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a b s t r a c t 

Simulation is often used to guide the decision making for real complex stochastic systems. To faithfully 

assess the mean performance of the real system, it is necessary to efficiently calibrate the simulation 

model. Existing calibration approaches are typically built on the summary statistics of simulation outputs 

and ignore the serial dependence of detailed output sample paths. Given a tight simulation budget, we 

develop a Bayesian sequential data collection approach for simulation calibration via exploring the de- 

tailed simulation outputs. Then, the calibrated simulation model can be used to guide decision making. 

Both theoretical and empirical studies demonstrate that we can efficiently use the simulation resources 

and achieve better calibration accuracy by exploring the first two moment dynamic information of simu- 

lation output sample paths. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Stochastic simulation has been widely used to assess the perfor-

mance of real complex systems in many applications, such as semi-

conductor manufacturing and global supply chains. To provide a

reliable guidance on decision making, the simulation model needs

to be calibrated to match the performance of the real system. In

this paper, we focus on the system steady-state mean performance.

The model risk of a simulation model can be induced by the logic

approximation and the input model estimation uncertainty. When the

real system is very complex and/or some detail information of the

system logic may not be available, a simplified simulation model

is often used to guide decision making. For example, the semicon-

ductor production processes involve thousands of steps and they

are subject to unpredictable disruption, such as breakdowns of

key equipments. A simulation model built on a simplified queue-

ing network is often used to guide the production scheduling;

see for example Horiguchi, Raghavan, Uzsoy, and Venkateswaran

(2001) . Since a few work stations with either expensive or unre-

liable equipments tend to dominate the flow of orders, the pro-

duction process can be simplified by modeling each bottleneck or

near-bottleneck work station and aggregating the remaining sta-

tions. Moreover, in many situations, we only record the output
∗ Corresponding author. 
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ata without collecting the real-world data for some input mod-

ls, defined as stochastic processes used to drive the simulation

xperiments ( Nelson, 2016 ). Thus, simulation calibration is often re-

erred to as the procedure of matching the mean responses of real

nd simulation systems by adjusting unknown parameters of sim-

lation model. These parameters are also known as calibration pa-

ameters , see Goeva, Lam, and Zhang (2014) and Plumlee and Lam

2016b) . 

One brute-force way is to run simulation experiments under

ifferent calibration parameter settings, and manually choose the

ne that provides the optimal match with the historical output

ata from real systems. However, in the current inter-connected

orld, decision makers are often facing large-scale stochastic

ystems. As the system complexity increases, each simulation

un could be computationally expensive, and also the dimension

f calibration parameters increases. It becomes almost impossi-

le to manually tune the calibration parameters. Moreover, the

eal-world systems are often required to evolve rapidly in order

o remain competitive ( Nelson, 2016 ). To keep the simulation

odel faithfully representing the fast evolving real system, the

alibration parameter setting must be adjusted timely to meet

he emerging requirements of decision making. Therefore, in

his paper, we develop a Bayesian approach that can efficiently

mploy the simulation resource to calibrate simulation model,

nd also automatically provide statistical inference for calibration

arameters and system mean response. 

Statistical inference for calibration has been developed un-

er both Bayesian and frequentist perspectives with motivation

https://doi.org/10.1016/j.ejor.2019.01.073
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riginally from deterministic computer models. From a Bayesian

erspective, the milestone study, Kennedy and O’Hagan (2001) ,

evelops a Bayesian framework to predict the real system perfor-

ance using calibrated computer models. It has been extended to

alibrating the mean response of stochastic simulation in recent

ears; see for example Yuan, Ng, and Tsui (2013) . On the other

and, Tuo and Wu (2015) and Wong, Storlie, and Lee (2017) ex-

mine statistical inference on the optimal calibration setting of

omputer model from a frequentist perspective. 

In many calibration studies, data from simulation models and

eal system is given as a priori. However, from a simulation practi-

ioners’ viewpoint, it is more efficient to calibrate simulation mod-

ls under a sequential manner: statistical inferences guide the allo-

ation of simulation resource and newly collected simulation data

re used to further enhance statistical inference for calibration.

herefore, it is desired to fully combine statistical inference and

imulation budget allocation into a sequential procedure for sim-

lation calibration. Ryzhov (2018) makes inroads on developing a

equential data collection method for calibration, called the local

ime method . To enable theoretical investigation of the proposed

equential method, Ryzhov (2018) assumes that the mean perfor-

ances of different candidate settings have independent normal

riors. 

Existing approaches, e.g., Yuan et al. (2013) and Ryzhov (2018) ,

nly use the summary statistics of simulation output, and ignore

he serial dependence carried by the detailed sample paths. In this

aper, we explore the detailed output sample paths, utilize the first

wo moments of serial outputs, and develop a sequential calibra-

ion approach that can efficiently employ the simulation resources

o improve the calibration accuracy. When lack of real-world input

ata, identification of underlying input models through calibration,

uch as the service rates of key working stations in complex semi-

onductor production processes, provides the insights of system

nderlying operating status. In addition, given a tight simulation

udget, we want to select a simulation model that can accurately

redict the real system mean performance. Thus, we use the proba-

ility of correct selection (PCS) and expected opportunity cost (EOC) to

valuate the calibration performance. Given a finite simulation bud-

et, both theoretical and empirical studies demonstrate that our

alibration approach can deliver better performance than the exist-

ng methods based on summary statistics. After that, the calibrated

imulation model can be used to guide the decision making. Some

reliminary insights of this paper have been reported in our con-

erence paper ( Wang, Zhang, & Xie, 2017 ). 

In sum, the main contributions of our study are described as

ollows: (1) we explore the detailed output sample paths and pro-

ose a sequential data collection approach for stochastic simula-

ion calibration; (2) based on the proposed simulation calibration

pproach, we further develop a sequential data collection frame-

ork to simultaneously calibrate the simulation model and search

or the optimal decision; (3) given finite computational resources,

ur theoretical study and empirical experiments demonstrate that

he proposed approach can improve the accuracy of mean perfor-

ance calibration. 

The remaining of this article is organized as follows. In

ection 2 , we provide a literature review on related topics.

ection 3 provides the formal problem description. Section 4 in-

roduces a new sequential calibration approach exploring detailed

utput sample paths. Under the GP assumption of output sample

aths, our theoretical study shows that the proposed approach can

ead to better PCS and EOC than the calibration approach built on

he summary statistics. In Section 5 , we develop the framework

hat incorporates decision making with calibration in sequential

anner. In Section 6 , single server queues and a queueing network

xample are used to study the finite sample performance of our

roposal. We conclude this paper in Section 7 . 
. Literature review 

.1. Deterministic simulation calibration 

Deterministic simulation calibration has been developed under

oth Bayesian and frequentist streams. In the Bayesian stream,

omputer model calibration is often built on the framework intro-

uced by Kennedy and O’Hagan (2001) , which provides Bayesian

nference for computer model discrepancy and real system re-

ponses. It models the unknown response surface of the computer

odel and the model discrepancy with GPs. Given the data col-

ected from the real and simulation systems, the posterior distribu-

ion of calibration parameters is developed to characterize beliefs

bout the optimal calibration setting, and the posterior predictive

istribution is used to quantify the overall prediction uncertainty

f the real system response. Some follow-up studies, e.g. Gramacy

t al. (2015) , Plumlee (2017) , improve this framework from various

spects. Frequentist approaches (e.g., Tuo & Wu, 2016; Tuo & Wu,

015; Wong et al., 2017 ) often aim to identify the optimal calibra-

ion parameter setting through minimizing distance measures be-

ween the computer model and real system outputs. For example,

uo and Wu (2015) develop an L 2 calibration approach by mini-

izing the L 2 distance between the physical response surface and

he computer outputs. 

.2. Stochastic simulation calibration 

Several papers focus on stochastic simulation calibration. Some

orks directly extend the calibration framework for determinis-

ic computer model in Kennedy and O’Hagan (2001) by replac-

ng the deterministic computer model output with the stochastic

ean performance adding a simulation error term; see Yuan et al.

2013) and Yuan and Ng (2013) for example. Different types of cal-

bration frameworks have also been developed for stochastic sim-

lation. Goeva et al. (2014) study the problem of estimating input

odels in stochastic simulation with only the availability of the

utput data. Plumlee and Lam (2016b) consider learning the prob-

bility distribution of the discretized model response, and develop

tatistical inference approaches for model discrepancy under this

iscretized response. 

.3. Sequential data collection 

Under the assumption that the calibration parameter space can

e discretized to a finite number of candidates, sequential data col-

ection for optimizing calibration parameter setting is closely re-

ated to ranking and selection in the literature of simulation opti-

ization; see Frazier, Powell, and Dayanik (2008) , Ryzhov (2016) ,

nd Scott, Frazier, and Powell (2011) for example. In addition, EI-

ype (Expected Improvement) sequential data collection methods

ave been further developed for simulation calibration problems,

.g., Frazier, Powell, and Simaão (2009) and Ryzhov (2018) . Frazier

t al. (2009) consider calibrating an approximate dynamic pro-

ramming (ADP) model with the knowledge-gradient algorithm.

yzhov (2018) develops a sequential data collection framework for

imulation calibration, where the local time method is proposed to

elect new simulation runs to maximize the improvement of cali-

ration accuracy. 

.4. Simulation analytics 

We close this section by briefly reviewing literatures on

imulation analytics and output analysis that explore the de-

ailed simulation output. Traditional simulation study, as well as

alibration approaches, are typically based on the summary statis-

ics of the simulation outputs, e.g., the sample mean of customer
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waiting times in an M / M /1 queue, and ignore the detailed in-

formation from the simulation sample path outputs. Since the

advances in data storage and computing makes it easy to generate

and save the comprehensive data of the output ( Nelson, 2016 ),

some recent works on simulation output analysis (e.g., Plumlee

& Lam, 2016a ) and simulation analytics (e.g., Lin & Nelson, 2016 )

exploit the simulation output sample paths to support decision

making and system diagnostics. 

