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An Efficient Budget Allocation Approach for Quantifying the Impact
of Input Uncertainty in Stochastic Simulation

YUAN YI, WEI XIE, Rensselaer Polytechnic Institute

Simulations are often driven by input models estimated from finite real-world data. When we use simu-
lations to assess the performance of a stochastic system, there exist two sources of uncertainty in the perfor-
mance estimates: input and simulation estimation uncertainty. In this paper, we develop a budget allocation
approach that can efficiently employ the potentially tight simulation resource to construct a percentile con-
fidence interval quantifying the impact of the input uncertainty on the system performance estimates, while
controlling the simulation estimation error. Specifically, non-parametric bootstrap is used to generate sam-
ples of input models quantifying both input distribution family and parameter value uncertainty. Then, the
direct simulation is used to propagate the input uncertainty to the output response. Since each simulation
run could be computationally expensive, given a tight simulation budget, we propose an efficient budget
allocation approach that can balance the finite sampling error introduced by using finite bootstrapped sam-
ples to quantify the input uncertainty and the system response estimation error introduced by using finite
replications to estimate the system response at each bootstrapped sample. Our approach is theoretically
supported, and empirical studies also demonstrate that it has better and more robust performance than the
direct bootstrapping.

Categories and Subject Descriptors: I.6.6 [Simulation and Modeling]: Simulation Output Analysis

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: Confidence interval, budget allocation, input uncertainty, nonparamet-
ric bootstrap, percentile estimation

1. INTRODUCTION
When simulation is used to assess the performance of stochastic systems, the input
models used to drive the simulations are often estimated from finite real-world data.
Thus, there exist both input estimation uncertainty, called the input uncertainty, and
the simulation estimation uncertainty in the system performance estimates. Ignoring
either source of uncertainty could lead to unfounded confidence in the simulation as-
sessment of system performance [Barton and Schruben 2001; Barton 2012; Xie et al.
2014a]. Given a tight simulation budget, we want to efficiently estimate the impact of
the input uncertainty on the system performance estimates, while controlling the simu-
lation estimation error. In this paper, we focus on the system mean response. However,
our approach could be extended to other performance estimates, such as variances and
probabilities.

There are various approaches proposed in the simulation literature to quantify the
input uncertainty and they can be divided into frequentist and Bayesian approaches.
The frequentist approaches typically use the sampling distributions of point estima-
tors of input models to quantify the input uncertainty. Since it could be hard to get
the exact sampling distributions in many situations, the asymptotic approximation,
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including the normal approximation and the bootstrap, is often used to quantify the in-
put uncertainty. The Bayesian approaches typically derive the posteriors of input mod-
els to quantify the input uncertainty. Notice that freqentist and Bayesian approaches
have totally different perspective on quantifying uncertainty; see Xie et al. [2014a] for
the detailed description.

When input distribution families are known and the input models can be specified
by a finite number of parameters, the sampling distributions of parameters/moments
or the posterior distributions of parameters can be developed to quantify the input
uncertainty; see for example Cheng and Holland [1997], Barton et al. [2014], Ng and
Chick [2006], Xie et al. [2014a; 2014b], Biller and Corlu [2011]. Then, either the direct
simulation that runs simulations at each sample of input distributions or a metamodel
can be used to propagate the input uncertainty to the output mean. Since metamod-
els explore the relationship between the mean response at different samples of input
parameters/moments, they could efficiently propagate the input uncertainty to the out-
put and reduce the simulation estimation uncertainty [Xie et al. 2014a]. However, a
large number of input parameters could make it computationally expensive to con-
struct a metamodel [Barton 2012]. In addition, unlike the direct simulation, meta-
models require some prior information about the underlying mean response surface.
It could be as strong as a global parametric trend [Chick 1997] or as weak as local
smoothness and continuity [Xie et al. 2014a].

We typically do not know the families of input models. Various approaches, includ-
ing Bayesian Model Average (BMA) [Chick 2001; Zouaoui and Wilson 2003], nonpara-
metric Bayesian approaches [Xie et al. 2017], and nonparametric bootstrap [Barton
and Schruben 1993; Barton 2007] were proposed in the simulation literature to ac-
count for both input distribution family and parameter value uncertainty. In BMA,
the posterior probabilities of a few pre-specified candidate parametric families are de-
veloped to account for the model selection error. BMA is based the assumption that
all data come from one of candidate distributions [Bishop 2006]. Without strong prior
information about input models, it could be difficult to select an appropriate pool of
candidate parametric families. In nonparametric bootstrap or Bayesian approaches,
the sampling or posterior distribution of flexible input models can account for input
uncertainty. They can avoid the potential issue of BMA. However, the nonparamet-
ric Bayesian approaches introduced in Xie et al. [2017] require Markov Chain Monte
Carlo (MCMC) sampling to generate posterior samples of input models. In addition,
for different priors, we need to derive the posterior distribution for input models.

In this paper, the nonparametric bootstrap is used to quantify the input uncertainty.
Since bootstrapped empirical distributions can not be specified by a finite number of
moments, it is challenging to construct a metamodel as a function of empirical distri-
butions. Thus, the direct simulation is used to propagate the input uncertainty to the
output mean.

Barton [2012] demonstrates that the t-based confident intervals (CIs) are not appro-
priate for quantifying the impact of the input uncertainty on the system performance
estimates because of the skewness. Thus, given a tight simulation budget, we focus on
efficiently constructing a percentile CI to quantify the impact of the input uncertainty.
To have a precise estimation on the percentile CI, it is typically recommended to have
a few thousands samples of input distributions quantifying the input uncertainty; see
Xie et al. [2016b]. Without any prior information on which bootstrapped samples of
input distributions contribute the most to the percentile CI estimation, the direct boot-
strapping tends to equally allocate the simulation resource to the bootstrapped sam-
ples; see Barton and Schruben [1993; 2001] and Barton [2007]. Since the bootstrapped
samples do not contribute equally to the percentile CI estimation, the equal allocation
approach could not efficiently use the simulation resource to propagate the input un-
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certainty to the output mean. For a complex stochastic system, since each simulation
run could be computationally expensive, it is critical to develop a budget allocation
approach that can efficiently use the simulation budget to estimate the percentile CI.

The percentile CI estimation can be formulated as a nested simulation problem
where the outer level simulation is sampling from the nonparametric bootstrap to
quantify the input uncertainty and the inner level is running the direct simulation to
estimate the system mean response at each bootstrapped sample of input models. In
this paper, a ranking and selection based approach is developed to efficiently estimate
the percentile CI quantifying the impact of the input uncertainty. Before presenting
our approach and contributions, we briefly review the studies in the simulation litera-
ture on the nested simulation and then ranking and selection.

Lee and Glynn [2003] considered the distribution function of conditional expectation
in the discrete case. In order to find the optimal budget allocation to minimize the
mean square error, they derived asymptotic bias and variance of nested simulation
estimators with uniform and nonuniform inner sampling. Gordy and Juneja [2010]
considered the probabilities of a large loss, value at risk and expected shortfall in
the continuous case. To find the optimal allocation, they also studied asymptotic bias
and variance of estimators with uniform inner sampling. To efficiently estimate the
probabilities of a large loss, Broadie et al. [2011] proposed a myopic approach that
sequentially allocates the inner simulations based on the marginal changes in the
estimator. Sun et al. [2011] proposed an ANOVA-like estimator for the variance of the
conditional expectation, and then found the optimal inner replications to minimize this
estimator’s variance.

Without strong prior information on the mean response of candidates, ranking and
selection could be used to identify the systems with extreme mean performance. Nel-
son et al. [2001] and Boesel et al. [2003] proposed two-stage procedures to find the
system with the largest mean from a finite number of candidates. One-sided screening
is used to remove statistical inferior systems and then the indifference-zone (IZ) se-
lection is used to assign the remaining simulation resource to the surviving systems.
The restart is used to reduce the estimation bias introduced in the selection procedure
[Boesel et al. 2003]. Instead of selecting the best system, Lesnevski et al. [2007] devel-
oped a multistage screening procedure to estimate the value of the maximum expected
performance and further provide a CI for the estimation. The common random num-
bers (CRN) is used to efficiently screen out the inferior systems and control-variate
estimators are employed to improve the system performance estimation. This multi-
stage screening procedure was improved to be adaptive in Lesnevski et al. [2008]. In
addition, ranking and selection was extended to efficiently estimate the conditional
tail expectation in Lan et al. [2010]. They proposed a two-stage design for the expected
shortfall estimation. In Stage I, a one-sided screening is developed to screen out sam-
ples that are not statistically likely to fall into the tail. Then, the restart is used to
reduce the bias. In Stage II, the replication allocation is proportional to the sample
variance so that we can minimize the width of the CI of expected shortfall accounting
for both finite sampling and simulation estimation uncertainty.

Motivated by the ranking and selection literature, in this paper, given a tight sim-
ulation budget, we propose a budget allocation approach that can efficiently employ
the simulation resource to estimate the percentile CI quantifying the impact of the
input uncertainty. Specifically, we determine an appropriate number of bootstrapped
samples of input distributions to balance the sampling uncertainty introduced by using
finite bootstrapped samples to quantify the input uncertainty, and the system response
estimation uncertainty introduced by using finite replications to estimate the system
response at each bootstrapped sample. Further, when we allocate the simulation re-
source to bootstrapped samples of input distributions, since it is hard for a one-stage
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approach to identify those samples that contribute the most to the percentile CI es-
timation, a sequential approach is developed to gradually find those important sam-
ples by two-sided screening and allocate more simulation resource there. Therefore,
we could find the number of bootstrapped samples and replication allocation that can
simultaneously control finite sampling and simulation estimation uncertainty. Our ap-
proach is theoretically supported. Empirical studies demonstrate that it can efficiently
propagate the input uncertainty to the output mean, while reducing the simulation
estimation uncertainty.

In sum, the main contributions of our paper are as follows.

1. We consider the situations where each simulation run is expensive. For example, a
single run may take hours or even days. Given a tight simulation budget, our ap-
proach could efficiently employ the simulation resource to quantify the impact of
input uncertainty. It can be applied to general situations where there is no strong
prior information on the input models and the system response surface.

