)|Z(0)

m

]
= E[M2

p (xc)]− E2[Mp(xc)] (28)

= m2
p(xc) + σ2

p(xc)−m2
p(xc)

= σ2
p(xc).

By Lemma 3, Mp(X̂m)
a.s.→ Mp(xc) as m → ∞. Then Step (28) follows by applying Port-

manteau Lemma.

Theorem 3. Suppose that Assumptions 1–4 and the following additional assumptions hold:

5. The first three derivatives of the correlation function of the GP M(x) exist and the
third derivative is bounded; and
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6. m`/m→ 1 for ` = 1, 2, . . . , L.

Then limm→∞mσ
2
I = limm→∞ limB→∞mσ̂

2
I = σ2

µ almost surely, where σ2
µ is a positive con-

stant.

Proof: Under Assumptions 1–2, and applying the multivariate central limit theorem, we
have as m→∞, √

m(Xm − xc)
D→ N(0d×1,Λ)

where Λ denotes the d× d positive definite asymptotic variance-covariance matrix of Xm.
When a GP M(x) has a continuous correlation function with all parameters finite, the

SK predictor
mp(x) = β̂0 + τ 2R(x)>[Σ + C]−1(ȲD − β̂0 · 1k×1), (29)

given the simulation sample mean ȲD, is continuous and bounded. Under Assumption 5,
the gradient ∇mp(x) exists and is continuous. We will show that ∇mp(x) 6= 0d×1 almost
surely. By taking the derivative of mp(x) in Equation (29), we have

∂mp(x)

∂xj
=
∂R(x)>

∂xj
τ 2[Σ + C]−1︸ ︷︷ ︸
A

(ȲD − β̂0 · 1k×1). (30)

Since ∂R(x)>/∂xj = (∂r(x − x1)/∂xj, ∂r(x − x2)/∂xj, . . . , ∂r(x − xk)/∂xj) 6= 01×k and
τ 2[Σ + C]−1 is positive definite, A is a non-zero constant vector. Under Assumption 3,

A(ȲD − β̂0 · 1k×1) is a normal random variable that is equal to 0 with probability 0. Thus,
∇mp(x) 6= 0d×1 almost surely. Applying Theorem 13.1 in Severini (2005), we have

√
m(mp(Xm)−mp(xc))

D→ N(0, σ2
µ)

where σ2
µ = ∇mp(xc)

>Λ∇mp(xc) > 0. This establishes the constant.
Since mp(·) is continuous and bounded, there always exists a finite M1 > 0 such that

|mp(x)| < M1 for all x ∈ <d. Therefore, maxx∈<d |mp(x)−mp(Xm)| < 2M1. Let τm = em
1/4

.
Since 2M1/τm → 0 as m→∞, Condition (17) of Theorem 3.8 of Shao and Tu (1995) holds.
Thus, the bootstrap variance estimator is strongly consistent: limm→∞ limB→∞mσ̂

2
I = σ2

µ

almost surely.
Next, we will show limm→∞mσ

2
I = σ2

µ by proving a multi-variate version of Theorem 1.1
in Lehmann and Casella (1998), Chapter 6. Let L(Xm,xc) denote the line segment joining
Xm and xc. By the Multivariate Taylor Formula (Serfling, 2002),

mp(Xm) = mp(xc) +∇mp(xc)
>(Xm− xc) +

1

2
(Xm− xc)

>∇2mp(xc)(Xm− xc) +R(Xm,xc).

The remainder term

R(Xm,xc) =
1

3!

d∑
i1=1

d∑
i2=1

d∑
i3=1

∂3mp(x1, . . . , xd)

∂xi1∂xi2∂xi3

∣∣∣∣
x=z

3∏
j=1

(Xm,ij − xc,ij)
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where z denotes a value in the interior of L(Xm,xc), and Xm,i and xc,i denote the ith
components of the vectors Xm and xc. By taking the expectation over both sides, we have

E[mp(Xm)] = mp(xc) +
1

2
E
[
(Xm − xc)

>∇2mp(xc)(Xm − xc)
]

+ E[R(Xm,xc)] (31)

where ∇2 is the Hessian operator.
We will show that the second and third terms on the RHS of Equation (31) are O(m−1)

and O(m−2), respectively, under Assumption 5. Since all of the input processes are indepen-
dent, we establish the result for one input distribution F c without loss of generality.