3. Problem description 

Let μp ( x x x ) be the mean performance of the real physical system

under decision x x x ∈ X , where X is the decision space. The problem

is to find the optimal decision maximizing the mean performance

 

 x � ∈ argmax x x x ∈X μ
p ( x x x ) . (1)

Without an explicit form of real system mean response surface

μp ( x x x ) , this problem can be solved via the ranking and selection

approaches ( Powell & Ryzhov, 2012 ). However, ranking and selec-

tion requires running experiments extensively on the physical sys-

tem, which is often expensive or prohibitive in practice. Alterna-

tively, we could guide the decision making by using the simulation

model. To provide reliable guidance, we require that the perfor-

mance of simulation model matches well with that of the physical

system. This procedure is often called simulation calibration . 

Simulation models are constructed to mimic the physical sys-

tem based on domain knowledge. We denote the mean perfor-

mance of the simulation model by μ( x x x , θθθ ) , where the calibration

setting θθθ is a point in the space �. We adjust θθθ ∈ �, and find

the optimal parameter setting, denoted by θθθ� , such that μ( x x x , θθθ� )

matches well with μp ( x x x ) over the entire decision space X . Follow-

ing the L 2 distance calibration proposed by Tuo and Wu (2015) , the

optimal calibration parameter setting is defined by 

θ� ∈ arg min 

θθθ∈ �

∫ 
X 

[
μp ( x x x ) − μ( x x x , θθθ ) 

]2 
w ( x x x ) d x x x (2)

where w (·) is a known weighting function. According to Wong

et al. (2017) , the definition in Eq. (2) implies that the optimal cal-

ibration setting is identifiable , i.e., we can distinguish different cal-

ibration settings by evaluating the L 2 distance between mean re-

sponse surfaces of the physical system and the simulation model.

Without loss of generality, we use equal weights w ( x x x ) = 1 in the

rest of the paper. 

We use a semiconductor production system as an example to

illustrate simulation calibration. For a complex semiconductor pro-

duction process involving thousands of steps, building an exact

simulation model is almost impossible. In production scheduling, a

class of simulation models based on a simplified queueing network

is used to guide decision making ( Horiguchi et al., 2001 ). Given a

scheduling decision x x x , we consider the expected cycle times μp ( x x x )

of different types of products. Since the times staying at bottle-

necks and near-bottlenecks dominate the cycle times, we model

each bottleneck or near-bottleneck as a queueing station and ag-

gregate the remaining stations. Given x x x , the expected cycle time of

simulation model μ( x x x , θθθ ) depends on the calibration setting θθθ, i.e.,

parameters specifying the service distributions. To correctly guide

the decision making for the real system, we first calibrate θθθ to en-

sure that the expected cycle times estimated from the simulation

system match with those of the real system. Then, the calibrated

simulation system can be used to guide the scheduling decision. 

However, the explicit forms of both μp ( x x x ) and μ( x x x , θθθ ) are un-

known in practice. The optimal calibration setting θθθ� can not be

solved directly. Alternatively, we obtain the estimate of θθθ� by re-

placing the objective function in Eq. (2) with its expected value:

ˆ θ
� ∈ arg min 

θθθ∈ �

∫ 
X 

E 

[
μp ( x x x ) − μ( x x x , θθθ ) 

]2 
d x x x , (3)
here the expectation is taken with respect to the posterior distri-

utions of μ( x x x , θθθ ) and μp ( x x x ) given output data collected from the

imulation model and the real system. The optimization problem

n Eq. (3) can be solved empirically by using the data collected un-

er different decisions and calibration settings. Since each simula-

ion run could be computationally expensive, one-stage design is a

uxury for large-scale simulation models, and a sequential data col-

ection can be a feasible alternative. In this paper, we first consider

 simplified situation that the decision is given at x x x 0 , and then we

nvestigate how to navigate decision making along with simulation

alibration. Through out this paper, we assume that the calibration

arameter space � contains a finite number of candidates, i.e., 

= { θθθ1 , . . . , θθθM 

} . (4)

his assumption is adopted for simulation optimization and cali-

ration in many studies; see for example Luo, Hong, Nelson, and

u (2015) and Ryzhov (2018) . 

.1. Simplified simulation calibration 

We first investigate the budget allocation issue among different

alibration parameter settings. By simplifying the simulation cali-

ration problem, we assume that the decision is fixed at a given

oint x x x 0 . This assumption is equivalent to the case that the simu-

ation budget are evenly distributed over the decision space. Under

 fixed decision policy, mean performances of the real system and

he simulation model can be reduced to μp and μ( θθθ ) , respectively.

ur objectives defining θθθ� and 

ˆ θθθ
� 

in Eqs. (2) and (3) are reduced

o: 

� ∈ arg min 

θθθ∈ �

[
μp − μ( θθθ ) 

]2 
and 

ˆ θθθ
� ∈ arg min 

θθθ∈ �
E 

[
μp − μ( θθθ ) 

]2 
, 

(5)

here the expectation is taken with regard to the posterior distri-

utions of μp and μ( θθθ ) . 

Following Ryzhov (2018) , we assume that our current belief

bout μp is characterized by a distribution with mean ˆ μp and

tandard deviation σ p . Then, we write estimated optimal calibra-

ion setting Eq. (5) equivalently as, 

ˆ 
� ∈ arg min 

θθθ∈ �
E 

[
ˆ μp − μ( θθθ ) 

]2 
. (6)

otice that E [ μp − μ( θθθ )] 2 = E [ ̂  μp − μ( θθθ )] 2 + (σ p ) 2 . Since σ p does

ot impact the minimization over θθθ ∈ �, the expectation in

q. (5) can be reduced to Eq. (6) . 

As noted earlier, it is more efficient to collect data in a sequen-

ial manner. In each step of the sequential procedure, we select

 calibration setting to run simulations, and update our belief of

( θθθ ) , which further guides the acquisition of the calibration set-

ing for the next simulation run. There are two key components

n this procedure: (1) statistical model of μ( θθθ ) for all θθθ ∈ �, and

2) a data collection policy to determine the calibration settings for

ew simulation runs. Section 4 discusses sequential data collection

or simulation calibration under this simplified situation. 

.2. Decision making with calibrated simulation model 

To extend the calibration problem to the entire decision space,

e return to the optimal calibration setting defined in Eq. (3) . We

ssume that the information about μp ( x x x ) is restricted to the obser-

ations at given design points { x x x 1 , . . . , x x x K } , and we are not able to

btain more physical data during the calibration and decision mak-

ng procedure. Under this assumption, we approximate the optimal

alibration setting by 
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ˆ 
� ∈ arg min 

θθθ∈ �

K ∑ 

k =1 

E 

[
ˆ μp ( x x x k ) − μ( x x x k , θθθ ) 

]2 
, (7) 

ccording to Wong et al. (2017) . Similar to Eq. (6) , ˆ μp ( x x x k ) is the

ean of the posterior distribution of μp ( x x x k ) , and the expectation

n Eq. (7) is taken with respect to the posterior distribution of

( x x x k , θθθ ) . Notice that, we abuse the notation 

ˆ θθθ
� 

in both Eqs. (3) and

7) . Once ˆ θθθ
� 

is determined, the optimal decision can be estimated

y using the calibrated simulation model with the mean response

( x x x , ̂  θθθ
� 
) : 

ˆ 
 

 

 

� ∈ arg max 
x x x ∈X 

E [ μ( x x x , ̂  θθθ
� 

)] , (8)

here the expectation is taken with regard to the posterior distri-

ution of μ( x x x , ̂  θθθ
� 
) . 

To sequentially collect data for both optimization and calibra-

ion, we consider three key components: (1) statistical model of

( x x x , θθθ ) , (2) a data collection policy to determine the calibration

etting of new simulation runs, and (3) a data collection policy to

etermine the decision point of new simulation runs in this paper.

. Simplified simulation calibration 

This section follows the assumption in Section 3.1 , i.e., simula-

ion calibration with fixed decision point x x x 0 . We first review the

equential data collection procedure with summary statistics of

imulation outputs. Then, a detailed sample path approach is pro-

osed by modifying our early proposal in Wang et al. (2017) . 

.1. Simulation calibration via summary statistics 

Under the calibration setting θθθ, a simulation run generates one

utput sample path 

 ( θθθ ) = 

(
Y 1 ( θθθ ) , . . . , Y L ( θθθ ) 

)� 
, (9)

here L is the fixed runlength. We assume that the outputs gener-

ted at warm-up stages have been taken off from this sample path.

n the semiconductor production example mentioned above, Y � ( θθθ )

ould be the cycle time of the � th order. Classical simulation ap-

roaches directly use the sample mean Ȳ ( θθθ ) = 

∑ L 
� =1 Y � ( θθθ ) /L . Sup-

ose that it follows a normal distribution with mean μ( θθθ ) and

ariance λ2 ( θθθ ) . Under the finite calibration space assumption ex-

ressed in Eq. (4) , we denote μi ≡ μ( θθθ i ) and λ2 
i 

≡ λ2 ( θθθ i ) for i =
 , . . . , M, and assume that μi and λ2 

i 
are independent across dif-

erent calibration parameter settings. We use the normal-inverse-

amma distribution to surrogate our beliefs of μi and λ2 
i 
, 

i | λ2 
i ∼ N 

(
μ(0) 

i 
, 

λ2 
i 

τ (0) 
i 

)
, λ2 

i ∼ Inv 	
(
a (0) 

i 
, b (0) 

i 

)
. (10) 

For the sequential data collection procedure, a single simulation

un is collected at each step. At the n th step, the chosen calibra-

ion setting is denoted by i ( n ) , and the collected mean performance

easure is denoted by Ȳ (n ) = Ȳ ( θθθ i (n ) ) . The conjugacy property of

he normal-inverse-gamma model updates the parameters at the

 th calibration setting in Eq. (10) . After the n th step, based on our

urrent beliefs of the mean performances, the estimated optimal

alibration setting in Eq. (5) can be expressed by 

ˆ 
� 

s (n ) = arg min 

θθθ i ∈ �

{ (
μ(n ) 

i 
− ˆ μp 

)2 + σ 2 , (n ) 
i 

} 
, (11) 

here μ(n ) 
i 

and σ 2 , (n ) 
i 

are the posterior mean and variance of μi at

he n th step, and the sub-index s in 

ˆ θθθ
� 

s (n ) indicates the summary

tatistics approach. Ryzhov (2018) introduced the local time method
o select calibration parameter setting based on the belief about

he mean performances at each step, 

 

(n ) = arg max 
θθθ i ∈ �

l (i ) with l (i ) = σ (n −1) 
i 

f 

(
−| μ(n −1) 

i 
− ˆ μp | 

σ (n −1) 
i 

)
, (12)

here f (z) = z
(z) + φ(z) with φ and 
 being the density and

he cumulative distribution functions of the standard normal dis-

ribution. 