2. By following the framework in Lan et al. [2010], we propose a sequential procedure
for the quantile estimation, including screening and estimation phases. In the screen-
ing phase, unlike ranking and selection approaches proposed in the literature that
focus on finding the best candidate [Nelson et al. 2001; Boesel et al. 2003; Lesnevski
et al. 2007] or a set of candidates that fall into the tail part [Lan et al. 2010], a two-
sided screening introduced in our approach focuses on selecting the important sam-
ples that contribute the most to the quantile estimation. In the estimation phase,
besides that the replication allocation is proportional to the sample variance (similar
to Nelson et al. [2001]; Boesel et al. [2003]; Lesnevski et al. [2007]; Lan et al. [2010]),
a variance reduction technique, the antithetic variance simulation algorithm, is used
to improve the system performance estimation for the remaining candidates, which
could obviously improve the percentile estimation.

3. Our approach can automatically adapt to the input uncertainty, the system mean
and the simulation estimation uncertainty. The information obtained from the ini-
tial simulations could guide the search for the optimal parameters of the sequential
procedure so that we can reduce the overall uncertainty of the quantile estimation.

The next section formally states our problem. In Section 3, we develop a sequential
approach that can efficiently employ the simulation budget to estimate the percentile
CI quantifying the impact of input uncertainty. In Section 4, we report numerical stud-
ies on an M/M/1 queue and a stochastic activity network. We conclude the paper in
Section 5. All proofs are in the Appendix.

2. PROBLEM DESCRIPTION AND PROPOSED APPROACH
For the stochastic simulation driven by input models, denoted by F , the simulation
output for the jth replication is

Yj(F ) = µ(F ) + εj(F )

where µ(F ) denotes the unknown system mean response and εj(F ) represents the sim-
ulation error with mean zero. Notice that the simulation outputs depend on the choice
of input models. The input models F could be composed of univariate and multivariate
joint distributions. For the notation simplification, we only consider a single univariate
input distribution.

Suppose that the simulation error follows a normal distribution, ε (F ) ∼
N
(
0, σ2

ε (F )
)
. This assumption holds for many situations where the simulation output

is an average of a large number of more basic outputs. For example, when we study
the steady state expected customer waiting time, the simulation output is the average
of waiting time for many customers.
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Denote the unknown true input model by F c. It is estimated by finite real-world
data, denoted by Xm ≡ {X1, X2, . . . , Xm}, with Xi

i.i.d.∼ F c and i = 1, 2, . . . ,m. Let
the empirical distribution F̂m be the point estimator for F c. Thus, the sampling dis-
tribution of F̂m can be used to quantify the input uncertainty. The impact of input
uncertainty could be characterized by the induced sampling distribution of µ(F̂m).

Since the t-based CIs are not appropriate for quantifying the impact of input un-
certainty [Barton 2012], in this paper, we are interested in constructing a percentile CI
to quantify the impact of the input uncertainty on the system mean response. Specifi-
cally, without loss of generality, we want to find a (1− β)100% one-sided percentile CI,
denoted by (−∞, Qc], such that

Pr(µ(F c) ∈ (−∞, Qc]) = 1− β.

In particular, if µ(·) is known, we have the percentile Qc ≡ inf{q : Pr[µ(F̂m) ≤ q] ≥
1− β}. Notice that our approach could be easily extended to two-sided percentile CIs.

In general, it could be hard to have the closed-form sampling distribution for F̂m. In
this paper, we use the nonparametric bootstrap resampling to quantify the input un-
certainty [Barton and Schruben 2001; Barton 2007]. Specifically, we draw with replace-
ment from Xm to generate m bootstrapped samples, denoted by {X(1)

1 , X
(1)
2 , . . . , X

(1)
m }.

Given these samples, we can construct a bootstrapped empirical distribution, denoted
by F (1). By repeating this procedure, we can generate bootstrapped samples of the in-
put model, denoted by {F (1), F (2), . . .}, to quantify the input uncertainty. Denote the
bootstrap distribution by F̃ (·|Xm) with F (b) ∼ F̃ (·|Xm) for b = 1, 2, . . .. Therefore, the
impact of input uncertainty on the system mean performance estimates can be quan-
tified by the bootstrapped percentile CI, denoted by (−∞, Q], with the upper bound
defined by

Q ≡ inf
{
q : Pr

[
µ
(
F (b)

)
≤ q|Xm

]
≥ 1− β with F (b) ∼ F̃ (·|Xm)

}
. (1)

If µ(·) is known and continuously differentiable in a neighborhood of F c, the nonpara-
metric bootstrap provides an asymptotically consistent estimation for the impact of
input uncertainty. It also has a good finite-sample performance in many situations;
see Hall [1992], Shao and Tu [1995] and Horowitz [2001].

When we use B bootstrapped samples of input distribution to quantify the input
uncertainty, the percentile Q could be estimated with the order statistics µ[(1−β)B],
where µb ≡ µ(F (b)) with F (b) ∼ F̃ (·|Xm) for b = 1, 2, . . . , B. The permutation, denoted
by [·], is defined based on the system true mean response, µ[1] ≤ µ[2] ≤ · · · ≤ µ[B].
Suppose that (1 − β)B is an integer for simplicity. Given finite B, there exists finite
sampling estimation error that characterizes the difference between Q and µ[(1−β)B]. It
decreases to zero as the sample size B increases to infinity.

However, the underlying response surface µ(·) is unknown in many situations.
When we use the nonparametric bootstrap to quantify the input uncertainty, the boot-
strapped empirical distribution could not be uniquely specified by finite moments.
Thus, it could be challenging to build a metamodel to propagate the input uncer-
tainty to the output. Hence, the direct simulation approach is used in this paper,
which propagates the input uncertainty to the output mean by running simulations
at each bootstrapped input distribution F (b) to estimate the mean response µ(F (b)) for
b = 1, 2, . . . , B. Specifically, suppose that we allocate nb replications at F (b). For a given
simulation budget, denoted by C, we have

∑B
b=1 nb = C. Then, we could estimate Q by
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the order statistics Ȳ((1−β)B), where Ȳb =
∑nb
j=1 Yj(F

(b))/nb. The permutation, denoted
by (·), is defined based on the estimated mean responses Ȳ(1) ≤ Ȳ(2) ≤ · · · ≤ Ȳ(B).

In the direct bootstrapping, we tend to equally allocate the simulation resource to
all bootstrapped samples {F (1), F (2), . . . , F (B)} [Barton 2007]. Since B is recommended
to be at least one thousand [Xie et al. 2014a], given a tight simulation budget, the
replications allocated to each bootstrapped sample of input distribution, n = C/B,
could be small. For a given set of bootstrapped samples {F (1), F (2), . . . , F (B)} used to
quantify the input uncertainty, the difference between µ[(1−β)B] and Ȳ((1−β)B) could be
large. Since the percentile estimation is based on the order statistics Ȳ((1−β)B), we do
not need to precisely estimate the mean response for the sample F (b) with µb far from
Q. Thus, the equal allocation can not efficiently use the simulation resource.

To avoid the issue faced by the uniform allocation, in this paper, we develop a sequen-
tial approach that explores the system mean responses at the bootstrapped samples
of input distribution, and gradually finds important samples that contribute the most
to the percentile Q estimation or have high possibility to be selected as the (1 − β)B-
th smallest one. Then, we assign more simulation resource there. Thus, our approach
can efficiently employ the computational resource to reduce the simulation estimation
error introduced during propagating the input uncertainty to the output mean.

Therefore, when we use Ȳ((1−β)B) to estimate the percentile Q, there exist three
sources of errors:

(1) The finite sampling error;
(2) The selection error, which means the sample we select for the percentile estimation

based on µ(·) and Ȳ are different, ((1− β)B) 6= [(1− β)B];
(3) The system response estimation error, which means at each F (b), the system response

is estimated with error, Ȳb 6= µb, for b = 1, 2, . . . , B.

Error (1) is introduced by using finite B bootstrapped samples of input distribution
to quantify the input uncertainty. Errors (2) and (3) are introduced by using finite
replications n ≡ {n1, n2, . . . , nB} to estimate the mean responses {µ1, µ2, . . . , µB}.

We quantify the impact of these errors by constructing a (1 − α)100% CI for the
percentile Q estimation, denoted by [CL, CU ],

Pr (Q ∈ [CL, CU ]|Xm) ≥ 1− α. (2)

This CI is conditional on the data Xm because the input uncertainty is quantified by
the nonparametric bootstrap that takes the real-world data as the whole population.
Notice that applying Equation (2), we have

Pr(Q ∈ [CL, CU ]) =

∫
Pr(Q ∈ [CL, CU ]|Xm)dXm ≥ 1− α.

The expected width of this CI can be used to quantify the percentileQ estimation error.
Given a simulation budget C, we could solve the optimization problem

min
B,n

E(CU − CL|Xm) (3)

S.t.
∑B
b=1 nb = C

Pr(Q ∈ [CL, CU ]|Xm) ≥ 1− α.

to find an optimal allocation strategy.
Since this is a hard optimization problem, we develop an adaptive sequential ap-

proach that can automatically find B and n so that we could efficiently use the simu-
lation budget to estimate the percentile Q, while controlling the simulation estimation
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error. Specifically, B is selected to balance the finite sampling error with Errors (2) and
(3). Then, given a fixed set {F (1), F (2), . . . , F (B)} quantifying the input uncertainty, a
ranking and selection based method is introduced to allocate the simulation resource,
which can balance the selection error and the system response estimation error. Thus,
our adaptive approach can simultaneously control all sources of errors and improve
the quantile Q estimation.

3. AN ADAPTIVE SEQUENTIAL APPROACH
In this section, we develop an adaptive sequential approach that can efficiently use
the simulation budget to estimate the percentile Q. Specifically, we first quantify the
finite sampling error introduced by using finite B bootstrapped samples of input model
to quantify the input uncertainty in Section 3.1. The impact of finite sampling er-
ror is called the outer level uncertainty. Then, given a set of bootstrapped samples,
{F (1), F (2), · · · , F (B)}, quantifying the input uncertainty, we develop a ranking and se-
lection based sequential procedure that can reduce the impact of the simulation es-
timation uncertainty, called the inner level uncertainty, by simultaneously controlling
both selection and system response estimation errors in Section 3.2. This procedure
gradually finds the important samples that contribute the most to the percentile Q
estimation, and allocate more simulation resource there. Our approach returns an in-
terval [CL, CU ] satisfying Equation (2) and accounting for both outer and inner level
uncertainty. By solving an optimization problem, we can find the optimal B and pa-
rameters for the sequential procedure to minimize the expected width of (CU − CL) in
Section 3.3.