We prove the result for xc being the generic hth-order moment, xc,h = E(Zh
1 ) <∞, and

Xm,h = m−1
∑m

j=1 Z
h
j for Zj

iid∼ F c.

Let Cij ≡ 1
2
[∇2mp(xc)]i,j. We first consider components of the second term on the RHS

of Equation (31).

E[Cij(Xm,i − xc,i)(Xm,j − xc,j)] = CijE

[
1

m

m∑
k1=1

(Zi
k1
− xc,i) ·

1

m

m∑
k2=1

(Zj
k2
− xc,j)

]

=
Cij
m2

E

[
m∑
k=1

(Zi
k − xc,i)(Z

j
k − xc,j) +

∑
k1 6=k2

(Zi
k1
− xc,i)(Zj

k2
− xc,j)

]

=
Cij
m2

E

[
m∑
k=1

(Zi
k − xc,i)(Z

j
k − xc,j) + 0

]
= O

(
1

m

)
.

The last two steps follow because the Zi are i.i.d. and Assumption 5 holds. Thus, the second
term on the RHS of Equation (31) is

1

2
E[(Xm − xc)

>∇2mp(xc)(Xm − xc)] =
d∑
i=1

d∑
j=1

E[Cij(Xm,i − xc,i)(Xm,j − xc,j)] = O

(
1

m

)
.

Similarly, for the components of the third term of the RHS of Equation (31), we have

DijkE[(Xm,i − xc,i)(Xm,j − xc,j)(Xm,k − xc,k)]

= DijkE

[
1

m3

m∑
k1=1

(Zi
k1
− xc,i) ·

m∑
k2=1

(Zj
k2
− xc,j) ·

m∑
k3=1

(Zk
k3
− xc,k)

]

=
Dijk

m3
E

[
m∑

k1=1

(Zi
k1
− xc,i)(Zj

k1
− xc,j)(Zk

k1
− xc,j) + 0

]
= O

(
1

m2

)
.

where

Dijk ≡
1

3!

∂3mp(x1, . . . , xd)

∂xi∂xj∂xk

∣∣∣∣
x=z

.
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Again, the last two steps follow because the Zi are i.i.d. and Assumption 5 holds. Thus, the
third term in Equation (31) is

E[R(Xm,xc)] =
d∑
i=1

d∑
j=1

d∑
k=1

DijkE[(Xm,i − xc,i)(Xm,j − xc,j)(Xm,k − xc,k)] = O

(
1

m2

)
.

Squaring both sides of Equation (31), we have

[E(mp(Xm))]2 = m2
p(xc) +mp(xc)E[(Xm − xc)

>∇2mp(xc)(Xm − xc)] +O

(
1

m2

)
. (32)

By repeating the same derivation that results in Equation (31) but using m2
p(·) instead

of mp(·), we obtain

E[m2
p(Xm)] = m2

p(xc) +
1

2
E[(Xm − xc)

>∇2m2
p(xc)(Xm − xc)] +O

(
1

m2

)
= m2

p(xc) + E
[
(Xm − xc)

>∇mp(xc)∇mp(xc)
>(Xm − xc)

+(Xm − xc)
>mp(xc)∇2mp(xc)(Xm − xc)

]
+O

(
1

m2

)
. (33)

Then,

Var[mp(Xm)] = E[m2
p(Xm)]−

(
E[mp(Xm)]

)2
= E[(Xm − xc)

>∇mp(xc)∇mp(xc)
>(Xm − xc)] +O

(
1

m2

)
= E[∇mp(xc)

>(Xm − xc)(Xm − xc)
>∇mp(xc)] +O

(
1

m2

)
(34)

=
1

m
∇mp(xc)

>Λ∇mp(xc) +O

(
1

m2

)
.

Step (34) follows because ∇mp(xc)
>(Xm−xc) is a scalar. Thus, we have limm→∞mσ

2
I = σ2

µ.

