
Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

METAMODEL-ASSISTED RISK ANALYSIS FOR STOCHASTIC SIMULATION WITH INPUT
UNCERTAINTY

Wei Xie, Bo Wang

Industrial and Systems Engineering
Rensselaer Polytechnic Institute

110 8th St.
Troy, NY 12180, USA

Qiong Zhang

Statistical Science and Operations Research
Virginia Commonwealth University

1015 Floyd Ave.
Richmond, VA 23284, USA

ABSTRACT

For complex stochastic systems, simulation can be used to study the system inherent risk behaviors
characterized by a sequence of percentiles. In this paper, we develop a Bayesian framework to quantify the
overall estimation uncertainty of percentile responses. Suppose that the input parametric families are known.
The input model estimation uncertainty is quantified by posterior samples of input parameters. Then, a
distributional metamodel is introduced to simultaneously model the percentile response surfaces, which can
efficiently propagate the input uncertainty to outputs. Our Bayesian framework can deliver credible intervals
for percentiles, and a variance decomposition is further derived to estimate the contributions of input and
simulation uncertainties. The empirical studies indicate that our approach has promising performance for
system risk analysis.

1 INTRODUCTION

In the current interconnected world, the decision makers often face stochastic systems that are large in
scale, complex in behaviors, and have multiple competing objectives (Nelson 2016). For example, there is
high uncertainty in the supply, testing, production and demand in the bio-pharmaceutical supply chain risk
management. The managers need to make coherent decisions in the procurement, testing and production
to improve the system profit, while controlling the impact of uncertainty. Thus, to construct economic
and reliable systems, in this paper, we are interested in the system random behaviors characterized by a
sequence of percentiles. Based on these percentiles, we can estimate other performance measures, such as
mean and Conditional Value-at-Risk (CVaR).

Input models are defined as stochastic processes used to drive simulation experiments, for example the
inter-arrival and service time distributions of a queueing system, or the product demand distribution of raw
materials inventory control. Since the underlying physical input models are unknown and often estimated
by finite real-world data, there exists the model estimation error, called input uncertainty. Even in the
current big data world, we often face the situations where valid real-world data are limited. For example, in
the high-tech biopharmaceutical manufacturing, to be competitive, the manufacturers frequently introduce
new products, and the product life cycle is short. It takes 9 to 12 months from raw materials sourcing to
the final products, and another 2 to 3 months for the quality testing. However, the drug substances could
expire after 18 to 36 months, which implies limited demand data available; see Otto et al. (2014). In
addition, since each simulation run could be computationally expensive, given limited simulation budget,
there exists the simulation estimation uncertainty. Thus, as simulation is used to study the random behaviors
of complex stochastic systems, it is necessary to consider both input and simulation uncertainties.

For uncertainty quantification of the system performance estimation, the t-based confidence or credible
intervals are not appropriate, and the percentile intervals are recommended (Barton 2012). It typically
requires large samples of input models to precisely construct a percentile interval quantifying the input



Xie, Wang and Zhang

uncertainty. It is computationally prohibitive to propagate the input uncertainty to outputs by using the
direct simulation which runs simulations at each sample of input models to accurately estimate the system
risk behaviors, especially for complex real systems. Compared to the direct simulation, the metamodel
constructed based on outputs at a few well-selected design points can efficiently employ the simulation
resource and reduce the simulation estimation uncertainty. However, as far as we know, existing metamodel-
assisted input uncertainty approaches tend to focus on the system mean response; see for example Cheng
and Holland (1997), Cheng and Holland (1998), Cheng and Holland (2004), Xie et al. (2014).