By combining the Bayesian inference method for the mean per-

ormance and the local time criterion in Eq. (12) , the optimal cal-

bration parameter setting can be identified in a sequential man-

er. However, the summary statistics approach ignores the serial

ependence of output sample paths, and potentially losses the ac-

uracy in assessing the mean performances of candidate calibra-

ion settings, especially under a tight budget. By exploring the first

wo moments of dynamic behaviors carried in the simulation out-

ut sample paths, we propose a Bayesian sequential calibration ap-

roach in Section 4.2 , and theoretically demonstrate its advantage

ver the classical summary statistics approach in Section 4.3 . 

.2. Simulation calibration via detailed sample paths 

For any θθθ ∈ �, we assume that the sample path output Y ( θθθ ) in

q. (9) follows a stationary Gaussian process with mean E [ Y � ( θθθ )] =
( θθθ ) for � = 1 , . . . , L, and isotropic covariance Cov [ Y � ( θθθ ) , Y � ′ ( θθθ )] =
2 ( θθθ ) r(| � − � ′ |;θθθ ) for �, � ′ = 1 , . . . , L, where σ 2 ( θθθ ) denotes the

ariance, and r(·;θθθ ) denotes the correlation function under the cal-

bration parameter setting θθθ . As an example, in the empirical study

ection, we consider the exponential correlation function, denoted

y r(| � − � ′ |;θθθ ) = ρ| � −� ′ | 
θθθ

, where ρθθθ denotes the correlation param-

ter depending on the calibration setting θθθ . Even though the GP

ssumption does not hold in general, given a tight simulation bud-

et, it provides a convenient way to model the first two moments

f simulation outputs in a sample path. 

Under the finite calibration space assumption in Eq. (4) , the cor-

elation matrix for sample path outputs with calibration setting θθθ i 

s denoted by R ( ρρρ i ) for i = 1 , . . . , M, where ρρρ i is the correlation pa-

ameter. For simplification, we denote μi ≡ μ( θθθ i ) and σ 2 
i 

≡ σ 2 ( θθθ i ) .

he detailed simulation output Y ( θθθ i ) is modeled as a realization

rom a multivariate normal distribution with a mean vector μi 1 L 
nd a covariance matrix σ 2 

i 
R ( ρρρ i ) , where 1 L is an L -dimension vec-

or with all entries loaded by one. We model our belief about μi 

nd σ 2 
i 

by a normal-inverse-gamma conjugate prior 

i | σ 2 
i ∼ N 

(
μ(0) 

i 
, 

σ 2 
i 

q (0) 
i 

)
, σ 2 

i ∼ Inv 	
(
α(0) 

i 
, β(0) 

i 

)
. (13) 

At the n th step, let i ( n ) be the index of selected calibration set-

ing for the next simulation run, and Y 

(n ) = Y ( θθθ i (n ) ) be the newly

ollected sample path. The parameters in Eq. (13) will be updated

s μ(n ) 
i 

, q (n ) 
i 

, α(n ) 
i 

and β(n ) 
i 

. Thus, the posterior mean of μi is μ(n ) 
i 

s in Eq. (16) and the posterior variance of μi can be derived as 

2 , (n ) 
i 

= Var (μi ) = Var [ E (μi | σ 2 
i )] + E [ Var (μi | σ 2 

i )] 

= 

β(n ) 
i 

q (n ) 
i 

(α(n ) 
i 

− 1) 
, (14) 

here the expectation and variance are taken with respect to the

pdated surrogate beliefs. Based on our beliefs of the mean perfor-

ances at the n th step, the estimated optimal calibration setting

n Eq. (5) can be expressed by 

ˆ 
� 

d (n ) = arg min 

θθθ i ∈ �

{ (
μ(n ) 

i 
− ˆ μp 

)2 + σ 2 , (n ) 
i 

} 
, (15) 

here the sub-index d in 

ˆ θθθ
� 

d (n ) represents the the detailed

ample path approach. According to the local time method in
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Ryzhov (2018) , we allocate new simulation runs by choosing the

calibration setting that maximizes the local time criterion in Eq.

(12) with the posterior mean and variance of μi expressed in Eqs.

(16) and (14) . 

Our conference paper ( Wang et al., 2017 ) assumes that the cor-

relation parameter ρ i is known. Since an accurate estimate of ρ i 

often requires a sufficient amount of simulation runs, it is not prac-

tical to assume that ρ i can be accurately assessed, especially in

early stage of the sequential procedure. In this paper, we update

the empirical estimates of ˆ ρ(n ) 
i 

at each step by incorporating the

available simulation outputs up to the n th step. By plugging the

newly updated ˆ ρ(n ) 
i 

in the updating formulas of Proposition 1 in

Wang et al. (2017) , we obtain the the modified updating formu-

las: 

μ(n ) 
i 

= μ(n −1) 
i 

+ 

1 

� 
L R 

−1 ( ̂  ρρρ
(n ) 
i )(Y 

(n ) − μ(n −1) 
i 

1 L ) 

q (n −1) 
i 

+ 1 

� 
L 

R 

−1 ( ̂  ρρρ
(n ) 
i ) 1 L 

, 

q (n ) 
i 

= q (n −1) 
i 

+ 1 

� 
L R 

−1 ( ̂  ρρρ
(n ) 
i ) 1 L , α(n ) 

i 
= α(n −1) 

i 
+ 

L 

2 

, 

β(n ) 
i 

= β(n −1) 
i 

+ 

q (n −1) 
i 

(Y 

(n ) − μ(n −1) 
i 

1 L ) 
� R 

−1 ( ̂  ρρρ
(n ) 
i )(Y 

(n ) − μ(n −1) 
i 

1 L ) 

2(q (n −1) 
i 

+ 1 

� 
L 

R 

−1 ( ̂  ρρρ
(n ) 
i ) 1 L ) 

+ 

1 

� 
L R 

−1 ( ̂  ρρρ
(n ) 
i )(1 L (Y 

(n ) ) � − Y 

(n ) 1 

� 
L ) R 

−1 ( ̂  ρρρ
(n ) 
i ) Y 

(n ) 

2(q (n −1) 
i 

+ 1 

� 
L 

R 

−1 ( ̂  ρρρ
(n ) 
i ) 1 L ) 

, (16)

for i = i (n ) , whereas the parameters of the i th calibration setting

maintain the same as the previous step for i � = i ( n ) . 

We now discuss how to sequentially update the correlation pa-

rameters ˆ ρρρ(n ) 
i 

in Eq. (16) . Given a choice of the correlation function

r(·;θθθ ) , the correlation parameters ˆ ρρρ(n ) 
i 

can be updated empirically

by the maximum likelihood estimation approach (MLE). Since Y j 

can be viewed as a classical type of time-series response, the whit-

tle likelihood approximation ( Whittle, 1954 ) can be applied to ob-

tain the MLE estimators efficiently. 

For the exponential correlation function r(| � − � ′ |;θθθ i ) = ρ| � −� ′ | 
i 

,

a computational efficient implementation to approximate ˆ ρ(n ) 
i 

at

each step can be developed to further simplify the Whittle likeli-

hood approach. Proposition 1 gives the explicit expression to ap-

proximate the MLE estimator. The proof of Proposition 1 can be

found in Appendix A.2 . Under this approximation, the update for-

mula in Eq. (16) is also computationally efficient. Notice that, the

computational complexity of the inversion of the R ( ̂  ρρρ(n ) 
i 

) is O ( L 3 )

with runlength L . However, under the proposed approximation

with an exponential correlation function, the computational com-

plexity of the inversion of correlation matrix is reduced to O (1). For

general correlation functions, by using the whittle approximation,

the inversion of correlation matrix has the computational complex-

ity O ( L ). As a result of Proposition 1 , the MLE estimator of the ex-

ponential correlation coefficient can be approximated by the sam-

ple lag-one correlation ˆ ρ(n ) 
i 

for large L ; say, L ≥ 30, which holds in

many situations. 

Proposition 1. Let i = i (n ) be the calibration setting selected at

the nth step. The sample paths obtained at θθθ i up to the current

step are { Y 

( j) ( θθθ i ) } n i j=1 
, where Y 

( j) ( θθθ i ) = (Y ( j) 
1 

( θθθ i ) , . . . , Y 
( j) 

L 
( θθθ i )) 

� .
The MLE estimator of exponential correlation function pa-

rameter for the ith calibration setting is the solution of

G (ρi ) = (ρi c 2 − c 3 )(1 − ρ2 
i 
) + L −1 (c 1 + ρ2 

i 
c 2 − 2 ρi c 3 ) ρi = 0 , 

where c 1 = 

∑ n i 
j=1 

∑ L 
� =1 (Y 

( j) 
� 

( θθθ i ) − ȳ ) 2 , c 2 = 

∑ n i 
j=1 

∑ L −1 
� =2 (Y 

( j) 
� 

( θθθ i ) −
ȳ ) 2 , c 3 = 

∑ n i 
j=1 

∑ L −1 
� =1 (Y 

( j) 
� 

( θθθ i ) − ȳ )(Y ( j) 
� +1 

( θθθ i ) − ȳ ) , and ȳ =
1 

n i L 

∑ n i 
j=1 

∑ L 
� =1 Y 

( j) 
� 

( θθθ i ) . As L is large, the MLE estimator can be
pproximated with the sample lag-one correlation estimator: 

ˆ (n ) 
i 

= 

c 3 
c 2 

= 

∑ n i 
j=1 

∑ L −1 
� =1 (Y 

( j) 
� ( θθθ i ) − ȳ )(Y ( j) 

� +1 
( θθθ i ) − ȳ ) ∑ n i 

j=1 

∑ L −1 
� =2 (Y 

( j) 
� ( θθθ i ) − ȳ ) 2 

, 

hich is an approximation of the solution to ˜ G (ρi ) = (ρi c 2 − c 3 )(1 −
2 
i 
) = G (ρi ) + O p (L −1 ) = 0 . 