3.1. Quantifying Finite Sampling Error
Suppose that µ(·) is known. When the order statistics µ[(1−β)B] is used to estimate
the percentile Q, the finite sampling error is introduced because we use finite B boot-
strapped samples of input distribution {F (1), F (2), · · · , F (B)} to quantify the input un-
certainty. In this section, we construct a CI quantifying the finite sampling error.

Let N(y) ≡
∑B
b=1 1(µb ≥ y) denote the number of bootstrapped samples with mean

response greater or equal to a threshold y, where 1(·) represents the indicator function.
Since

∑B
b=1 1(µb ≥ Q)|Xm ∼ Binomial(B, β), we can construct a (1−αo)100% two-sided

CI for the percentile Q estimation

Pr(Q ∈ [CoL, C
o
U ]|Xm) ≥ 1− αo

where αo is the significant level assigned to control the outer level uncertainty of the
percentile Q estimation. According to Baysal and Staum [2008], the lower and upper
bounds of the interval are

CoL ≡ inf

y :

B∑
n=N(y)+1

(
B

n

)
βn(1− β)B−n ≥ αo

2

 (4)

CoU ≡ sup

y :

N(y)∑
n=0

(
B

n

)
βn(1− β)B−n ≥ αo

2

 . (5)

Theorem 3.1 shows that CoL and CoU in Equations (4) and (5) correspond to the k1th
and k2th order statistics, denoted by µ[k1] and µ[k2], with k1 defined as the smallest
index such that µ[k1+1] = minS1 and k2 defined as the largest index such that µ[k2] =
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maxS2, where

S1 ≡

µ[b] with b = 1, 2, . . . , B :

B∑
n=N(µ[b])+1

(
B

n

)
βn(1− β)

B−n ≥ αo
2


S2 ≡

µ[b] with b = 1, 2, . . . , B :

N(µ[b])∑
n=0

(
B

n

)
βn(1− β)

B−n ≥ αo
2

 .

The derivation of Theorem 3.1 is provided in the online appendix. If there is no simu-
lation estimation error, by setting αo = α, we get [CL, CU ] = [µ[k1], µ[k2]].

THEOREM 3.1. When we use µ[(1−β)B] to estimate the percentile Q, the order statis-
tics µ[k1] and µ[k2] define a (1− αo)100% CI quantifying the finite sampling error:

Pr(Q ∈ [µ[k1], µ[k2]]|Xm) ≥ 1− αo.

3.2. Quantifying Simulation Estimation Error
However, the system mean response µ(·) is unknown. At a given set of bootstrapped
samples, {F (1), F (2), . . . , F (B)}, used to quantify the input uncertainty, we estimate
responses {µ1, µ2, . . . , µB} with {Ȳ1, Ȳ2, . . . , ȲB} obtained by using a finite simulation
budget C. In this section, we develop a sequential procedure that can efficiently use
the simulation resource to reduce the inner level uncertainty, and further deliver a CI
quantifying the overall uncertainty of the percentile Q estimation.

Accounting for the finite sampling error described in Section 3.1, the B boot-
strapped samples {F (1), F (2), . . . , F (B)} are divided into three classes: FL ≡ {F (b) :
µb < µ[k1] for b = 1, 2, . . . , B}, FU ≡ {F (b) : µb > µ[k2] for b = 1, 2, . . . , B} and
FC ≡ {F (b) : µ[k1] ≤ µb ≤ µ[k2] for b = 1, 2, . . . , B}. The samples in the set FC are
statistically indifferent with the order statistics µ[(1−β)B]. To reduce the impact of the
inner level uncertainty, we want to efficiently identify the important samples included
in the set FC , which contribute the most to the percentile Q estimation. Then, assign
more simulation resource there to reduce the expected width of (CU − CL).

We first show that if we can construct CIs for the order statistics µ[k1] and µ[k2],
we also obtain a CI for the mean responses of all samples in the set FC . Specifically,
suppose we can construct a (1 − αI/2)100% one-sided CI, denoted by [CL,+∞) and
(−∞, CU ], for µ[k1] and µ[k2]

Pr(µ[k1] ∈ [CL,+∞)) ≥ 1− αI
2

Pr(µ[k2] ∈ (−∞, CU ]) ≥ 1− αI
2

where αI is the significant level assigned to control the inner level uncertainty. By
Theorem 3.2, we can show Pr(µ[b] ∈ [CL, CU ]) ≥ 1 − αI for all b ∈ FC . The proof of
Theorem 3.2 is provided in the online appendix.

THEOREM 3.2. If Pr(µ[k1] ∈ [CL,+∞)) ≥ 1 − αI/2 and Pr(µ[k2] ∈ (−∞, CU ]) ≥
1− αI/2, then Pr(µ[b] ∈ [CL, CU ]) ≥ 1− αI for all b ∈ FC .

Then, by applying Theorems 3.1, 3.2 and the Bonferroni inequality, Theorem 3.3
shows that if α is decomposed into outer and inner significant levels, α = αo +αI , then
the interval [CL, CU ] accounting for both finite sampling and simulation estimation
uncertainty satisfies Equation (2). The proof of Theorem 3.3 is provided in the online
appendix.
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THEOREM 3.3. If α = αo + αI and the conditions in Theorems 3.1–3.2 hold, then
Pr(Q ∈ [CL, CU ]|Xm) ≥ 1− α.

Therefore, given B bootstrapped samples {F (1), F (2), . . . , F (B)} quantifying the input
uncertainty, to reduce the impact of simulation estimation uncertainty, we need to
find the optimal budget allocation specified by n = (n1, n2, . . . , nB) to minimize the
estimation error of order statistics µ[k1] and µ[k2] or the expected width of (CU − CL).
The optimal n depends on the unknown response mean µ(·) and simulation estimation
variance σ2

ε (·) at these bootstrapped samples. Further, since B could be hundreds and
thousands, it is difficult to directly solve for the optimal n.

Motivated by ranking and selection in Lesnevski et al. [2007; 2008], we develop a
sequential procedure to simultaneously estimate order statistics µ[k1] and µ[k2]. Specif-
ically, let the surviving set, denoted by Iq, contain all the samples that are statistically
indifferent to be the order statistics µ[kq ] for q = 1, 2. Without any prior information on
the system mean responses, we start with classifying all samples {F (1), F (2), . . . , F (B)}
to the surviving set Iq. By running simulations at samples in Iq, we could gradually
screen out samples that are statistically smaller or larger than µ[kq ], and then allo-
cate more simulation budget to surviving samples in Iq that contribute the most to
estimating µ[kq ].

The screening process could introduce the selection bias, especially when the number
of bootstrapped samples is large and the simulation estimation uncertainty is high.
For example, if we want to find the system with the maximum mean response µ[B], the
selected sample with the maximum sample mean Ȳ(B) is biased high, E[Ȳ(B)] ≥ µ[B];
see Lan et al. [2010], Boesel et al. [2003], Nelson and Goldsman [2001]. The “restart”
is used to reduce the bias, which divides the sequential procedure into screening and
estimation phases.

3.2.1. Phase I: Screening with Common Random Numbers. The screening phase is to elim-
inate bootstrapped samples of input model that are statistically impossible to be the
order statistics µ[kq ] for q = 1, 2. Since {µ1, µ2, . . . , µB} represent the responses of the
same system derived by different input model estimates, the samples with similar in-
put models also have similar mean responses. Thus, CRN is used to efficiently screen
out samples having mean responses close to order statistics µ[kq ].

Suppose that there are n replications at each sample of {F (1), F (2), . . . , F (B)}. We
introduce a two-sided screening to screen out samples with mean response statistically
smaller or larger than µ[kq ] for q = 1, 2. Given a screening significant level, denoted by
αS , Theorem 3.4 shows that the surviving set Iq defined in Equation (6) includes the
kqth smallest sample with probability greater or equal to αS , Pr([kq] ∈ Iq) ≥ 1−αS , for
q = 1, 2. The detailed proof of Theorem 3.4 is provided in the online appendix.

THEOREM 3.4. Define the surviving set

Iq =

i ∈ {1, 2, . . . , B} :
∑

j∈{1,2,...,B}:j 6=i

1
(
Ȳj ≤ Ȳi +Wij

)
≥ kq − 1

and
∑

j∈{1,2,...,B}:j 6=i

1
(
Ȳj ≥ Ȳi −Wij

)
≥ B − kq

 (6)

where Wij = tn−1,1− αS
B−1
· Sij√

n
, S2

ij = 1
n−1

∑n
h=1(Yih − Yjh − (Ȳi − Ȳj))2 and n denotes the

number of replications assigned to each sample. Then, Pr([kq] ∈ Iq) ≥ 1−αS for q = 1, 2.
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Therefore, to efficiently find the important bootstrapped samples that contribute the
most to the estimation of order statistics µ[k1] and µ[k2], built on the screening rule
in Equation (6), we develop a sequential screening procedure as follows. It is specified
by parameters: (1) the initial number of replications allocated to each bootstrapped
sample, denoted by n0, (2) the growth factor characterizing the replication increase
rate for samples in the surviving sets, denoted by R, and (3) the number of screening
iterations, denoted by M . Given a fixed simulation budget, large n0 could lead to global
exploration. Small R and large M could lead to local exploitation.