Remark: The independent variables in our stochastic kriging metamodel consist of central
moments and standardized central moments, rather than raw moments. However, Theorem 3
can easily be extended to central and standardized central moments as follows.

Since standardized moments are continuous functions of raw moments, denoted generi-
cally as g(·), we can consider the composite function (mp ◦ g)(·) and follow steps analogous
to those in the proof of Theorem 3. Up to the third derivatives we have

(mp ◦ g)′(t) = m′p(g(t))g′(t)

(mp ◦ g)′′(t) = m′′p(g(t))[g′(t)]2 +m′p(g(t))g′′(t)

(mp ◦ g)(3)(t) = m(3)
p (g(t))[g′(t)]3 + 2m′′p(g(t))g′(t)g′′(t) +m′′p(g(t))g′(t)g′′(t) +m′p(g(t))g(3)(t).
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Let u denote the mean, u′i denote the ith order raw moment and ui denote the ith order
central moment. Then the first three central moments can be expressed as functions of raw
moments as follows:

u1 = u,

u2 = u′2 − u2

u3 = u′3 − 3uu′2 + 2u3.

The first three standardized central moments are u1,
√
u2 and u3/u

3/2
2 . For a non-degenerate

distribution, the second central moment is positive and bounded away from 0. Thus, the
first three derivatives g′, g′′, g(3) exist and are finite.

8.3 Experiment Design

To fit SK metamodels we recommend the experiment design developed in Barton et al. (2014)
which demonstrated robust performance over a number of test examples. In this section, we
briefly review the basic methodology; for detailed information please refer to Barton et al.
(2014).

The experiment design is not specified a priori; instead the design space, denoted by D,
depends on the real-world data z

(0)
m that will eventually be resampled. In this way the design

is adaptive.
At a high level, this is the approach: Generate a large number of bootstrap samples

from the real-world data z
(0)
m and compute the corresponding sample moments. Find a

regular region that encompasses a large fraction of this sample; this will be the design space.
Generate additional bootstrap samples to test that the regular region does indeed cover
the desired fraction of the feasible space of sample moments, and refine if necessary. Once
satisfied, embed a space-filling design in the regular region. These design points correspond to
input distribution moments at which to run simulation experiments to fit the SK metamodel.
We provide some more details below.

Suppose we are interested in a (1− α)100% CI; we set α = 0.05 in our empirical study.
We want the experiment design to lead to a metamodel that is accurate for moments x that
are the most likely bootstrap moment vectors generated from z

(0)
m ; by “likely” we mean, for

instance, covering q = 99% > (1− α)100% = 95% of the feasible bootstrap moments.
To this end we find an ellipsoid that will contain an independent bootstrap moment

vector obtained by random sampling from z
(0)
m with probability at least q. We then generate

a space-filling experiment design inside this ellipsoid. The procedure for constructing the
design is as follows:

1. Generate B0 bootstrap resamples from z
(0)
m and compute the corresponding sample

moments to generate a set of sample moments DT = {X̂(b)
m , b = 1, 2, . . . , B0}.

2. Find the smallest ellipsoid E such that it contains the fraction q of the data in DT

when the ellipsoid’s center and shape are the sample mean and covariance matrix,
respectively, of the elements of DT .
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3. Perform a hypothesis test where the null hypothesis is that a bootstrap moment will
be contained in this ellipsoid with probability at least q. This requires computing
the number of bootstrap moment resamples, denoted by B1, and the constant c that
defines the rejection region to attain the desired Type I error and power for the test.

4. Generate B1 additional independent bootstrap resamples from z
(0)
m and compute the

moments X̂
(b)
m , b = B0+1, B0+2, . . . , B0+B1. If more than c of these B1 resamples are

contained in the ellipsoid, then accept the current E as the design space. Otherwise,
add these bootstrap resamples to DT , let B0 ← B0 + B1 and go to Step 2 to update
the ellipsoid.