.3. Asymptotic comparison 

This section provides theoretical comparison between the sum-

ary statistics approach in Section 3 and the detailed sample path

pproach in Section 4.2 . Our theories are developed based on the

ollowing conditions: 

( C1 ) The variances, λ2 
i 

in summary approach, and σ 2 
i 

in detailed

approach are known. 

( C2 ) The optimization problem in Eq. (5) has a unique optimal

solution. 

( C3 ) The prior parameters in Eqs. (10) and (13) are non-

informative, with mean equal to 0, and variance equal to ∞ .

For different approaches, we evaluate the Expected Opportunity

ost (EOC): 

OC ( ̂  θθθ
� 

) = E[(μ( ̂  θθθ
� 

) − μp ) 2 − (μ( θθθ� ) − μp ) 2 ] , (17)

here ˆ θθθ
� 

is the estimated optimal calibration setting in Eq. (5) and
� is the optimal calibration setting defined in Eq. (5) . Since θθθ� 

ttains the minimum of (μ( θθθ ) − μp ) 2 , EOC ( ̂  θθθ
� 
) is always non-

egative. A smaller EOC ( ̂  θθθ
� 
) indicates that μ( ̂  θθθ

� 
) leads to a smaller

istance between the means of the calibrated system and physi-

al system. The advantage of the detailed sample path approach

n terms of EOC can be shown in the following theorem, and the

orresponding proof is provided in Appendix A.3 . 

heorem 2. Under the conditions ( C1 )–( C3 ), for ˆ θθθ
� 

d (n ) in Eq. (15) ,

nd ˆ θθθ
� 

s (n ) in Eq. (11) , we have that 

OC ( ̂  θθθ
� 

d (n )) ≤ EOC ( ̂  θθθ
� 

s (n )) , 

f n is large enough. 

Under the identifiable assumption in Eq. (2) , it could be critical

o evaluate the Probability of Correct Selection (PCS), 

CS ( ̂  θθθ
� 

) = Pr ( ̂  θθθ
� = θθθ� ) . (18)

ccording to Theorem 2 in our conference paper ( Wang et al.,

017 ), we have shown that PCS ( ̂  θθθ
� 

d (n )) ≥ PCS ( ̂  θθθ
� 

s (n )) , if n is large

nough. This result indicates that the calibration approach based

etailed sample path has larger chance to identify the optimal cal-

bration setting θθθ� than the approach based on the summary statis-

ics. 

. Decision making with simulation calibration 

This section extends the simplified calibration setting in

ection 4 to calibrate simulation models for physical systems with

 continuous decision space X . As noted earlier, we only have

bservations from the the physical system at the design points

 x x x 1 , . . . , x x x K } ⊂ X . The optimal calibration setting is defined by

q. (7) accordingly. We propose a sequential data collection pro-

edure for decision making along with simulation calibration. In

ection 5.1 , we introduce a Bayesian model with both decision pa-

ameter and calibration parameter. In Section 5.2 , we develop a se-

uential data collection procedure so that we can simultaneously

nd efficiently calibrate the simulation model and guide decision

aking. 
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.1. Bayesian models and parameter updating 

For each calibration setting θθθ, we surrogate the mean response

urface of simulation model over the continuous decision space X 

s a linear combination of basis functions: 

( x x x , θθθ ) = φφφ( x x x ) � c θθθ , (19)

here φφφ( x x x ) = (φ( x x x , x x x 1 ) , . . . , φ( x x x , x x x K )) 
� is a vector of known ba-

is functions, and knots of these basis functions are located at

he design points { x x x 1 , . . . x x x K } of the physical system, and c θθθ =
(c 1 ( θθθ ) , . . . , c K ( θθθ )) � is a vector of coefficients with a multivariate

ormal prior. The model in Eq. (19) aggregates the information

ollected at discrete design points { x x x 1 , . . . x x x K } to improve the pre-

iction at any point of the continuous decision space X . It has

een proven to be effective in making prediction at decision points

ver X ( Cressie & Johannesson, 2008 ). As an example, the Gaussian

asis function can be expressed by φ( x x x , x x x k ) = exp (−∑ d 
i =1 t i (x i −

 ki ) 
2 ) , where x x x = (x 1 , . . . , x d ) 

� ∈ R 

d , and t i ’s are the range param-

ters of these basis functions. 

For a calibration setting θθθ and a decision point x x x , a simulation

un generates a sample path, 

 ( x x x , θθθ ) = 

(
Y 1 ( x x x , θθθ ) , . . . , Y L ( x x x , θθθ ) 

)� 
, (20)

here L is the runlength. For the summary statistic Ȳ ( x x x , θθθ ) =
 

−1 
∑ L 

� =1 Y � ( x x x , θθθ ) , we assume that, 

¯
 ( x x x , θθθ ) = μ( x x x , θθθ ) + e θθθ , (21)

here μ( x x x , θθθ ) is given by Eq. (19) and the simulation noise e θθθ ∼
 (0 , λ2 

θθθ
) . At the n th step, our beliefs of mean response surface of

he simulation model with different calibration settings are speci-

ed by 

 θθθ | λ2 
θθθ ∼ MV N K (c (n ) 

θθθ
, λ2 

θθθ (Q 

(n ) 

θθθ
) −1 ) , λ2 

θθθ ∼ In v 	(a (n ) 

θθθ
, b (n ) 

θθθ
) , (22) 

here Q 

(n ) 
θθθ

is a K × K precision matrix. The prior parameters c (n ) 
θθθ

,

 

(n ) 
θθθ

, a (n ) 
θθθ

and b (n ) 
θθθ

can be updated according to Proposition 3 . 

roposition 3. Given the Bayesian model Eqs. (19) , (21) and (22) ,

nd the newly collected summary statistic Ȳ (n +1) = Ȳ ( x x x (n +1) , θθθ (n +1) ) ,

he parameters c (n ) 
θθθ

, Q 

(n ) 
θθθ

, a (n ) 
θθθ

, and b (n ) 
θθθ

can be updated accordingly, 

 

(n +1) 

θθθ
= (Q 

(n +1) 

θθθ
) −1 (Q 

(n ) 

θθθ
c (n ) 

θθθ
+ Ȳ (n +1) φφφ( x x x (n +1) )) , 

 

(n +1) 

θθθ
= Q 

(n ) 

θθθ
+ φφφ( x x x (n +1) ) φφφ( x x x (n +1) ) � , a (n +1) 

θθθ
= a (n ) 

θθθ
+ 

1 

2 

, 

 

(n +1) 

θθθ
= b (n ) 

θθθ
+ 

( ̄Y (n +1) −φφφ( x x x (n +1) ) � c (n ) 

θθθ
) 2 

2(1 + φφφ( x x x (n +1) ) � (Q 

(n ) 

θθθ
) −1 φφφ( x x x (n +1) )) 

, (23) 

or θθθ = θθθ (n +1) 
, whereas the parameters of the other calibration set-

ing remain the same as the previous step for θθθ � = θθθ (n +1) 
. 

For a detailed sample path Y ( x x x , θθθ ) in Eq. (20) , we assume that

 ( x x x , θθθ ) = μ( x x x , θθθ ) 1 L + ε ε ε θθθ , (24)

here ε ε ε θθθ is a zero mean GP with covariance function

ov [ ε � ( θθθ ) , ε � ′ ( θθθ )] = σ 2 ( θθθ ) r(| � − � ′ |;θθθ ) and R θθθ = R ( ρρρθθθ ) is the

 × L correlation matrix with the (�, � ′ ) th element equal to

(| � − � ′ |;θθθ ) . At the n th step, our beliefs of the mean response

urface of simulation model with different calibration setting are

odeled by, 

 θθθ | σ 2 
θθθ ∼ MV N K (c (n ) 

θθθ
, σ 2 

θθθ (Q 

(n ) 

θθθ
) −1 ) , σ 2 

θθθ ∼ In v 	(α(n ) 

θθθ
, β(n ) 

θθθ
) . (25) 

he prior parameters c (n ) 
θθθ

, Q 

(n ) 
θθθ

, α(n ) 
θθθ

and β(n ) 
θθθ

can be updated ac-

ording to Proposition 4 . 
roposition 4. Given the Bayesian model Eqs. (19) , (24) and (25) ,

nd the newly collected sample path Y 

(n +1) = Y ( x x x (n +1) , θθθ (n +1) ) , the

arameters c (n ) 
θθθ

, Q 

(n ) 
θθθ

, α(n ) 
θθθ

, and β(n ) 
θθθ

can be updated as follows, 

 

(n +1) 

θθθ
= (Q 

(n +1) 

θθθ
) −1 (Q 

(n ) 

θθθ
c (n ) 

θθθ
+ z (n +1) 

2 
φφφ( x x x (n +1) )) , 

 

(n +1) 

θθθ
= Q 

(n ) 

θθθ
+ z 1 φφφ( x x x (n +1) ) φφφ( x x x (n +1) ) � , α(n +1) 

θθθ
= α(n ) 

θθθ
+ 

L 

2 

, 

(n +1) 

θθθ
= β(n ) 

θθθ

+ 

1 

2 

[
z (n +1) 

3 
+ (c (n ) 

θθθ
) � Q 

(n ) 

θθθ
c (n ) 

θθθ
− (c (n +1) 

θθθ
) � Q 

(n +1) 

θθθ
c (n +1) 

θθθ

]
, (26) 

or θθθ = θθθ (n +1) 
, where 

 1 = 1 

� 
L R 

−1 
θθθ

1 L , z (n +1) 
2 

= 1 

� 
L R 

−1 
θθθ

Y 

(n +1) , and 

 

(n +1) 
3 

= (Y 

(n +1) ) � R 

−1 
θθθ

Y 

(n +1) . 

he parameters of the calibration setting θθθ � = θθθ (n +1) 
remain the same

s the previous step. 