In the `th iteration, let Iq` denote the surviving set, and let ILq` and I
Uq
` denote

sets with mean response statistically smaller and larger than order statistics µ[kq ]

for q = 1, 2. Let Nq
1 (`) denote the number of replications accumulated in Phase I until

the `th iteration at each sample in the surviving set Iq` . Without any prior information
on the system mean response, we start with putting all bootstrapped samples of input
distribution to the surviving sets Iq0 . In Step (2), we equally divide the screening signif-
icant level αS to M iterations and set α′S = αS/M . Then, assign n0 replications to each
sample Nq

1 (1) = n0, and run simulations. Based on the simulation results, screen out
samples that are statistically impossible to be the order statistics µ[kq ] in Step (3.a),
where |ILq`−1|, |I

Uq
`−1| and |Iq`−1| denote the numbers of samples in the sets ILq`−1, IUq`−1 and

Iq`−1. After that, check the stopping criteria in Step (3.b). If the stopping criteria hold,
stop screening. Otherwise, allocate additional n0R`−1(R− 1) replications to each sam-
ple in the surviving sets, run simulations and do further screening. In iteration ` + 1,
each sample in the surviving sets has the accumulated replications Nq

1 (`+ 1) = n0R
`.

(1) Let Iq0 ← {F (1), F (2), . . . , F (B)} and ILq0 = I
Uq
0 = ∅ for q = 1, 2.

(2) Let α′S = αS/M be the screening significant level for each iteration in Phase I.
Assign n0 replications to each F (b) with b = 1, 2, . . . , B and run simulations.

(3) For ` = 1 to M
(a) Do screening. For q = 1, 2, set

I
Lq
` = I

Lq
`−1

⋃
Aq` , I

Uq
` = I

Uq
`−1

⋃
Bq` , I

q
` = Āq`

⋂
B̄q`

where Aq` ≡
{
i ∈ Iq`−1 :

∑
j∈Iq`−1:j 6=i

1(Ȳj ≤ Ȳi +W q
`,ij) < kq − 1− |ILq`−1|

}
,

Bq` ≡
{
i ∈ Iq`−1 :

∑
j∈Iq`−1:j 6=i

1(Ȳj ≥ Ȳi −W q
`,ij) < B − kq − |I

Uq
`−1|

}
, W q

`,ij =

t
Nq1 (`)−1,1−

α′
S

|Iq
`−1
|−1

· Sqij√
Nq1 (`)

and Sqij =
[

1
Nq1 (`)−1

∑Nq1 (`)
h=1

(
Yih − Yjh − (Ȳi − Ȳj)

)2]1/2.

(b) Check stopping condition. If |Iq` | = 1, then stops updating Iq` for q = 1, 2. If either
both surviving sets I1` and I2` have a single sample left or ` = M , the procedure
moves to Phase II. Otherwise, assign additional n0R`−1(R − 1) replications to
each sample in the surviving set Iq` , and run simulations.

Next `.

By applying Theorem 3.4 and Bonferroni inequality, we can show that the surviving
set obtained from this screening procedure, denoted by IqM , includes the kqth smallest
sample with probability greater or equal to 1 − αS : Pr([kq] ∈ IqM ) ≥ 1 − αS for q = 1, 2.
It can be obtained by following the similar proof with Lemma 1 in Nelson et al. [2001].

3.2.2. Phase II: Estimation with Variance Reduction Technique. The sequential screening de-
scribed in Section 3.2.1 could introduce the selection bias. For each sample in the sur-
viving sets, b ∈ {I1M ∪ I2M}, the sample means are biased, E(Ȳb) 6= µb. Thus, the restart
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is used to reduce the bias. Only sample variances S2
b are used to guide the remaining

simulation budget allocation.
The number of replications allocated to surviving bootstrapped samples in Phase II,

denoted by N2(b), is proportional to the sample variance

N2(b) = (C − T )
S2
b∑

i∈{I1M∪I2M}
S2
i

(7)

where T is the total budget used in Phase I, which is a function of (B,n0, R,M) and
also depends on unknown µ(·) and σε(·) at {F (1), F (2), . . . , F (B)}. Then, run simulations
at each sample in the surviving sets. Based on the simulation results, we construct a
(1− α)100% CI for the percentile Q estimation with lower and upper bounds

CL = min
b∈I1M

(
Ȳb − tN2(b)−1,1−

αE
2
· Sb√

N2(b)

)
(8)

CU = max
b∈I2M

(
Ȳb + tN2(b)−1,1−

αE
2
· Sb√

N2(b)

)
(9)

where αE is the significant level for the estimation phase. Since the CRN used in the
screening phase could efficiently screen out the samples with mean responses slightly
different with the order statistics µ[kq ], we assume that the mean responses at samples
in IqM are close to µ[kq ] for q = 1, 2. Thus, the budget allocation in Equation (7) could
minimize the width of (CU − CL).

When the simulation budget is tight and the mean responses at bootstrapped sam-
ples are also close to each other, there could exist many surviving samples in Phase II.
To efficiently estimate the mean response µb for b ∈ {I1M ∪ I2M} and reduce the esti-
mation variance, a variance reduction technique, the antithetic variate simulation al-
gorithm [Hammersley and Morton 1956], is employed in the simulations. Specifically,
let N ′2(b) = N2(b)/2 be an integer. At each F (b), let Ybi and Ỹbi denote the simulation
outputs generated by the random streams following uniform distribution, denoted by
Ubi and 1−Ubi, for i = 1, 2, . . . , N ′2(b). Then, Equations (8) and (9) become

CL = min
b∈I1M

(
Ȳb − tN ′2(b)−1,1−αE2 ·

Sb,a√
N ′2(b)

)
(10)

CU = max
b∈I2M

(
Ȳb + tN ′2(b)−1,1−

αE
2
· Sb,a√

N ′2(b)

)
(11)

where S2
b,a =

∑N ′2(b)
i=1

(
Ybi+Ỹbi

2 − Ȳb
)2
/[N ′2(b) − 1]. Our empirical study indicates that it

could obviously improve the percentile Q estimation.
We can show that the interval [CL, CU ] obtained from Equations (10) and (11) sat-

isfies Equation (2). We decompose the inner uncertainty significant level αI into the
parts for screening and estimation. Since the significant level used to screen for each
µ[kq ] with q = 1, 2 is αS , the total screening significant level is 2αS . Theorem 3.5 shows
that if αI = 2αS +αE , we can get Pr(µ[b] ∈ [CL, CU ]|Xm) ≥ 1−αI for any b ∈ FC . Then,
Pr(Q ∈ [CL, CU ]|Xm) ≥ 1 − α follows by applying Theorems 3.2 and 3.3. The detailed
proof of Theorem 3.5 is provided in the online appendix.

THEOREM 3.5. If αI = 2αS + αE , then the interval [CL, CU ] defined by Equa-
tions (10) and (11) satisfies Pr(µ[b] ∈ [CL, CU ]|Xm) ≥ 1− αI for any b ∈ FC .
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3.3. An Adaptive Sequential Procedure
Given the simulation budget C, the sequential procedure described in Sections 3.1
and 3.2 delivers a CI for the percentile Q estimation. This procedure is parameter-
ized by (B,n0, R,M). The optimal parameters, denoted by (B?, n?0, R

?,M?), minimiz-
ing E(CU − CL|Xm) depend on the input uncertainty and also unknown µ(·), σ2

ε (·) at
bootstrapped samples quantifying the input uncertainty. In this section, we introduce
an adaptive sequential procedure that could find the optimal parameters. Specifically,
we use part of simulation budget to run the initial simulations that could provide the
information on the input uncertainty and µ(·), σ2

ε (·) at bootstrapped samples of input
model. Then, by following the procedure in Sections 3.1 and 3.2, we can estimate the
expected interval width E(CU − CL|Xm) at any feasible (B,n0, R,M), which allows us
to search for the optimal parameters (B?, n?0, R

?,M?).
Our adaptive sequential procedure includes main steps as follows. In Step (1),

we specify the significant levels α, αo, αS , αE and the ranges or the design space of
(B,n0, R,M). The sensitivity study in Section 4.1.2 indicates that the performance of
our approach is not sensitive to the choice of significant levels. In Step (2), for the ini-
tial simulations, we generate B0 bootstrapped samples, run n00 replications at each
sample, and calculate the sample means and variances of simulation outputs, denoted
by Ȳ0i and S2

0i with i = 1, 2, . . . , B0. Suppose that these B0 samples provide the rep-
resentative behaviors of the simulation outputs at bootstrapped samples so that we
can estimate µ(·) and σ2

ε (·) at any new generated bootstrapped sample. In Step (3),
to estimate the performance of our sequential approach with any feasible parameters
(B,n0, R,M), suppose that there are B virtual bootstrapped samples of input model.
We assign them to B0 groups defined by sampling from the initial simulations with
equal probabilities. Then, without running any additional simulations, we estimate
the response mean and simulation estimation uncertainty at each virtual bootstrapped
sample, and further construct the interval [CL, CU ] defined by Equations (10) and
(11) by following the sequential procedure in Sections 3.1 and 3.2. Through repeating
Step (3), we can estimate the mean and variance of the interval width (CU−CL) at any
(B,n0, R,M), which could be used to search for the optimal parameters (B?, n?0, R

?,M?)
in Step (5). After that, we generate additional B? − B0 bootstrapped samples of input
models, and then by following the sequential procedure in Section 3.2 with parameters
(n?0, R

?,M?), we can construct the interval [CL, CU ] accounting for both finite sampling
and system response estimation uncertainty, which could efficiently use the simulation
budget to improve the percentile Q estimation.

(1) Specify the significant levels α, αo, αS and αE . Specify the ranges for (B,n0, R,M).
(2) Generate B0 bootstrapped empirical distributions, assign n00 replications to each

distribution and run simulations. Then, record response means and variances, Ȳ0i,
and S2

0i, with i = 1, 2, . . . , B0.
(3) For any feasible setting (B,n0,M,R), assign B virtual samples into B0 groups

by using a multinomial sampling with probability parameters pi = 1/B0 for
i = 1, 2, . . . , B0. The group index of the jth sample associated to is cj

i.i.d.∼
Multinomial(p1, p2, . . . , pB0

), for j = 1, 2, . . . , B. Draw the response mean and vari-
ance for the jth sample, Ȳj ∼ N

(
Ȳ0cj , S

2
0cj/n0

)
and S2

j ∼ S2
0cj ·χ

2
n0−1/(n0−1). Follow-

ing the screening and estimation procedure in Section 3.2, construct [CL, CU ] defined
by Equations (10) and (11), and record the interval width.