In order to efficiently quantify the impact of input uncertainty on the system random behaviors, we
introduce a flexible distributional metamodel that can simultaneously model a sequence of percentiles. There
are some recent studies developing metamodel for quantile; see for example Chen and Kim (2014), Wang
and Ng (2017), and Batur et al. (2018). Different from those studies which focus on single percentile,
we aim at simultaneously developing metamodels for a sequence of percentiles that could be densely
selected. It is motivated by the quantile kriging in Plumlee and Tuo (2014). However, our methodology
is fundamentally different with theirs. First, differing with Plumlee and Tuo (2014) which focus on the
system mean response and develop the distributional metamodel for the simulation estimation error, we
explore the detailed simulation outputs and construct a rigorous distributional metamodel characterizing
the system inherent stochastic uncertainty. Second, Plumlee and Tuo (2014) modeled each percentile curve
with kriging without accounting for the fact that the simulation estimation error could change dramatically
for different percentiles. Thus, in quantile kriging, the metamodels for different quantile curves share the
same GP parameters. In our approach, the Gaussian processes characterizing the simulation estimation
uncertainty of percentile curves have different parameters accounting for the fact that the true percentile
values and their estimation error depend on the percentile level.

Thus, in the proposed Bayesian framework, we use the posterior distributions of input parameters to
quantify the input uncertainty. Then, we explore the detailed simulation outputs and construct a distributional
metamodel that simultaneously models the response surfaces of a sequence of percentiles. We quantify the
simulation uncertainty through the posterior distributions of percentile curves. After that, this metamodel
is used to propagate the input uncertainty to outputs, and we can further construct credible intervals (CrIs)
quantifying the overall estimation uncertainty of system percentile responses.

In sum, the contributions of our study are described as follows.

• As far as we know, existing studies on metamodel-assisted input uncertainty approaches typically
focus on the system mean response. Built on our Bayesian framework introduced in Xie et al.
(2014), we study the impact of input uncertainty on a sequence of percentile estimation.

• Differing with the existing approaches on input uncertainty relying on the output summary statistics,
we explore the detailed outputs and further develop a distributional metamodel. Our approach can
automatically estimate a sequence of percentiles, and it does not require any strong assumption
on their spatial dependence structure. In addition, this distributional metamodel can be used to
efficiently quantify the impact of input uncertainty on the system random behaviors.

• Our approach can simultaneously deliver CrIs for all percentile responses quantifying the overall
estimation uncertainty. A variance decomposition is developed to quantify the contributions from
input and simulation uncertainties.

The remaining of this article is organized as follow. Section 2 provides the problem description and
the proposed approach. Section 3 introduces the distributional metamodel. A Bayesian framework for
percentile uncertainty quantification and a variance decomposition are presented in Section 4. An M/M/1
queue example is used to empirically compare the proposed approach with existing stochastic kriging,
quantile kriging, and direct simulation methods in Section 5, and we conclude this paper in Section 6.

2 PROBLEM DESCRIPTION AND PROPOSED APPROACH

Simulation is often used to assess the risk behaviors of complex stochastic systems. Suppose that the input
distribution families are known, and input models F can be specified by a finite number of parameters,
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denoted by θθθ , with dimension d. At any input parameters θθθ , the detailed simulation outputs are Y(θθθ)≡
{(Yr1(θθθ),Yr2(θθθ), . . . ,YrL(θθθ)),r = 1,2, . . . ,R}, where R denotes the number of replications and L denotes
the runlength. For example, in the raw materials inventory control, F is the distribution of demand, and Yr j
is the overall cost occurring in the j-th ordering time period, including procurement, holding and shortage
penalty costs.

In this paper, we focus on quantifying the impact of input uncertainty on the system steady-state random
behaviors characterized by a sequence of percentiles. At the underlying “correct” input models, denoted
by Fc specified by parameters θθθ c, let Y (θθθ c) represent the detailed system output with the distribution,
denoted by GY (θθθ c). We are interested in the random behaviors quantified by a sequence of percentiles,
denoted by qc(θθθ c)≡ (qc

α1
(θθθ c),qc

α2
(θθθ c), . . . ,qc

αγ
(θθθ c)) with

qc
α`
(θθθ c)≡ sup{q ∈ℜ : GY (θθθ c)(q)≤ α`}

for ` = 1,2, . . . ,γ , where γ denotes a positive integer and 0 < α1 < α2 < .. . < αγ < 1 represents the
corresponding probabilities. Thus, we want to estimate the sequence of percentiles qc(θθθ c). To precisely
estimate the random behaviors of the detailed output Y (θθθ c), the value of γ could be large. Notice when we
consider other system performance measure that is a function of percentiles, the selection of probabilities,
ααα = (α1, . . . ,αγ), could depend on the measure of interests. For example, for the mean response, we could
have ααα evenly covering the range (0,1). If we consider CVaRβ with the right tail probability to be β , the
probabilities ααα could be uniformly distributed on the range (1−β ,1).