.2. Sequential data collection policies 

We propose sequential data collection policies to allocate de-

ign points for calibration and decision making at each step. At the

 th step, a two-stage selection procedure is considered: (1) select

alibration setting θθθ (n +1) 
, and (2) select decision setting x x x (n +1) . Af-

er determining θθθ (n +1) 
and x x x (n +1) , we collect the new simulation

bservation Ȳ (n +1) (summary statistics) or Y 

(n +1) (detailed sample

ath) at ( θθθ (n +1) , x x x (n +1) ) . The policies to select calibration setting

nd decision point are developed in this subsection. 

For the design point of calibration parameter, we modify the

ocal time method to accommodate multiple decision points: 

 

(n +1) = arg max 
θθθ i ∈ �

K ∑ 

k =1 

� (k, i ) with � (k, i ) 

= σ (n ) 
i 

( x x x k ) f 

(
−| μ(n ) 

i 
( x x x k ) − ˆ μp ( x x x k ) | 
σ (n ) 

i 
( x x x k ) 

)
, (27) 

here 

(n ) 
i 

( x x x k ) = 

√ 

φφφ( x x x k ) � (Q 

(n ) 

θθθ
) −1 φφφ( x x x k ) 

b (n ) 

θθθ

a (n ) 

θθθ
− 1 

, 

or the summary statistics, and 

(n ) 
i 

( x x x k ) = 

√ 

φφφ( x x x k ) � (Q 

(n ) 

θθθ
) −1 φφφ( x x x k ) 

β(n ) 

θθθ

α(n ) 

θθθ
− 1 

or the detailed sample path, which can be derived similarly as

q. (14) . This policy aggregates local time criterion over the de-

ign points available for the physical system, and selects the most

romising candidate in terms of approximating the physical obser-

ations. 

Given the selected calibration setting at the (n + 1) th step as
(n +1) 

, the decision can be made by 

ax x x x ∈X μ( x x x , θθθ
(n +1) 

) , (28) 

hich is an optimization problem with a blackbox objective.

e solve this optimization problem under the Bayesian ranking

nd selection framework ( Powell & Ryzhov, 2012 ). According to

he surrogate model in Eq. (19) , the knowledge gradient value

 Qu, Ryzhov, Fu, & Ding, 2015 ) of the optimization problem in

q. (28) can be expressed by 

 

(n +1) ( x x x ) = E 

n 
[ 

max 
x x x ′ ∈X 

φφφ( x x x ′ ) � c (n +1) 

θθθ
− max 

x x x ′′ ∈X 
φφφ( x x x ′′ ) � c (n ) 

θθθ

∣∣∣x x x (n +1) = x x x 

] 
, 
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Algorithm 1: Sequential data collection for decision making 

along with simulation calibration. 

Input : Initial parameters c (0) 
θθθ

, Q 

(0) 
θθθ

, a (0) 
θθθ

, and b (0) 
θθθ

for 

summary statistics (or c (0) 
θθθ

, Q 

(0) 
θθθ

, α(0) 
θθθ

, and β(0) 
θθθ

for 

detailed sample path), for each θθθ i , i = 1 , . . . , M. 

Output : The estimated optimal calibration setting ˆ θθθ
� 
(n ) and 

optimal decision 

ˆ x x x 
� 
(n ) at each step. 

for n ← 1 to N do 

Choose calibration parameter setting θθθ (n ) that maximizes 

aggregated local time criterion in Eq. (27); 

For θθθ (n ) , choose decision x x x (n ) that maximizes the 

knowledge gradient value in Proposition 5; 

Generate the simulation mean output Ȳ (n ) for summary 

statistics approach (sample path Y 

(n ) for detailed sample 

path approach) at ( x x x (n ) , θθθ (n ) ) ; 

for i ← 1 to M do 

if θθθ i = θθθ (n ) then 

Update c (n ) 
θθθ i 

, Q 

(n ) 
θθθ i 

, a (n ) 
θθθ i 

, and b (n ) 
θθθ i 

for summary 

statistics as in Proposition 3 (or c (n ) 
θθθ i 

, Q 

(n ) 
θθθ i 

, α(n ) 
θθθ i 

, and 

β(n ) 
θθθ i 

for detailed sample path as in Proposition 4). 

end 

end 

Compute ˆ θθθ
� 
(n ) as in Eq. (7); 

Plug in 

ˆ θθθ
� 
(n ) and compute ˆ x x x 

� 
(n ) = max x x x ∈X φφφ( x x x ) � c (n ) 

ˆ θθθ
� 
(n ) 

end 
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E  
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Q  

t  

e  
= E 

n 
[ 

max 
x x x ′ ∈X 

φφφ( x x x ′ ) � c (n +1) 

θθθ

∣∣∣x x x (n +1) = x x x 

] 
− max 

x x x ′′ ∈X 
φφφ( x x x ′′ ) � c (n ) 

θθθ
, (29)

where the expectation E n is taken with respect to the predictive

distribution of c (n +1) 
θθθ

, based on our believes before running the

(n + 1) th simulation, and given that we select decision x x x at the

(n + 1) th step. Proposition 5 provides results to tackle those pre-

dictive distributions, and the proof of this proposition is deferred

to Appendix A.6 . 

Proposition 5. Given the Bayesian model Eqs. (19) , (21) and (22) for

summary statistics or Eqs. (19) , (24) and (25) for detailed sample

path, the knowledge gradient value Eq. (29) can be expressed by, 

v (n +1) ( x x x ) = E 

[ 
max 
x x x ′ ∈X 

μ(n ) ( x x x ′ ) + 

˜ s (n ) ( x x x ′ , x x x ) T m 

] 
− max 

x x x ′′ ∈X 
μ(n ) ( x x x ′′ ) , (30)

where μ(n ) ( x x x ) = φφφ( x x x ) � c (n ) 
θθθ

, and 

˜ s (n ) ( x x x ′ , x x x ) = φφφ( x x x ′ ) � (Q 

(n ) 

θθθ
) −1 φφφ( x x x ) 

√ 

b (n ) 

θθθ

[
1 + φφφ( x x x ) � (Q 

(n ) 

θθθ
) −1 φφφ( x x x ) 

]
a (n ) 

θθθ

, 

for summary statistics, 

˜ s (n ) ( x x x ′ , x x x ) 

= φφφ( x x x ′ ) � (Q 

(n ) 

θθθ
) −1 φφφ( x x x ) 

√ 

z 1 β
(n ) 

θθθ

[
1 + z 1 φφφ( x x x ) � (Q 

(n ) 

θθθ
) −1 φφφ( x x x ) 

]
α(n ) 

θθθ

, 

for detailed sample path approach, and T m 

is a random variable fol-

lowing t distribution, with degree of freedom m = 2 a (n ) 
θθθ

for the sum-

mary statistics approach, and m = 2 α(n ) 
θθθ

for the detailed sample path

approach. The definition of z 1 is the same as in Proposition 4 . 

According to Scott et al. (2011) , we discretize X in Eq. (30) to 

{ x x x 1 , . . . , x x x K , x x x (1) , . . . , x x x (n ) } , 
where x x x i with i = 1 , . . . , K is the design point for physical sys-

tem and x x x (i ) with i = 1 , . . . , n is the design point for the simu-

lation model selected from the i th step. Then the expectation in

Eq. (30) can be expressed explicitly via the same techniques in Sec-

tion 5.3 of Powell and Ryzhov (2012) . With the explicit expression

of v (n +1) ( x x x ) , we select x x x (n +1) by maximizing the knowledge gra-

dient value x x x (n +1) = argmax 
x x x ∈X 

v (n +1) ( x x x ) as the decision point to be

evaluated for the next simulation run. As a result, we select the

calibration parameter setting and the decision point in a sequential

manner to allocate simulation runs, and update our beliefs of ex-

pected response surfaces with different calibration settings. Once

we have exhausted our simulation budget, the estimated optimal

calibration setting and optimal decision is given by Eqs. (7) and

(8) , respectively. The entire procedure of sequential data collection

for simulation calibration and decision making is summarized in

Algorithm 1 . 

6. Empirical study 

In this section, we provide numerical study to evaluate the

finite sample behaviors and the robustness of our approaches.

Section 6.1 compares the performance of the summary statistics

calibration approach and the detailed sample path calibration ap-

proach under a fixed decision. Section 6.2 considers simulation cal-

ibration and decision making for a queueing network example. 

6.1. Simplified simulation calibration 

For the simplified simulation calibration, we compare the per-

formance of three methods, including 
• summary: The summary statistics approach as described in

Section 4.1 . 
• detailed_sw: The proposed detailed sample path approach with

stepwise estimation of correlation parameters as described in

Section 4.2 . 
• detailed_kn: The detailed sample path approach with known

correlation matrix ( Wang et al., 2017 ). In implementation, we

use long-run steady-state simulation outputs to generate accu-

rate correlation parameter estimates. 