(4) Repeat Step (3) to estimate the mean and variance of (CU − CL).
(5) Find the optimal parameters (B?, n?0, R

?,M?) to minimize E(CU − CL|Xm).
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(6) Use the budget allocation obtained by the sequential procedure in Sections 3.2.1 and
3.2.2 with (B?, n?0, R

?,M?) to estimate the percentile Q by Ȳ((1−β)B) and return the
interval [CL, CU ] quantifying the overall estimation uncertainty.
(a) Generate B? −B0 new bootstrapped samples of input model. Run n?0 replications

at each new generated sample and n?0−n00 additional replications at each existing
sample.

(b) By following the sequential screening in Section 3.2.1 with parameters
(n?0, R

?,M?) and then the estimation step in Section 3.2.2, construct the inter-
val [CL, CU ] defined by Equations (10) and (11).

Here, we provide some guidance on choosing n00 and B0 for the initial simulations.
For the situations with a tight simulation budget, we set them to be the smallest values
of n0 and B. The choice of n0 should make sure that the sample variance of simulation
outputs provides a reasonable estimation of the simulation estimation uncertainty.
Based on the literature on ranking and selection, the minimal number of replications
is recommended to be 10 [Kim and Nelson 2007; Tsai et al. 2009]. Thus, we use n00 = 10

in the empirical study. Since
∑B
b=1 1(µb ≥ Q)|Xm ∼ Binomial(B, β), in Section 3.1, we

construct the interval [µ[k1], µ[k2]] to quantify the finite sampling error. If [k2] = B,
there is no bootstrapped sample µb statistically larger than the percentile Q. To have
the representative behavior of the simulation outputs at bootstrapped samples of input
model, the choice of B should guarantee that at least one bootstrapped samples fall in
the αo/2 right tail part,

1∑
b=0

(
B

b

)
βb(1− β)B−b <

αo
2
. (12)

Thus, B0 should be the smallest B satisfying Equation (12).
For the discrete optimization via simulation (DOvS) problem in Step (5), there are a

variety of optimization algorithms that can be incorporated into our procedure to find
the optimal parameters (B?, n?0, R

?,M?) minimizing L(B,n0, R,M) ≡ E(CU −CL|Xm),
e.g., approaches proposed in Brooks [1958], Hong and Nelson [2006], Xu et al. [2010],
Xu et al. [2013], Sun et al. [2014], and Hong et al. [2014]. To illustrate that the per-
formance of our approach is robust to the choice of the optimization approaches, two
of which are employed in our empirical study in Section 4. The first algorithm is the
pure random search algorithm (PRS) [Brooks 1958]. It is simple and makes no as-
sumption on the surface L(B,n0, R,M). Specifically, we randomly generate Ns sam-
ples of (B,n0, R,M) covering the design space. At each sample, the expected CI width
is estimated by following Steps (3)-(4) and the best one is recorded as the optimal
solution. However, PRS may require large Ns to find a good solution except when
L(B,n0, R,M) is relatively flat around (B?, n?0, R

?,M?) or the simulation budget C is
tight. The second approach is Gaussian-Process based search (GPS) [Sun et al. 2014].
Unlike PRS, GPS requires some smoothness assumption on the unknown response
surface L(B,n0, R,M). We can estimate the expected CI width at a few well chosen de-
sign points by following the sequential procedure in Sections 3.2.1 and 3.2.2, and then
build the fitted surface to predict the CI width at other untried points in the design
space. This information could guide further search to the promising subregion. Thus,
GPS includes main steps as follows [Sun et al. 2014].

(1) Generate the initial design points evenly covering the design space for (B,n0, R,M).
To have all prediction points located close to design points, a space-filling design,
the orthogonal max-min Latin Hypercube Design (LHD), is used to select the design
points [Liu and Staum 2010].

(2) Fit or update the surface L(B,n0, R,M).

ACM Transactions on Modeling and Computer Simulation, Vol. 27, No. 4, Article AA, Publication date: October 2017.



AA:14 Y. Yi and W. Xie

(3) Calculate the posterior probability of being better than the current optimal solution,
use it as the sampling distribution to draw new samples of (B,n0, R,M), and choose
the point with the smallest expected CI width as the current optimal.

(4) Repeat Steps (2-3) and terminate the process if the number of iterations reaches
the predetermined threshold or the maximum expected improvement is sufficiently
small.

Since GPS exploits the relationship between the expected CI width at different settings
(B,n0, R,M), it could make an effective use of the computational budget. However,
there exist fitting issues when the response surface L(B,n0, R,M) is relatively flat
near the optimal; see Sun et al. [2014]. It is worth noting that other efficient algorithms
can also apply in our procedure, such as the COMPASS algorithm. Interested readers
are referred to Hong and Nelson [2006], Xu et al. [2010] and Xu et al. [2013] for further
details.

The overhead cost introduced by our approach mainly comes from the sequential
screening and the optimization search. It is polynomial in the simulation budget C;
see the derivation in the Appendix. The empirical study in Section 4 demonstrates
that the average overhead cost takes about a few seconds for each simulation run.
Since we consider the situations where each simulation run could be computationally
expensive and the simulation budget is tight, the overhead cost is not dominating.

4. EMPIRICAL STUDY
In this section, we use an M/M/1 queue and a stochastic activity network to study the
performance of our sequential approach. To demonstrate our approach is compatible
with various optimization techniques, we use GPS for the M/M/1 queue in Section 4.1
and use PRS for the stochastic activity network in Section 4.2 to search for the optimal
parameters (B?, n?0, R

?,M?) for our sequential procedure.

4.1. An M/M/1 Queue
We first use a tractable M/M/1 queue to illustrate the performance of our approach.
The customer arrival rate is λc and the service rate is θc. We are interested in the
average number of customers in the system.

To evaluate our approach, we pretend that the distribution of service time is un-
known and estimated from m i.i.d. service time data Xm = (X1, X2, . . . , Xm), which
are generated from the underlying true service distribution, exp(θc). We refer the ob-
servations as “real-world data.” Notice that the system under the bootstrapped empir-
ical distribution for the service is in fact an M/G/1 queue. By the Pollaczek-Khinchine
formula, we can calculate the expected number of customers in the system at any boot-
strapped sample of service distribution F (b) ∼ F̃ (·|Xm),

µ
(
F (b)

)
= ρ+

ρ2 + (λc)2Var(X)

2(1− ρ)
(13)

where X denotes the service time with X ∼ F (b) and ρ = λcE(X) is the traffic intensity.
Hence, the impact of the input uncertainty on the system performance estimates can
be quantified by the (1 − β)100% percentile Q of the induced distribution of µ(F (b))
satisfying Equation (1).

Given a fixed simulation budget C, we study the finite-sample performance of our
approach to estimate the percentileQ. In our experiments, at any F (b), we estimate the
mean response µ(F (b)) by running simulations. The simulations start with an empty
system. We set the warm-up length to be 500. To consider the situation where the sim-
ulation budget is tight and the simulation estimation uncertainty could be significant,
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Table I. The maximum absolute relative difference for percentile Q estimation when m = 100 (in
the unit %).

Number of bootstrapped samples 103 5× 103 104 5× 104 105 5× 105

λc = 0.5, 1− β = 90% 0.67 0.44 0.23 0.15 0.09 0.04
λc = 0.5, 1− β = 95% 0.75 0.67 0.50 0.17 0.09 0.06
λc = 0.7, 1− β = 90% 1.36 0.81 0.46 0.33 0.15 0.10
λc = 0.7, 1− β = 95% 2.28 2.12 1.27 0.43 0.19 0.14

we set a short run length after the warm-up to be 50 for each replication. Here, the
unit of warm-up and run length is defined based on the number of arrivals.

To evaluate the robustness of our approach, we examine the effects of the traffic
intensity, the amount of real-world data, the percentile level for Q and the simulation
budget. We fix the service rate θc = 1 in the experiments. We consider different levels
of arrival rate λc = 0.5, 0.7, the amount of real-world data m = 100, 500, the significant
level for input uncertainty 1− β = 90%, 95%, and the total simulation budget in terms
of replications C = 5000, 10000, 50000.

We use the Monte Carlo approach to estimate the true percentile Q. To find the
number of bootstrapped samples required to get a precise percentile estimation, de-
noted byB1, we did a side experiment by running 10 macro-replications for arrival rate
λc = 0.5, 0.7. Since m = 500 has less input uncertainty, we focus on cases with m = 100.
In each macro-replication, we draw m = 100 independent real-world observations from
underlying true distribution F c, generate B1 bootstrapped samples of service distribu-
tion, calculate the mean response at each bootstrapped sample by using Equation (13),
and then estimate the percentile Q by using the order statistics Q̂B1

= µ[(1−β)B1]. We
consider different number of bootstrapped samples and record the relative difference
compared to the benchmark with 106 bootstrapped samples, error = |Q̂B1

−Q|/Q, where
Q denotes the percentile estimated by using 106 bootstrapped samples. Suppose 106 is
large enough and the finite sample estimation error is negligible. The maximum rela-
tive error for different choices of B1 obtained from 10 macro-replications is recorded in
Table I with the unit to be percentage (%). For simplicity, we suppress the percentage
sign in all tables presented in the paper. We observe that 105 achieves accuracy with
the maximum relative error less than 0.2%. Balancing precision and computational
cost, we use B1 = 105 bootstrapped samples to estimate the true percentile Q in our
experiments.

It is worth mentioning that we occasionally encounter unstable systems with ρ ≥ 1.
To estimate the possibility getting the unstable bootstrapped system, we did a side
experiment. We run 100 macro-replications for all combinations of λc = 0.5, 0.7 and
m = 100, 500. In each macro-replication, we first draw m independent real-world ob-
servations from the underlying true distribution, generate 105 bootstrapped samples
of input distribution and calculate the percentage of unstable bootstrapped samples.
Based on results from 100 macro-replications, we can have mean and standard devi-
ation (SD) of the percentage. When m = 100 and λc = 0.7, we have the average 0.24%
unstable bootstrapped samples with SD equal to 0.8%, which is much smaller than β.
The unstable issue is negligible for other cases. Given finite warm-up and run-length,
the simulation outputs at unstable bootstrapped samples of input model are finite and
they tend to larger than those at stable bootstrapped samples. Thus, we keep all un-
stable bootstrapped samples in the empirical study.