The simulation outputs depend on the choice of input models. Suppose that the unknown input
parameters θθθ c are estimated by m real-world data, denoted by X(0)

m ≡{X (0)
1 ,X (0)

2 , . . . ,X (0)
m }, with X (0)

i
i.i.d.∼ Fc

for i = 1,2, . . . ,m. The input model estimation uncertainty is quantified by the posterior,

p(θθθ |X(0)
m ) ∝ p(θθθ)p(X(0)

m |θθθ),

where p(θθθ) represents the prior distribution and p(X(0)
m |θθθ) represents the likelihood of real-world data.

Then, we generate B posterior samples of input parameters, denoted by θ̃θθ
(b)

for b = 1,2, . . . ,B, to quantify
the input model estimation uncertainty. In this paper, we use ·̃ to represent posterior samples. The posterior

samples {qc(θ̃θθ
(1)
),qc(θ̃θθ

(2)
), . . . ,qc(θ̃θθ

(B)
)} can quantify the impact of input uncertainty on the percentile

responses. Let Qα`,b = qc
α`
(θθθ (b)). Thus, if the true percentile response surface qc

α`
(·) is known, we can

construct a (1−ξ )% two-sided fidelity percentile credible interval (CrI)

CrI0
α`

= [Qα`,(d(ξ/2)Be),Qα`,(d(1−ξ/2)Be)] (1)

where Qα`,(1) ≤ Qα`,(2) ≤ . . .≤ Qα`,(B) are order statistics of Qα`,b with b = 1,2, . . . ,B.
However, the percentile response qc

α`
(·) is unknown and estimated by simulation. At any given input

parameters θθθ , we run simulations and explore the detailed outputs collected from all R replications,

Y (θθθ)≡ {Y1(θθθ),Y2(θθθ), . . . ,YRL(θθθ)}= {Yr1(θθθ), . . . ,YrL(θθθ) with r = 1,2, . . . ,R},

to efficiently employ the simulation resource and reduce the percentile estimation error. The order statistics
of detailed outputs is considered

q̂α`
(θθθ) = Y(dRL·α`e)(θθθ), (2)

for `= 1,2, . . . ,γ , where Y(1)(θθθ)≤ Y(2)(θθθ)≤ . . .≤ Y(RL)(θθθ). It has better asymptotic properties than the
classical approach where the percentile estimate is built on the summary statistics of simulation outputs

q̂S
α`
(θθθ) =

1
R

R

∑
r=1

Yr,(dL·α`e)(θθθ) (3)

where Yr,(dL·α`e)(θθθ) is the α`-th order statistics of Yr j for j = 1, . . . ,L with Yr,(1)(θθθ)≤ Yr,(2)(θθθ)≤ Yr,(L)(θθθ);
see the related asymptotic support in Wang et al. (2018).
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To construct precise percentile CrIs quantifying the impact of input uncertainty, the number of posterior
samples, B, is large. For complex stochastic systems, it could be computationally prohibitive to precisely

estimate qc(θ̃θθ
(b)
) for b = 1,2, . . . ,B since each simulation run could be computationally expensive. Given a

finite simulation budget, denoted by C, when the direct simulation is used to propagate the input uncertainty
to the output, the number of replications allocated to each sample of input models is very limited, which
could lead to high simulation estimation uncertainty, especially for extreme percentiles.