.1.1. Single server queues 

We first consider M / M /1 and M / G /1 queues, which are the basic

ueueing models used in the simulation of manufacturing and ser-

ice systems. The steady-state mean waiting time is the parameter

f interests of these two examples. 

xample 6.1.1. M / M /1 Queue: We generate simulation output from

n M / M /1 queue with arrival rate 1, and the service rate is the cal-

bration parameter. We consider seven cases with different values

f mean performance in real system. The target mean response μp 

s generated from an M / M /1 queue with utilization equal to 0.3,

.4, ..., 0.9, respectively. For each case, we consider M = 20 cali-

ration settings with the utilization of candidate systems equally

paced over [0.2, 0.95]. Each sample path has the warm-up equal

o 200 and the runlength equal to L = 50 in terms of number of

nished customers. 

xample 6.1.2. M / G /1 Queue: We generate simulation output from

 / G /1 queue with arrival rate equal to 1. We consider six cases

ith the target mean response, μp = 0.2, 0.5, 1, 1.5, 2, 3. For each

ase, there are M = 20 candidate settings. The service times follow

eneralized Pareto distributions similar as the M / G /1 example in

u et al. (2015) . We fix the shape parameter to be 1/3, set loca-

ion parameters as the calibration parameters θ i for i = 1 , 2 , . . . , 20

qually spaced over [0.1, 0.65], and scale parameters to be θ /3.
i 
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M/M/1:Empirical EOC M/M/1:Empirical PCS

M/G/1:Empirical EOC M/G/1:Empirical PCS
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Fig. 1. Empirical EOC and PCS at each step of two examples from single service queue examples. Top panel: M / G /1 example with target mean performance equal to 1; 

Bottom panel: the the M / M /1 example with target utilization equal to 0.8. The figure shows that the “detailed_sw” performs similar as “detailed_kn” approach, and both 

outperforms “summary” approach. 
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ach sample path has the warm-up equal to 200 and the runlength

qual to L = 50 . 

In all experiments, we compare the performance of the three

pproaches by using the empirical EOC and PCS estimated from

00 macro-replications (see Appendix A.7 ). All calibration proce-

ures start with the same non-informative priors, and allocate five

nitial runs to each candidate calibration parameter setting. The top

anel of Fig. 1 shows empirical EOC and PCS of M / G /1 with tar-

et mean 1 and the bottom panel shows results for M / M /1 with

arget utilization 0.8. The numerical results for different target uti-

ization and mean performances are provided in Appendix A.8 . We

ee that the detailed method with stepwise estimated correlation

arameter (detail_sw) acts similar as the detailed method with

nown correlation parameter (detail_kn), and both outperform the

ummary statistics approach (summary). The error bars created

y the 95% confidence intervals from the 300 replications show

hat both detail_sw and detail_kn are significantly better than the

ummary statistics approach for majority situations. As implied by

igs. A.10 and A.9 , the performances of detail_sw and detail_kn are
ignificant better than that of the summary statistic approach over

ifferent values of the target mean μp . 

.1.2. Jackson network example 

Following Qu et al. (2015) , we consider a classical 3-station

pen Jackson network as shown in the left panel of Fig. 2 . Our goal

s to accurately approximate the mean cycle time of the simulation

ystem. The external arrivals follow a Poisson process with rate

= 0 . 5 , and the transition probabilities are also given in the left

anel of Fig. 2 . The service time at each station follows exponential

istributions with rate θ1 , θ2 and θ3 , respectively, where θ i ∈ [0.8,

.2] for i = 1 , 2 , 3 . A single sample path is generated with warm-up

ength equal to 10 0 0 and runlength equal to L = 50 in terms of fin-

shed entity. We generate M = 30 candidate calibration parameter

ettings θθθ i = (θi 1 , θi 2 , θi 3 ) for i = 1 , 2 , . . . , 30 by using a maximin

atin-Hypercube design ( Carnell, 2016 ) over the entire parameter

pace [0.8, 2.2] 3 . The values of their mean cycle times are pro-

ided in the right panel of Fig. 2 . Thus, we want to find the best

ombination of service rates at stations 1–3 among alternatives so

hat the mean cycle time of simulation model matches that of the
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Fig. 2. Calibration settings of the 3-station Jackson network. Left panel: structure of the Jackson network; Right panel: the expected cycle time of calibration parameter 

settings generated from Latin-Hypercube design. 
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Fig. 3. Empirical EOC and PCS at each step of 3-station Jackson network examples with target mean performance equal to 3. The “detailed_sw” performs similar as “de- 

tailed_kn” approach, and both outperforms “summary” approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

i  

p  

a  

s  

t  

t  

t  

l  

c  

b  

r  

r  

t  

t

6

n

 

c  
target real system. We consider five cases with μp = 2 , 3 , 4 , 5 , 6 ,

shown as the dashed horizontal lines in right panel of Fig. 2 . 

For the three alternative methods, we start with the same non-

informative priors, and five initial runs are allocated to each can-

didate setting to build our original beliefs. For each level of target

mean cycle time, the empirical EOC and PCS are estimated from

300 macro-replications. Fig. 3 provides results of the three ap-

proaches with the target mean cycle time μp = 3 . The numerical

results under different levels of target mean μp are summarized in

Appendix A.8 . This example gives similar observations as the the

simple Queueing models. As shown in the right panel of Fig. 2 , sev-

eral candidate settings (i.e., the circles with expected cycle times

around four) have similar mean performance with μp = 4 . This sit-

uation belongs to the case that the optimal calibration setting can

not be easily identified. Also as indicated in Fig. A.10 , the PCS at

μp = 4 (target mean) is lower than 30%, and the improvement is

not significant by increasing the number of steps n from 50 to 500.

We now discuss our findings from the numerical results of the

simplified simulation calibration. First, our numerical results vali-

date the theoretical results in Section 4.3 . The detailed sample path

approaches (both “detailed_sw” and “detailed_kn”) outperform the
ummary statistics approach in terms of EOC and PCS. By explor-

ng the first two moments of serial outputs, the detailed sample

ath approaches are able to efficiently use the simulation resource

nd accurately assess the mean response with different calibration

ettings. Thus, it can improve the efficiency in simulation calibra-

ion, especially when the simulation budget is tight. Second, “de-

ailed_sw” and “detailed_kn” have similar performances through

hese examples, which shows that the proposed stepwise corre-

ation estimation approach in Proposition 1 is effective. Since the

orrelation parameter ρ in Eq. (16) can not be accurately estimated

efore the data collection procedure, the stepwise updated cor-

elation parameter in “detailed_sw” would be more practical for

eal applications. Third, the performance of our approach is robust

o the GP assumption on the detailed output sample path even

hough it does not hold for some cases, e.g., queueing examples. 

.2. Decision making with simulation calibration for the Jackson 

etwork example 

This section considers sequential data collection for simulation

alibration along with decision making. We compare the detailed
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Calibration:Empirical EOC Decision:Empirical EOC
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Method detail random summary

Fig. 4. Empirical EOC of calibration and decision with 95% confidence band at each step of the 3-station Jackson network for both calibration (left panel) and decision 

making (right panel). The figure shows detailed approach performs the best and random approach performs the worst among the three methods. 
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pproach (“detail”) with summary statistics approach (“summary”)

llustrated in Section 5 . A naive alternative “random” is considered

y replacing the data collection policies of the summary statistics

pproach with randomly selected candidate setting and decision in

ach iteration. We modify the Jackson Network example ( Fig. 2 ) to

tudy the decision making along with simulation calibration. Let

he calibration parameter be the probability p 12 in Fig. 2 , which

an be considered as the unknown product mix in production line.

et the decision x be the service rate at the first Station. Suppose

hat θ ∈ � ≡ { 0 . 75 , 0 . 76 , . . . , 0 . 85 } with eleven calibration settings

venly located between 0.75 and 0.85, and let X = [0 . 8 , 1 . 4] . The

xternal arrivals follow a Poisson process with rate λ = 0 . 5 . Let the

ervice rates at Stations 2 and 3 be 2 − x and 1, respectively. We set

he true transition probabilities p 12 = p 20 = p 30 = 0 . 8 , p 13 = p 21 =
p 31 = 0 . 2 , which implies θ� = 0 . 8 , and the warm-up equal to 10 0 0

nd the runlength equal to L = 50 in terms of finished entities.

uppose we have observed data from physical system at K deci-

ion points evenly distributed on decision space X . Our goal is to

atch the expected cycle time of simulation system with physical

ystem and use the calibrated simulation to find the optimal deci-

ion x ∈ X that minimizes this expected response. 

For the three methods, we start with the same non-informative

riors. Three initial runs are allocated at each candidate setting

ith decisions randomly chosen to form the prior distributions of

he initial beliefs. Then we follow the sequential procedure pro-

osed in Section 5 . Fig. 4 gives results for K = 7 . The left panel of

ig. 4 provides the empirical EOC for calibration that aggregated

ver observed decisions, the right panel shows the empirical EOC

or decision: EOC ( ̂ x x x 
� 
) = E 

[
μp ( x x x � ) − μp ( ̂ x x x 

� 
) 
]
. The empirical EOCs for

alibration and decision making are estimated from 200 macro-

eplications. Supplementary results for K = 5 and 10 are given in

ppendix A.8 . The results show that the detailed approach is sig-

ificantly better than both random and summary statistics ap-

roach in terms of calibration (left panel in Fig. 4 ) and decision

aking (right panel in Fig. 4 ). 

. Conclusions 

In this paper, we develop the mean performance calibration ap-

roach for the situations where each simulation run is computa-

ionally expensive and the simulation budget is tight. Build on the

nowledge of sample path time series information, we propose a
ew Bayesian sequential data collection method for calibrating sys-

em mean performance. The proposed method can efficiently make

se of the simulation resources to allocate more simulation runs to

he promising candidates and improve the calibration accuracy. We

urther develop a sequential framework that incorporates decision

aking along with calibration. It improves decision making with

he calibrated simulation model. Numerical and theoretical results

how the effectiveness of our proposal. 

We remark on the directions for future research as following.

irst, we can further incorporate correlation between calibration

arameter settings, or extend the current calibration to the con-

inuous calibration parameter space. Second, instead of the fixed

arget ˆ μp or ˆ μp ( x x x ) , the proposed work could be generalized to

onsider performance measure estimated and also dynamically up-

ated by using data sequentially collected from the real system. 

ppendix A 

1. Inverse of exponential correlation matrix 

For the exponential correlation case Corr [ Y � ( θθθ i ) , Y � ′ ( θθθ i )] =
(| � − � ′ |;θθθ i ) = ρ| � −� ′ | 

i 
, the inverse of correlation matrix is, 

 

−1 (ρi ) = 

1 

1 − ρ2 
i 

⎡ ⎢ ⎢ ⎣ 

1 −ρi 0 . . . 0 0 

−ρi 1 + ρ2 
i 

−ρi . . . 0 0 

. . . . . . . . . . . . . . . . . . 