4.1.1. Comparing Our Approach with Direct Bootstrapping. Given a fixed simulation bud-
get, we compare the performance of our approach and the direct bootstrapping. The
absolute relative error of percentile Q estimated by using our approach and direct
bootstrapping is shown in Tables II-III when 1 − β = 90%, 95%. For our approach, we
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Table II. The relative error of the percentile Q estimates when
1− β = 90% (in the unit %).

λc = 0.5 our approach direct bootstrap
mean SE mean SE

m = 100, C = 5000 6.6 0.35 18.8 1.85
m = 100, C = 10000 6.2 0.3 15.9 1.74
m = 100, C = 50000 5.3 0.31 6.6 0.49

m = 500, C = 5000 9.3 0.21 15.8 1.38
m = 500, C = 10000 7.7 0.17 12.3 1.07
m = 500, C = 50000 5.5 0.36 6.0 0.47

λc = 0.7 our approach direct bootstrap
mean SE mean SE

m = 100, C = 5000 10.9 0.84 32.6 3.18
m = 100, C = 10000 9.8 0.66 18.9 1.55
m = 100, C = 50000 9.1 0.53 10.5 0.82

m = 500, C = 5000 14.1 0.36 26.3 2.04
m = 500, C = 10000 10.7 0.31 21.9 1.94
m = 500, C = 50000 7.8 0.37 9.8 0.75

set α = 0.05 and split α into αo = 0.02, αS = αE = 0.01. Following the study in Nelson
et al. [2001] and Boesel et al. [2003], we use the equal significant level for the screening
and estimation. The study in Section 4.1.2 further indicates that the performance of
our approach is not sensitive to the value of α and the decomposition to the inner and
outer uncertainty. For the direct bootstrapping, we set B = 1000 and equally allocate
the total budget C to bootstrapped samples of input distribution.

In our approach, the parameters (B,n0,M,R) are optimized based on the infor-
mation obtained from the initial simulations. The setting for initial simulations is:
B0 = 200 and n00 = 10. When we search for the optimal (B,n0,M,R), we set that n0
can be chosen from {10, 20, 30, 40, 50}. Larger n0 is infeasible for a tight budget. M can
be selected from {1, 2, . . . , 10}. For a tight budget, it is infeasible to do more than 10
screening iterations. Even for sufficient budget cases, if M is too large, fewer systems
can be screened out at each stage since the screening significant level for each stage
α′S = αS/M decreases as M becomes larger. And R is chosen from {1.1, 1.2, . . . , 2}. Too
large growth factor can lead to the screening procedure that may consume more than
necessary in each stage. For B, the available choices are from {200, 225, . . . , C/10} since
B ≥ B0. And any feasible choice B cannot exceed B = C/10 because 10 is the smallest
n0 value.

GPS is used to search for the parameters of our sequential procedure. By following
the “10d” rule in Jones et al. [1998], we use LHD to generate 40 initial design points
to evenly cover the design space. We then follow the steps described in Section 3.3
to update the meta-model. The GPS search terminates when the number of feasible
(B,n0, R,M) visited reaches 100, or the maximum expected improvement is less than
1%.

The results in Tables II-III are based on 100 macro-replications. In each macro-
replication, we first generate m real-world data from the underlying true service dis-
tribution, estimate the true percentile Q by using B1 bootstrapped samples and Equa-
tion (13). Then, run simulations and estimate the impact of input uncertainty by using
our approach and the direct bootstrapping. We record the relative error for percentileQ
estimation: error = |Ȳ((1−β)B)−Q|/Q. Based on the results from 100 macro-replications,
we can estimate the mean and standard error (SE) of relative error.

The conclusions obtained from Tables II-III are similar. Given a fixed amount of real-
world data, as the simulation budget increases, the mean and SE of percentile Q esti-
mation error decrease by using either our approach or direct bootstrapping. Compared
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Table III. The relative error of the percentile Q estimates when
1− β = 95% (in the unit %).

λc = 0.5 our approach direct bootstrap
mean SE mean SE

m = 100, C = 5000 6.8 0.37 19.0 1.89
m = 100, C = 10000 6.3 0.36 21.5 1.31
m = 100, C = 50000 4.2 0.31 7.5 0.62

m = 500, C = 5000 11.1 0.31 20.3 1.84
m = 500, C = 10000 7.4 0.2 14.7 1.37
m = 500, C = 50000 4.6 0.15 6.6 0.52

λc = 0.7 our approach direct bootstrap
mean SE mean SE

m = 100, C = 5000 12.6 1.06 27.0 2.03
m = 100, C = 10000 9.5 0.96 23.4 1.89
m = 100, C = 50000 7.9 0.89 11.9 1.19

m = 500, C = 5000 15.5 0.39 28.4 2.67
m = 500, C = 10000 11.2 0.37 18.4 1.43
m = 500, C = 50000 6.6 0.38 10.2 0.84

to the direct bootstrapping, our approach has better and more robust performance.
This advantage is more obvious when the simulation budget is tight. As the budget
increases, the performance of both approaches becomes closer. For our approach, when
the simulation budget is tight, e.g., C = 5000, 10000, the percentile estimation is better
when m = 100 than when m = 500 because it is relatively easy to screen out samples
when the input uncertainty is large and the system response at bootstrapped samples
spreads out.

4.1.2. Sensitivity Analysis. In this section, we first study the effect of α on the perfor-
mance of our approach. Larger 1− α provides higher statistic guarantee that the true
percentile Q is covered by the interval [CL, CU ]. Smaller 1 − α could lead to screen-
ing out samples of input model more easily so that surviving ones can receive more
simulation resource. Here, we study the performance of our approach when 1 − α =
90%, 95%, 99%. The decomposition rule remains fixed with αo = 2α/5, αS = αE = α/5.
We set 1−β = 95%. The results shown in Table IV are based on 100 macro-replications.
They indicate that the performance of our approach is robust to the value of 1 − α.
When C = 5000, 10000, all three settings with 1− α = 90%, 95%, 99% have similar per-
formance. When C = 50000, we observe that the setting with 1 − α = 95% performs
slightly better than other two settings.

Then, we study the effect of significant level decomposition to the inner and outer
uncertainty, α = αo + αI , on the performance of our approach. We consider two de-
compositions: Case (1) has αo = 2α/5 and αI = 3α/5; Case (2) has αo = 3α/5 and
αI = 2α/5. Following the study in Nelson et al. [2001] and Boesel et al. [2003], we set
αS = αE . Here, we set 1− α = 95% and 1− β = 95%. Table V records the performance
of our approach under these two cases. When C = 5000, 10000, the performances for
both cases are not distinguishable. When C = 50000, Case (2) gives slightly worse per-
formance. In sum, the performance of our approach is robust to the significant level
decomposition.

4.2. A Stochastic Activity Network
In this section, we use a stochastic activity network in Fig.1 to study the performance
of our approach. Suppose that the time required to complete arc (task) j is denoted
by Xj with Xj ∼ exp(θcj) for j = 1, 2, . . . , 5 and parameters θθθc = (10, 5, 12, 11, 5). The
time to finish the project, denoted by Y , is defined as the longest path of the network,
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Table IV. The performance of our approach when 1 − α = 90%, 95%, 99%
(in the unit %).

λc = 0.5 1− α = 90% 1− α = 95% 1− α = 99%
mean SE mean SE mean SE

m = 100, C = 5000 7.1 0.38 6.8 0.37 6.5 0.36
m = 100, C = 10000 6.2 0.38 6.3 0.36 6.3 0.43
m = 100, C = 50000 6.0 0.46 4.2 0.31 5.5 0.45

m = 500, C = 5000 11.1 0.26 11.1 0.31 11.6 0.27
m = 500, C = 10000 8.7 0.23 7.4 0.2 7.6 0.21
m = 500, C = 50000 6.4 0.49 4.6 0.15 5.4 0.28

λc = 0.7 1− α = 90% 1− α = 95% 1− α = 99%
mean SE mean SE mean SE

m = 100, C = 5000 12.7 1.23 12.6 1.06 10.3 0.85
m = 100, C = 10000 11.6 0.99 9.5 0.96 8.7 1.04
m = 100, C = 50000 8.3 0.72 7.9 0.89 10.2 0.9

m = 500, C = 5000 15.2 0.4 15.5 0.39 15.9 0.45
m = 500, C = 10000 11.5 0.38 11.2 0.37 10.6 0.35
m = 500, C = 50000 7.8 0.39 6.6 0.38 6.6 0.31

Table V. The performance of our approach for different sig-
nificant level decomposition (in the unit %).

λc = 0.5 Case (1) Case (2)
mean SE mean SE

m = 100, C = 5000 6.8 0.37 7.0 0.36
m = 100, C = 10000 6.3 0.36 6.2 0.43
m = 100, C = 50000 4.2 0.31 5.5 0.35

m = 500, C = 5000 11.1 0.31 11.4 0.28
m = 500, C = 10000 7.4 0.2 8.5 0.24
m = 500, C = 50000 4.6 0.15 5.9 0.45

λc = 0.7 Case (1) Case (2)
mean SE mean SE

m = 100, C = 5000 12.6 1.06 11.1 1.15
m = 100, C = 10000 9.5 0.96 9.4 0.87
m = 100, C = 50000 7.9 0.89 8.3 0.75

m = 500, C = 5000 15.5 0.39 15.9 0.41
m = 500, C = 10000 11.2 0.37 10.7 0.34
m = 500, C = 50000 6.6 0.38 7.1 0.38

Y = max(X1 + X2 + X5, X1 + X4, X3 + X5). We are interested in the expected time to
finish the project E[Y ].

To evaluate our approach, we pretend that the distributions for all five tasks are
unknown and they are estimated by m “real-world data” Xm from underlying true
distributions. The impact of the input uncertainty on the system performance esti-
mates can be quantified by the (1 − β)100% percentile Q of the induced distribution
of E[Y (F (b))] with F (b) ∼ F̃ (·|Xm). To evaluate the robustness of our approach on the
percentile Q estimation, we consider the amount of real-world data m = 100, 500, the
significant level for input uncertainty 1 − β = 90%, 95%, and the simulation budget
C = 5000, 10000, 20000.