5. Generate k space-filling design points in the ellipsoid E. To place design points into this
space, we employ an algorithm due to Sun and Farooq (2002), §3.2.1, for generating
points uniformly distributed in an ellipsoid. The algorithm first generates the polar
coordinates of a point uniformly distributed in a hypersphere, then transforms it to
Cartesian coordinates, and finally transforms it again to a point uniformly distributed
in an ellipsoid. The advantage of this approach is that each element of the initial polar
coordinates are independently distributed, allowing them to be generated coordinate
by coordinate via their inverse cumulative distribution function. Rather than use
randomly chosen points, however, we begin with a Latin hypercube sample on (0, 1)d.

6. Assign n = N/k replications to each design point, where N denotes total computational
budget. Together the transformed Latin hypercube design points and the number of
replications n define the experiment design D.

In our experiments we set Type I error of the hypothesis test to 0.005 and its power to 0.95
when the true probability is q = 0.97.

8.4 Sensitivity of Inference to SK Parameter Estimation Error

Since the parameters (β0, τ
2, θθθ, C) are unknown, we use estimators (β̂0, τ̂

2, θ̂θθ, Ĉ) to form
a SK metamodel. However, the properties of SK, and in particular Theorems 1–3, have
only been established when at least (τ 2, θθθ, C) are known. Nevertheless, kriging and SK have
been observed to provide robust inference without accounting for parameter-estimation error
provided we employ an adequate experiment design. Here we report a small-scale empirical
study that examines parameter sensitivity for our particular problem: forming an ACI for
µ(xc) and assessing the relative contribution of input uncertainty.

When we use the plug-in estimator Ĉ, we get an unbiased SK predictor m̂p(x) and small
variance inflation, based on results in Ankenman et al. (2010). Therefore, we focus on
sensitivity to the parameters φφφ = (β0, τ

2, θθθ). These parameters are estimated by maximum
likelihood using the log-likelihood function

`(φφφ) = −k
2

ln(2π)− 1

2
ln[|Σ + C|]− 1

2
(ȲD − β0 · 1k×1)>(Σ + C)−1(ȲD − β0 · 1k×1)
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Table 4: Sensitivity of the ACI to the estimation of (τ̂ 2, θ̂θθ).

k = 40, n = 50 Case 1 Case 2
m = 50 m = 500 m = 5000 m = 50 m = 500 m = 5000

Coverage of CI+ 95.6% 97.9% 96.4% 95.5% 98.1% 95.5%
CI+ Width (mean) 340 29.4 4.6 340 29.3 4.4
CI+ Width (SD) 171 18.8 0.93 170 18.8 0.91

σ̂I/σ̂T 0.972 0.960 0.925 0.971 0.963 0.922

where Σ is a function of τ 2 and θθθ. The only random variable in the log-likelihood is YD,
and the estimation uncertainty of the MLE (τ̂ 2, θ̂θθ) is a complex function of the sampling

distribution of YD (the contribution to uncertainty due to β̂0 is tractable).

To study the sensitivity of our ACI to the estimation error of (β̂0, τ̂
2, θ̂θθ), we again use the

queueing network example in Section 6. In each macro-replication, we generate m real-world
observations from each input model, find k design points and run simulations to obtain ȲD
and Ĉ, now denoted by Ȳ1 and Ĉ1. Then we compare the performance of our method under
two settings:

Case 1: Use Ȳ1 and Ĉ1 to compute the MLEs for (β̂01, τ̂
2
1 , θ̂θθ1), use them to build the SK

metamodel and construct CI+ as before (Section 5.1).

Case 2: Using the same experiment design, draw another independent sample of simulation
outputs to obtain ȲD and Ĉ, denoted by Ȳ2 and Ĉ2, and obtain the corresponding
MLEs (β̂02, τ̂

2
2 , θ̂θθ2). Use these estimates along with Ȳ1 and Ĉ1 to build the metamodel

and again construct CI+.

Notice that in Case 2 we are obtaining GP parameter estimates from a sample of data that
is independent of the data that forms the metamodel.

Table 4 shows the coverage and contribution results based on 1000 macro-replications.
The nearly identical performance of Cases 1 and 2 demonstrates that our procedure is not
sensitive to SK parameter estimation error if we employ the one-stage space-filling design
used in the paper.
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