0 0 0 . . . 1 + ρ2 
i 

−ρi 

0 0 0 . . . −ρi 1 

⎤ ⎥ ⎥ ⎦ 

. 

(A.1) 

2. Proof of Proposition 1 

Notice that Y 

( j) ( θθθ i ) = (Y ( j) 
1 

( θθθ i ) , . . . , Y 
( j) 

L 
( θθθ i )) 

� ∼
VN L (μi 1 L , σ

2 
i 

R (ρi )) , we have the likelihood, 

 

(
μi , σ

2 
i , ρi ; { Y 

( j) ( θθθ i ) } n i j=1 

)
∝ (σ 2 

i ) 

−n i L 

2 (1 − ρ2 
i ) 

−n i (L − 1) 

2 

· exp 

[ 

− 1 

2 σ 2 
i 

n i ∑ 

j=1 

(Y 

( j) ( θθθ i ) − μi 1 L ) 
� R 

−1 (ρi )(Y 

( j) ( θθθ i ) − μi 1 L ) 

] 

, 
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and the log-likelihood, 

log p 

(
μi , σ

2 
i , ρi ; { Y 

( j) ( θθθ i ) } n i j=1 

)
∝ −n i L 

2 

log (σ 2 
i ) −

n i (L − 1) 

2 

log (1 − ρ2 
i ) 

− 1 

2 σ 2 
i 

n i ∑ 

j=1 

(Y 

( j) ( θθθ i ) − μi 1 L ) 
� R 

−1 (ρi )(Y 

( j) ( θθθ i ) − μi 1 L ) . 

Take derivative with respect to μi and set to be zero, 

1 

σ 2 
i 

1 

� 
L R 

−1 (ρi ) 

( 

μi −
1 

n 

n i ∑ 

j=1 

Y 

( j) ( θθθ i ) 

) 

= 0 . 

We plug in the inverse of correlation matrix provided by

Appendix A.1 and solve for μi . Then the maximum likelihood esti-

mator for μi can be approximate by sample mean for large enough

L , 

ˆ μi = 

1 

� 
L R 

−1 (ρi ) ̄Y 

1 

� 
L 

R 

−1 (ρi ) 1 L 

= 

∑ L 
� =1 Ȳ � − ρi 

∑ L −1 
� =2 Ȳ � 

L − ρi (L − 2) 
→ ȳ , (as L → ∞ ) 

where 

Ȳ = 

1 

n i 

n i ∑ 

j=1 

Y 

( j) ( θθθ i ) = ( ̄Y 1 , Ȳ 2 , . . . , Ȳ L ) , and 

ȳ = 

1 

n i L 

n i ∑ 

j=1 

L ∑ 

� =1 

Y ( j) 
� ( θθθ i ) . 

Further, we can obtain the MLE for σ 2 
i 

by plug in the ˆ μi , 

ˆ σ 2 
i = 

1 

n i L 

n i ∑ 

j=1 

(Y 

( j) ( θθθ i ) − ȳ 1 L ) 
� R 

−1 (ρi )(Y 

( j) ( θθθ i ) − ȳ 1 L ) . 

After that, by plugging ˆ μi and ˆ σ 2 
i 

in the negative log likelihood, 

− log p ( ̂  μi , ˆ σ
2 
i , ρi ) 

∝ 

n i L 

2 

log 

[ 

n i ∑ 

j=1 

(Y 

( j) ( θθθ i ) − ȳ 1 L ) 
� R 

−1 (ρi )(Y 

( j) ( θθθ i ) − ȳ 1 L ) 

] 

+ 

n i (L − 1) 

2 

log (1 − ρ2 
i ) 

∝ 

n i L 

2 

log 

[
c 1 + ρ2 

i 
c 2 − 2 ρi c 3 

1 − ρ2 
i 

]
+ 

n i (L − 1) 

2 

log (1 − ρ2 
i ) 

∝ log 
[ c 1 + ρ2 

i 
c 2 − 2 ρi c 3 ] 

L 

1 − ρ2 
i 

. 

where c 1 = 

∑ n i 
j=1 

∑ L 
� =1 (Y 

( j) 
� 

( θθθ i ) − ȳ ) 2 , c 2 = 

∑ n i 
j=1 

∑ L −1 
� =2 (Y 

( j) 
� 

( θθθ i ) −
ȳ ) 2 , c 3 = 

∑ n i 
j=1 

∑ L −1 
� =1 (Y 

( j) 
� 

( θθθ i ) − ȳ )(Y ( j) 
� +1 

( θθθ i ) − ȳ ) . To solve the MLE

for ρ i , set the partial-derivative with respect to ρ i to be 0, 

L (ρi c 2 − c 3 )(1 − ρ2 
i ) + (c 1 + ρ2 

i c 2 − 2 ρi c 3 ) ρi = 0 , 

so as L being large enough, 

ˆ ρi → 

c 3 
c 2 

= 

∑ n i 
j=1 

∑ L −1 
� =1 (Y 

( j) 
� ( θθθ i ) − ȳ )(Y ( j) 

� +1 
( θθθ i ) − ȳ ) ∑ n i 

j=1 

∑ L −1 
� =2 (Y 

( j) 
� ( θθθ i ) − ȳ ) 2 

(as L → ∞ ) 

A3. Proof of Theorem 2 

The expected opportunity cost, under assumptions ( C1 )–( C3 )

and μp = 0 < μ1 < μ2 < · · · < μM 

, can be reduced to, 

EOC ( ̂  θθθ
� 

) = E[ μ( ̂  θθθ
� 

) 2 ] − μ2 
1 
or convenience, we denote ˆ μ(m ) = μ( ̂ θ
� 

m 

(n )) , where m = d, s, in-

icating the calibration method, and, 

p (m ) 
i 

= Pr 
(

ˆ μ(m ) = μi | ˆ μ(m ) > μi −1 

)
, f or i = 2 , . . . , M − 1 , 

p (m ) 
1 

= Pr 
(

ˆ μ(m ) = μ1 

)
 

(m ) 
i 

= 1 − p (m ) 
i 

, f or i = 1 , . . . , M − 1 

(m ) 
i 

= E 

[
ˆ μ(m )2 | ˆ μ(m ) > μi 

]
, f or i = 1 , . . . , M − 1 , 

(m ) 
0 

= E 

[
ˆ μ(m )2 

]
, 

here ˆ μ(m )2 denotes the square of ˆ μ(m ) . We want to show that
(d) 
0 

≤ ζ (s ) 
0 

, since 

(m ) 
i −1 

= μ2 
i p 

(m ) 
i 

+ ζ (m ) 
i 

q (m ) 
i 

, 

nd ζ (m ) 
M−1 

= E 
[

ˆ μ(m )2 | ˆ μ(m ) > μM−1 

]
= μ2 

M 

. It is straightforward to

how 

(m ) 
0 

= μ2 
1 p 

(m ) 
1 

+ μ2 
2 p 

(m ) 
2 

q (m ) 
1 

+ · · · + μ2 
M−1 p 

(m ) 
M−1 

q (m ) 
1 

q (m ) 
2 

· · · q (m ) 
M−2 

+ μ2 
M 

q (m ) 
1 

q (m ) 
2 

· · · q (m ) 
M−1 

= μ2 
1 + 

M−1 ∑ 

i =1 

(
μ2 

i +1 − μ2 
i 

) i ∏ 

j=1 

q (m ) 
j 

(A.2)

otice that p (m ) 
1 

is exactly the PCS of each method, and p (m ) 
i 

is

he PCS of calibration that ignoring first (i − 1) alternatives (for i =
 , . . . , M − 1 ). Following the similar procedure proving Theorem 2

n Wang et al. (2017) , 

CS 

(
ˆ θθθ

� 

d (n ) 
)

≥ PCS 

(
ˆ θθθ

� 

s (n ) 
)
, 

e can analogously show p (d) 
i 

≥ p (s ) 
i 

or equivalently q (d) 
i 

≤ q (s ) 
i 

.

hus, we have ζ (d) 
0 

≤ ζ (s ) 
0 

, and further, 

OC 

(
ˆ θθθ

� 

d (n ) 
)

≤ EOC 

(
ˆ θθθ

� 

s (n ) 
)

4. Proof of Proposition 3 

For summary statistics (mean response) from the stochastic

imulation, the data model and surrogate beliefs are provided by

qs. (19) , (21) and (22) . Suppose at the n + 1 th step, we select cali-

ration parameter setting θθθ (n +1) = θθθ and decision x x x (n +1) = x x x to run

imulation and obtain Ȳ (n +1) = Ȳ ( x x x , θθθ ) , then we have, 

¯
 

(n +1) ∼ N ( φφφ( x x x ) � c θθθ , λ2 
θθθ ) , 

nd the prior of hyperparameters c θθθ and λ2 
θθθ

are given through

q. (22) , so we can compute the posterior, 

 (c θθθ , λ2 
θθθ

∣∣Ȳ (n +1) ) 

∝ (λ2 
θθθ ) −a (n ) 

θθθ
−(K+3) / 2 exp 

{
− 1 

2 λ2 
θθθ

(
Ȳ (n +1) −φφφ( x x x ) � c θθθ

)2 

}
· exp 

{
− 1 

2 λ2 
θθθ

(c θθθ − c (n ) 

θθθ
) � Q 

(n ) 

θθθ
(c θθθ − c (n ) 

θθθ
) 

}
· exp 

{ 

−b (n ) 

θθθ

λ2 
θθθ

} 

∝ (λ2 
θθθ ) −a (n ) 