Monte Carlo simulation is used to estimate the true percentile Q in the experi-
ments and a side experiment of 10 macro-replications is conducted to find B1, the
number of bootstrapped samples required to get a precise percentile estimation. Al-
though m = 500 has less input uncertainty, it is more likely to generate the extreme
observations, which could have a large impact on the system mean performance esti-
mates. Thus, both m = 100 and m = 500 are considered. Specifically, in each macro-
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Fig. 1. A stochastic activity network

Table VI. The maximum absolute relative difference for percentile Q estimation (in the unit %).

Number of bootstrapped samples B1 1000 5000 10000
Amount of simulations nB1

103 104 105 103 104 105 103 104

m = 100, 1− β = 90% 7.8 1.4 0.8 4.0 1.9 1.0 7.0 1.8
m = 100, 1− β = 95% 4.1 2.0 0.9 7.2 1.9 0.5 4.0 1.9
m = 500, 1− β = 90% 8.5 2.5 0.9 7.2 1.9 0.8 8.2 2.6
m = 500, 1− β = 95% 7.3 2.1 1.6 6.7 1.2 0.9 6.5 1.2

replication, we drawm real-world data, generateB1 bootstrapped samples of input dis-
tributions, run n replications at each bootstrapped sample, and use the sample mean
Ȳb = Ȳ (F (b)) to estimate E[Y (F (b))] for b = 1, 2, . . . , B1. The percentile Q is estimated
by the order statistics Q̂B1

= Ȳ((1−β)B1). We select the combination of B1 = 10, 000
and n = 100, 000 as the benchmark. Then, for different combinations of B1 and n, we
record the maximum relative error with the unit to be percentage (%) obtained from
10 macro-replications in Table VI. Balancing precision and computational cost, we use
B1 = 5, 000 and n = 100, 000 to estimate the true percentile Q in our experiments be-
cause it achieves accuracy with the maximum relative error less than 1% for situations
that we consider.

4.2.1. Comparing Our Approach with Direct Bootstrapping. We first study the performance of
our approach and the direct bootstrapping under a variety of budgets. The experimen-
tal settings are very similar to the M/M/1 queueing example in Section 4.1. For our
approach, we let α = 0.05 which is further decomposed into αo = 0.02, αS = αE = 0.01.
We employ the pure random search method to find good parameters (B,n0,M,R)
based on the initial simulations with B0 = 200 and n00 = 10. The candidate pool is
as follows: n0 ∈ {10, 20, 30, 40, 50}, M ∈ {1, 2, . . . , 10} and R ∈ {1.1, 1.2, . . . , 2}. Since
the slight change in B does not have a significant impact on the accuracy, we select
B ∈ {200, 250, . . . , C/10}. The pure random search terminates and reports the best
option it finds after 200 random searches. For the direct bootstrapping, we equally al-
locate the total budget C to B = 1000 bootstrapped samples of input distributions.

The results of mean and SE of the absolute relative error for the percentile Q esti-
mation obtained from our approach and direct bootstrapping are shown in Tables VII-
VIII. They are based on 100 macro-replications. We can observe that our approach
performs much better than the direct bootstrapping in all cases. The precision of our
approach improves quickly as the budget C increases. It achieves remarkable accuracy
with tight budget C = 20, 000. Notice both our approach and the direct bootstrapping
attain better accuracy when m = 100 due to the fact that m = 500 has a larger chance
to obtain extreme observations.

4.2.2. Impact of the Number of Searches Ns. In this section, we study the effect of the
number of searches Ns used in the pure random search. In Section 4.2.1, we set the
number of searches equal to 200, and here we set Ns = 100. Since 1− β = 95% quantile
is more extreme than 1−β = 90% and more challenging to get accurate results, we only
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Table VII. The relative error of the percentile Q estimates when
1− β = 90% (in the unit %).

our approach direct bootstrap
mean SE mean SE

m = 100, C = 5000 5.9 0.26 32.8 2.98
m = 100, C = 10000 2.5 0.16 26.3 1.92
m = 100, C = 20000 1.7 0.12 15.1 1.15

m = 500, C = 5000 14.4 0.31 40.0 3.12
m = 500, C = 10000 9.9 0.22 24.8 1.76
m = 500, C = 20000 6.3 0.18 16.0 1.09

Table VIII. The relative error of the percentileQ estimates when
1− β = 95% (in the unit %).

our approach direct bootstrap
mean SE mean SE

m = 100, C = 5000 9.3 0.33 33.2 2.64
m = 100, C = 10000 4.6 0.26 26.3 1.79
m = 100, C = 20000 1.7 0.15 15.6 1.13

m = 500, C = 5000 19.9 0.41 38.2 2.55
m = 500, C = 10000 13.5 0.25 24.9 1.66
m = 500, C = 20000 9.1 0.27 15.6 1.15

Table IX. The relative error of the percentile Q estimates
when 1− β = 95% (in the unit %).

Ns = 200 Ns = 100
mean SE mean SE

m = 100, C = 5000 9.3 0.33 9.5 0.37
m = 100, C = 10000 4.6 0.26 4.9 0.28
m = 100, C = 20000 1.7 0.15 2.3 0.18

m = 500, C = 5000 19.9 0.41 20.3 0.44
m = 500, C = 10000 13.5 0.25 14.5 0.35
m = 500, C = 20000 9.1 0.27 10.0 0.36

consider 1 − β = 95%. Table IX provides results of mean and SE of absolute relative
error of the percentile Q estimation when Ns = 100, 200. The results with Ns = 100
are only slightly worse than those with Ns = 200, which indicate that a good but not
optimal (B,n0, R,M) could be sufficient to make our approach efficient and accurate.

4.3. The Overhead Cost
Here, we only report the overhead cost introduced by our approach since it is negligible
for the direct bootstrapping. For the M/M/1 queue, the average overhead cost is 0.6,
1 and 2.4 seconds per simulation run for C = 5000, 10000 and 50000 respectively. For
the stochastic activity network example, the average overhead cost is 0.76, 0.8 and
1.2 seconds per simulation run for C = 5000, 10000 and 20000 respectively. Thus, our
approach requires a few seconds overhead cost per simulation run. In addition, as C
increases, the overhead cost also increases. This matches well with the conclusion that
the overhead cost is O(C3); see the Appendix for the derivation.

For both M/M/1 queue and stochastic activity network examples, our approach pro-
vides a better estimation of the percentile Q than the direct bootstrapping with the
simulation budget doubled according to results in Tables II-III and VII-VIII. This in-
dicates a clear advantage of our budget allocation approach even when its overhead
cost takes half of the total computational resource. Thus, our approach is more prefer-
able under the situations when each simulation run is computationally expensive (takes
more than seconds) and the simulation budget is tight.
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5. CONCLUSIONS
When we use simulation to assess the stochastic system performance, there exist both
input and simulation estimation uncertainty in the performance estimates. The non-
parametric bootstrap is used to quantify the input uncertainty, including both input
distribution family and parameter value uncertainty. In this paper, we develop a se-
quential approach to efficiently propagate the input uncertainty to the output mean,
while reducing the simulation estimation uncertainty. It can gradually explore the sys-
tem performance at bootstrapped samples of input models, find the important samples
that contribute the most to the percentile estimation and allocate more simulation
resource there. Compared to the direct bootstrapping that equally allocates the simu-
lation budget to all bootstrapped samples of input distributions, our approach demon-
strates better and more robust performance, especially when the simulation budget is
tight.
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PROOF. (THEOREM 3.1) Let N(y) ≡
∑B
b=1 1(µb ≥ y). We first prove that the CI

lower bound equals to the order statistics µ[k1]. Define the set

SL ≡

y :

B∑
n=N(y)+1

(
B

n

)
βn(1− β)

B−n ≥ αo
2

 . (14)

By Baysal and Staum [2008], the CI lower bound is CoL = inf SL. Define the set of
sample order statistics satisfying the inequality in (14) as

S1 ≡

µ[b] with b = 1, 2, . . . , B :

B∑
n=N(µ[b])+1

(
B

n

)
βn(1− β)

B−n ≥ αo
2


and S1 ⊆ SL. Let k1 to be the smallest index such that the order statistics µ[k1+1] =
minS1. We claim that CoL = µ[k1].

We prove CoL = µ[k1] by contradiction. Since µ[k1] does not satisfy the inequality
in (14), we have CoL ≥ µ[k1]. To prove CoL = µ[k1], we only need to show that CoL > µ[k1]

does not hold. Assume CoL > µ[k1]. Then, there exists q̄1 ∈ < such that µ[k1] < q̄1 < CoL ≤
µ[k1+1]. Since N(q̄1) = N(µ[k1+1]) = B − k1 and µ[k1+1] ∈ SL, we have q̄1 ∈ SL, which
contradicts with CoL > q̄1. Thus, CoL = µ[k1].

Similarly, we prove that the CI upper bound equals to the order statistics µ[k2]. De-
fine

SU ≡

y :

N(y)∑
n=0

(
B

n

)
βn(1− β)

B−n ≥ αo
2

 .

By Baysal and Staum [2008], we have CoU = supSU . Define the set of sample order
statistics as

S2 ≡

µ[b] with b = 1, 2, . . . , B :

N(µ[b])∑
n=0

(
B

n

)
βn(1− β)

B−n ≥ αo
2


and S2 ⊆ SU . Let k2 to be the largest index such that the order statistics µ[k2] = maxS2

and we also have µ[k2] ∈ SU . We claim that CoU = µ[k2].
Since µ[k2] ∈ SU , we have CoU ≥ µ[k2]. To show CoU = µ[k2], we only need to show

that CoU > µ[k2] does not hold. We prove it by contradiction. Assume CoU > µ[k2]. Then,
there exists q̄2 ∈ SU such that CoU > q̄2 > µ[k2]. If q̄2 ≥ µ[k2+1], it is evident that
N(q̄2) ≤ N(µ[k2+1]). If µ[k2] < q̄2 < µ[k2+1], we have N(q̄2) = N(µ[k2+1]) = B − k2.

For both cases, since q̄2 ∈ SU ,
∑N(µ[k2+1])

n=0

(
B
n

)
βn(1− β)

B−n ≥ αo/2 also holds. Thus,
we have µ[k2+1] ∈ SU and µ[k2+1] ∈ S2. Since k2 is the largest index in S2, there is a
contradiction. Therefore, µ[k2] = CoU .

c© 2017 ACM. 1049-3301/2017/10-ARTAA $15.00
DOI: 0000001.0000001

ACM Transactions on Modeling and Computer Simulation, Vol. 27, No. 4, Article AA, Publication date: October 2017.



App–2 Y. Yi and W. Xie

PROOF. (THEOREM 3.2) Since µ[k2] ≥ µ[b] ≥ µ[k1] for b = k1, k1 + 1, . . . , k2, we have
P (µ[b] ∈ [CL,+∞)) ≥ 1− αI/2. Similarly, we have P (µ[b] ∈ (−∞, CU ]) ≥ 1− αI/2. Thus,
P (µ[b] ∈ [CL, CU ]) ≥ 1− αI for all b ∈ FC .

PROOF. (THEOREM 3.3)

P
(
Q ∈ [CL, CU ]|Xm

)
≥ P

(
Q ∈ [µ[k1], µ[k2]] and µ[b] ∈ [CL, CU ] for b = k1, k1 + 1, . . . , k2|Xm

)
≥ 1− P

(
Q /∈ [µ[k1], µ[k2]]|Xm

)
− P

(
µ[b] /∈ [CL, CU ] for b = k1, k1 + 1, . . . , k2|Xm

)
(15)

≥ 1− αo − αI = 1− α. (16)

Step (15) follows by applying the Bonferroni inequality and Step (16) follows by apply-
ing Theorems 3.1 and 3.2.

PROOF. (THEOREM 3.4) Define

A1 = { all j 6= [kq] with µj ≤ µ[kq ] : Ȳj ≤ Ȳ[kq ] +W[kq ]j}
A2 = { all j 6= [kq] with µj ≥ µ[kq ] : Ȳj ≥ Ȳ[kq ] −W[kq ]j}.

Let A = A1 ∩A2. Since A ⊆ {[kq] ∈ Iq}, to prove Pr([kq] ∈ Iq) ≥ 1− αS , we only need to
show Pr(A) ≥ 1− αS . We have

Pr(Ac1) = Pr
(
∃j 6= [kq] with µj ≤ µ[kq ] : Ȳj > Ȳ[kq ] +W[kq ]j

)
= Pr

 ⋃
j 6=[kq ]:µj≤µ[kq ]

{
Ȳj > Ȳ[kq ] +W[kq ]j

}
≤

∑
j 6=[kq ]:µj≤µ[kq ]

Pr
(
Ȳj > Ȳ[kq ] +W[kq ]j

)
=

∑
j 6=[kq ]:µj≤µ[kq ]

Pr

(
Ȳj − Ȳ[kq ] − (µj − µ[kq ])

S[kq ]j/
√
n

>
W[kq ]j + (µ[kq ] − µj)

S[kq ]j/
√
n

)

≤
∑

j 6=[kq ]:µj≤µ[kq ]

Pr

(
Ȳj − Ȳ[kq ] − (µj − µ[kq ])

S[kq ]j/
√
n

> tn−1,1− αS
B−1

)

≤ (kq − 1) · αS
B − 1

.

Similarly, we can have Pr(Ac2) = (B − kq) · αS/(B − 1). Therefore,

Pr([kq] ∈ Iq) ≥ Pr(A)

≥ 1− Pr(Ac1)− Pr(Ac2) (17)

= 1− (kq − 1)
αS

B − 1
− (B − kq)

αS
B − 1

= 1− αS .

ACM Transactions on Modeling and Computer Simulation, Vol. 27, No. 4, Article AA, Publication date: October 2017.



An Efficient Budget Allocation Approach for Quantifying the Impact of Input Uncertainty App–3

Step (17) follows by applying the Bonferroni inequality. Thus, Pr([kq] ∈ Iq) ≥ 1−αS for
q = 1, 2.

PROOF. (THEOREM 3.5) In Section 3.2.2, we construct the CI for the quantile Q,

[CL, CU ] =

[
min
b∈I1M

(
Ȳb − tN ′2(b)−1,1−αE2 ·

Sb,a√
N ′2(b)

)
,max
b∈I2M

(
Ȳb + tN ′2(b)−1,1−

αE
2
· Sb,a√

N ′2(b)

)]
.

For the notation simplification, we drop conditional on Xm in the following proof. We
first consider µ[k1] and µ[k2],

Pr

{
µ[k1] ≥ min

b∈I1M

(
Ȳb − tN ′2(b)−1,1−αE2 ·

Sb,a√
N ′2(b)

)}

≥ Pr

{
[k1] ∈ I1M and µ[k1] ≥ min

b∈I1M

(
Ȳb − tN ′2(b)−1,1−αE2 ·

Sb,a√
N ′2(b)

)}

≥ Pr

(
[k1] ∈ I1M and µ[k1] ≥ Ȳ[k1] − tN ′2([k1])−1,1−αE2 ·

S[k1],a√
N ′2([k1])

)

≥ 1− Pr
(
[k1] /∈ I1M

)
− Pr

(
µ[k1] < Ȳ[k1] − tN ′2([k1])−1,1−αE2 ·

S[k1],a√
N ′2([k1])

)
≥ 1− αS −

αE
2
,

and

Pr

{
µ[k2] ≤ max

b∈I2M

(
Ȳb + tN ′2(b)−1,1−

αE
2
· Sb,a√

N ′2(b)

)}

≥ Pr

{
[k2] ∈ I2M and µ[k2] ≤ max

b∈I2M

(
Ȳb + tN ′2(b)−1,1−

αE
2
· Sb,a√

N ′2(b)

)}

≥ Pr

(
[k2] ∈ I2M and µ[k2] ≤ Ȳ[k2] + tN ′2([k2])−1,1−

αE
2
·

S[k2],a√
N ′2([k2])

)

≥ 1− Pr
(
[k2] /∈ I2M

)
− Pr

(
µ[k2] > Ȳ[k2] + tN ′2([k2])−1,1−

αE
2
·

S[k2],a√
N ′2([k2])

)
≥ 1− αS −

αE
2
.

Thus, for any b = k1, k1 + 1, . . . , k2, since µ[k1] ≤ µ[b] ≤ µ[k2],

Pr

{
µ[b] ≥ min

i∈I1M

(
Ȳi − tN ′2(i)−1,1−αE2 ·

Si,a√
N ′2(i)

)}

≥ Pr

{
µ[k1] ≥ min

i∈I1M

(
Ȳi − tN ′2(i)−1,1−αE2 ·

Si,a√
N ′2(i)

)}
≥ 1− αS −

αE
2
,
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and

Pr

{
µ[b] ≤ max

i∈I2M

(
Ȳi + tN ′2(i)−1,1−

αE
2
· Si,a√

N ′2(i)

)}

≥ Pr

{
µ[k2] ≤ max

i∈I2M

(
Ȳi + tN ′2(i)−1,1−

αE
2
· Si,a√

N ′2(i)

)}
≥ 1− αS −

αE
2
.

Thus, for any b = k1, k1 + 1, . . . , k2, we have Pr(µ[b] ∈ [CL, CU ]|Xm) ≥ 1−αS− αE
2 −αS−αE

2 = 1− αI .

PROOF. (OVERHEAD COST OF OUR SEQUENTIAL APPROACH)
Screening and optimization search play dominant roles in the overhead computa-

tional cost introduced by our sequential approach. We first calculate the cost caused
by the sequential screening. Let cS be the total number of operations incurred from
two-sided statistical tests,

cS ≤ nt · ct (18)
where ct is the maximum number of operations incurred from a single test and nt is
the maximum number of tests performed during the screening procedure. In the `th
iteration, to determine if sample i ∈ Iq` should be remained in the surviving set Iq` , we
do |Iq` | − 1 pairwise comparisons with all other samples in Iq` for q = 1, 2. The number
of pairwise comparison is bounded by B. For each pairwise comparison, the dominant
cost is to calculate the sample covariance S2

ij = 1
Nq1 (`)−1

∑Nq1 (`)
h=1

(
Yih − Yjh − (Ȳi − Ȳj)

)2
with i, j ∈ Iq` , which requires O(C) multiplications. Therefore, we can get ct = O(BC).

We further calculate nt. The total number of statistical tests performed in the `th
iteration is |I1`−1| + |I2`−1|. Before these tests, Nq

1 (`) − Nq
1 (` − 1) new simulation repli-

cations are allocated to each surviving sample. It indicates that the total number of
replications consumed is (Nq

1 (`) − Nq
1 (` − 1))(|I1`−1| + |I2`−1|), and for a new statistical

test, (Nq
1 (`) − Nq

1 (` − 1)) new replications would be used, which is at least one. Thus,
nt ≤ C. Plugging these results into (18), we get cS = O(BC2). Since B ≤ C/10, the
total cost required in the screening procedure is cS = O(C3) multiplications.

Next, we consider the overhead cost introduced by our adaptive sequential approach
including the optimization search. For simplification, we only consider the pure ran-
dom search algorithm. The overhead cost required by the optimization search, denoted
by cO, is

cO ≤ no · cS ≤ nc · cS
where no is the number of candidates (B,n0, R,M) visited and nc is the total number
of candidates under consideration given a tight budget C. Since it is desirable to keep
the initial allocation n0 small so that we can quickly screen out bootstrapped samples
that are extremely unlikely to contribute to the percentile Q estimation [Lesnevski
et al. 2007], we let n0 ∈ {10, 20, 30, 40, 50}. Since [Lesnevski et al. 2008] recommended
the growth factor in the range 1.2 to 2, and the performance does not improve much
by altering the choice, we slightly extend the range and let R ∈ {1.1, 1.2, . . . , 2}. Since
our numerical study indicates that it is either infeasible or detrimental to have too
large M , we let M ∈ {1, 2, . . . , 10}. The choice of B is at most C/10. Thus, nc is at most
polynomial in C. Combining with nS = O(C3), the overhead cost cO introduced by our
adaptive sequential approach is also polynomial in C.
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