θθθ
−(K+3) / 2 

· exp 

{
− 1 

2 λ2 
θθθ

(c θθθ − c (n +1) 

θθθ
) � Q 

(n +1) 

θθθ
(c θθθ − c (n +1) 

θθθ
) 

}
· exp 

{
− b (n ) 

θθθ

λ2 
θθθ

− 1 

2 λ2 
θθθ

[ ̄Y (n +1) , 2 + (c (n ) 

θθθ
) � Q 

(n ) 

θθθ
c (n ) 

θθθ

− (c (n +1) 

θθθ
) � Q 

(n +1) 

θθθ
c (n +1) 

θθθ
] 

}
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F  

5  

T  

a  

v

∝ (λ2 
θθθ ) −K 

× exp 

{
− 1 

2 λ2 
θθθ

(c θθθ − c (n +1) 

θθθ
) � Q 

(n +1) 

θθθ
(c θθθ − c (n +1) 

θθθ
) 

}
· (λ2 

θθθ ) −a (n +1) 
θθθ

−1 exp 

{ 

−b (n +1) 

θθθ

λ2 
θθθ

} 

, 

till follows multivariate-normal-inverse-gamma distribution, 

here c (n +1) 
θθθ

, Q 

(n +1) 
θθθ

, a (n +1) 
θθθ

, and b (n +1) 
θθθ

are given by Eq. (23) .

otice the updating formula for b (n +1) 
θθθ

is obtained by plugging

n c (n +1) 
θθθ

, Q 

(n +1) 
θθθ

, and applying Sherman–Morrison formula on

nverse of Q 

(n +1) 
θθθ

. 

5. Proof of Proposition 4 

Similarly, for detailed sample path from the stochastic sim-

lation, the data model and surrogate beliefs are provided by

qs. (19) , (24) and (25) . Suppose at the n + 1 th step, we select cali-

ration parameter setting θθθ (n +1) = θθθ and decision x x x (n +1) = x x x to run

imulation and obtain Y 

(n +1) = Y ( x x x , θθθ ) , then we have, 

 

(n +1) ∼ MVN L ( φφφ( x x x ) � c θθθ 1 L , σ
2 
θθθ R θθθ ) , 

nd the prior of hyperparameters c θθθ and λ2 
θθθ

are given through

q. (25) , so we can compute the posterior, 

 (c θθθ , σ 2 
θθθ

∣∣Y 

(n +1) ) ∝ (σ 2 
θθθ ) −α(n ) 

θθθ
−(K+ L ) / 2 −1 

· exp 

{
− 1 

2 σ 2 
θθθ

(
Y 

(n +1) −φφφ( x x x ) � c θθθ 1 L 

)� 
R 

−1 
θθθ

(
Y 

(n +1) −φφφ( x x x ) � c θθθ 1 L 

)}
· exp 

{
− 1 

2 σ 2 
θθθ

(c θθθ − c (n ) 

θθθ
) � Q 

(n ) 

θθθ
(c θθθ − c (n ) 

θθθ
) 

}
· exp 

{ 

−β(n ) 

θθθ

σ 2 
θθθ

} 

∝ (σ 2 
θθθ ) −α(n ) 

θθθ
−(K+ L ) / 2 −1 

× exp 

{
− 1 

2 σ 2 
θθθ

(c θθθ − c (n +1) 

θθθ
) � Q 

(n +1) 

θθθ
(c θθθ − c (n +1) 

θθθ
) 

}
· exp 

{
− β(n ) 

θθθ

σ 2 
θθθ

− 1 

2 σ 2 
θθθ

[ z 3 + (c (n ) 

θθθ
) � Q 

(n ) 

θθθ
c (n ) 

θθθ

− (c (n +1) 

θθθ
) � Q 

(n +1) 

θθθ
c (n +1) 

θθθ
] 

}
∝ (σ 2 

θθθ ) −K exp 

{
− 1 

2 σ 2 
θθθ

(c θθθ − c (n +1) 

θθθ
) � Q 

(n +1) 

θθθ
(c θθθ − c (n +1) 

θθθ
) 

}
· (λ2 

θθθ ) −α(n +1) 
θθθ

−1 exp 

{ 

−β(n +1) 

θθθ

λ2 
θθθ

} 

, 

till follows multivariate-normal-inverse-gamma distribution, 

here c (n +1) 
θθθ

, Q 

(n +1) 
θθθ

, a (n +1) 
θθθ

, b (n +1) 
θθθ

are given by Eq. (26) . 

6. Proof of Proposition 5 

Predictive distribution for summary statistics: According to

qs. (21) and (22) and given x x x (n +1) = x x x , we can easily see, 

¯
 

(n +1) | λ2 
θθθ ∼ N ( φφφ( x x x ) � c (n ) 

θθθ
, λ2 

θθθ

[
1 + φφφ( x x x ) � (Q 

(n ) 

θθθ
) −1 φφφ( x x x ) 

]
) , 

o that Ȳ (n +1) and λ2 
θθθ

together follow a normal-inverse-gamma, the

redictive distribution of Ȳ (n +1) is a t-distribution, 

¯
 

(n +1) = φφφ( x x x ) � c (n ) 

θθθ
+ 

√ 

b (n ) 

θθθ

[
1 + φφφ( x x x ) � (Q 

(n ) 

θθθ
) −1 φφφ( x x x ) 

]
a (n ) 
θ

· T 
2 a (n ) 

θθθ

, 
θθ
here T 
2 a 

(n ) 
θθθ

is a standard t-distributed random variable with de-

ree of freedom 2 a (n ) 
θθθ

. Then, by Eq. (23) , the predictive distribution

f φφφ( x x x ′ ) � c (n +1) 
θθθ

, 

( x x x ′ ) � c (n +1) 

θθθ
= φφφ( x x x ′ ) � c (n ) 

θθθ

+ φφφ( x x x ′ ) � (Q 

(n ) 

θθθ
) −1 φφφ( x x x ) 

×
√ 

b (n ) 

θθθ

[
1 + φφφ( x x x ) � (Q 

(n ) 

θθθ
) −1 φφφ( x x x ) 

]
a (n ) 

θθθ

· T 
2 a (n ) 

θθθ

. (A.3) 

redictive distribution for detailed sample path: Similarly, by

qs. (24) and (25) , we can see Y 

(n +1) and σ 2 
θθθ

follow multivariate-

ormal-inverse-gamma, so that z (n +1) 
2 

= 1 � 
L 

R −1 
θθθ

Y 

(n +1) and σ 2 
θθθ

fol-

ow normal-inverse-gamma. Given x x x (n +1) = x x x , the predictive distri-

ution of z (n +1) 
2 

, 

 

(n +1) 
2 

= z 1 φφφ( x x x ) � c (n ) 

θθθ

+ 

√ 

z 1 β
(n ) 

θθθ

[
1 + z 1 φφφ( x x x ) � (Q 

(n ) 

θθθ
) −1 φφφ( x x x ) 

]
α(n ) 

θθθ

· T 
2 α(n ) 

θθθ

, 

nd the predictive distribution of φφφ( x x x ′ ) � c (n +1) 
θθθ

can be derived from

q. (26) , 

( x x x ′ ) � c (n +1) 

θθθ
= φφφ( x x x ′ ) � c (n ) 

θθθ
+ φφφ( x x x ′ ) � (Q 

(n ) 

θθθ
) −1 φφφ( x x x ) 

×
√ 

z 1 β
(n ) 

θθθ

[
1 + z 1 φφφ( x x x ) � (Q 

(n ) 

θθθ
) −1 φφφ( x x x ) 

]
α(n ) 

θθθ

· T 
2 α(n ) 

θθθ

. 

(A.4) 

hen the Proposition 5 follows naturally. 

7. Empirical measurement of calibration 

Here we explicitly provide the notations and expressions of the

mpirical criterion (i.e., EOC and PCS) that we used in Section 6 .

he empirical EOC is calculated as the average opportunity cost

ver macro-replications, 

̂ OC = 

1 

B 

B ∑ 

b=1 

[(μ( ̂  θθθ
(b) � 

) − μp ) 2 − (μ( θθθ� ) − μp ) 2 ] , 

here ˆ θθθ
(b) � 

denotes the estimated optimal calibration parameter

etting in bth ( b = 1 , . . . , B ) macro-replication experiment, B is the

otal number of macro-replications. Similarly, the empirical PCS is

omputed as the frequency of correctly selecting true parameter

etting, over macro-replications, 

̂ CS = 

1 

B 

B ∑ 

b=1 

I ( ̂  θθθ
(b) � = θθθ� ) , 

here I (·) is the indicator function. 

8. Supplementary numerical results for Section 6 

Additional numerical results of Section 6.1.1 are provided in

igs. A1 , A2 , A3 , and A4 , which show EOC and PCS at steps n =
0, 10 0, 20 0 and 500, for different settings of the target mean μp .

he corresponding results for Section 6.1.2 are provided in Figs. A5

nd A6 . Supplementary numerical results for Section 6.2 are pro-

ided in Fig. A7 . 
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Fig. A1. Empirical EOC with 95% error bars for M / G /1 queue based on 300 macro-replication. 

Fig. A2. Empirical EOC with 95% error bars for M / M /1 queue based on 300 macro-replication. 
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Fig. A3. Empirical PCS with 95% error bars for M / G /1 queue based on 300 macro-replication. 

Fig. A4. Empirical PCS with 95% error bars for M / M /1 queue based on 300 macro-replication. 
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Fig. A5. Empirical EOC with 95% error bars for 3-station Jackson network based on 300 macro-replication. 

Fig. A6. Empirical PCS with 95% error bars for 3-station Jackson network based on 300 macro-replication. 
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K = 5 Calibration Empirical EOC K = 5 Decision Empirical EOC

K = 10 Calibration Empirical EOC K = 10 Decision Empirical EOC
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Fig. A7. Empirical EOC of calibration and decision with 95% confidence band at each step of the 3-station Jackson network in decision and calibration process for K = 5 and 

K = 10 . The figure shows detailed approach performs the best and random approach performs the worst among the three methods. 
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