Built on the Bayesian framework introduced in Xie et al. (2014), to efficiently estimate the impact
of input uncertainty on the system risk behaviors and reduce the simulation estimation uncertainty, in this
paper, we introduce a distributional metamodel that models the output distribution GY (θθθ) as a functional of
input parameters θθθ . It simultaneously estimates the percentile curves q(θθθ) = (qα1(θθθ),qα2(θθθ), . . . ,qαγ

(θθθ))
with the simulation uncertainty quantified by the posterior distributions of percentile response surfaces.
Specifically, given the detailed simulation output data, denoted by YD , the posterior distribution of qα`

(·)
is modeled by the GP, denoted by Mα`

(·), for `= 1,2, . . . ,γ , where D denotes the design of experiments.
Since the percentiles, qα1(θθθ),qα2(θθθ), . . . ,qαγ

(θθθ), typically increase and decrease simultaneously, we model
the sequence of percentile curves, M(·)≡ (Mα1(·),Mα2(·), . . . ,Mαγ

(·)), together.
Notice that different from Batur et al. (2018) and Chen and Kim (2014), which focus on single

percentile, in our framework, we simultaneously build metamodels for all possible percentiles that could
be densely selected. Since all the percentiles depend on the same output data, the corresponding estimators
are dependent. Modeling each single percentile curve separately would be inefficient if we ignore this
dependence. In addition, it could be challenging to correctly model the dependence between different
percentile curves over the design space if we follow the traditional approaches and construct different GP
metamodels for percentile curves; see the detailed description in Chen et al. (2013) and Zhou et al. (2011).
Our approach can automatically avoid this issue.

Therefore, given the real-world input data X(0)
m and the simulation outputs YD , the posterior distributions

of the compound random variables M(ΘΘΘ) can quantify the overall estimation uncertainty of qc(θθθ c), where ΘΘΘ

denotes a random vector following the distribution p(θθθ |X(0)
m ), and M(·) denoting a multivariate GP quantifies

the simulation uncertainty for percentile curves q(·). Then, through the hierarchical sampling procedure, we
construct the CrIs quantifying the overall estimation uncertainty for qc(θθθ c) and further develop a variance
decomposition to estimate the relative contributions from input and simulation uncertainties.

3 DISTRIBUTIONAL METAMODEL

In this section, we introduce a distributional metamodel to simultaneously model a sequence of percentile
curves. As the input parameters are close to each other, the percentile responses tend to be similar. Suppose
that the underlying percentile curve qc

α`
(·) is a realization of GP. Then, the simulation percentile estimator

in Equation (2) can be written as

q̂α`
(θθθ) = µα`

+Wα`
(θθθ)+ εα`

(θθθ)

for ` = 1,2, . . . ,γ , where µα`
is a constant global trend (it can be replaced by a more general trend term

f(θθθ)>µµµα`
) and Wα`

(θθθ) is a zero-mean GP modeling the spatial dependence of the percentile curve qα`
(θθθ).

The GP, Mα`
(θθθ) ≡ µα`

+Wα`
(θθθ), characterizes the uncertainty of our belief on the unknown percentile

curve qc
α`
(θθθ), and εα`

(θθθ)∼N (0,σ2
α`
(θθθ)) models the simulation estimation error.

Since the percentile curves with different probabilities typically increase or decrease simultaneously,
we model the spatial dependence of percentile curves as

Cov[Mα`
(θθθ 1),Mα`

(θθθ 2)] = τ
2
α`

Cor[Z(θθθ 1),Z(θθθ 2)]

where Z(θθθ) represents a zero-mean GP with variance equal to one. Thus, the percentile curves share the same
correlation parameters. In the empirical study, we use the Gaussian correlation function, Cor[Z(θθθ 1),Z(θθθ 2)] =

e−∑
d
h=1 φh(θ1h−θ2h)

2
, where φφφ = (φ1, . . . ,φd) denotes the correlation parameters.
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The GP metamodel parameters µα`
,τ2

α`
and σ2

α`
(θθθ) depend on the percentile curve. The spatial variance

τ2
α`

and the simulation estimation variance σ2
α`
(θθθ) tend to be larger for more extreme percentiles. Suppose

that σ2
α(θθθ) is separable on α and θθθ , i.e., σ2

α(θθθ) = σ2(α) ·σ2(θθθ).
To reduce the estimation uncertainty about the percentile curves, we choose an experiment design

D ≡ {(θθθ k,nk),k = 1,2, . . . ,K} to run simulations and collect detailed output observations, where (θθθ k,nk)
denotes the location and the number of replications at the k-th design point. Then, the percentile estimates
q̂D

α`
≡ (q̂α`

(θθθ 1), q̂α`
(θθθ 2), . . . , q̂α`

(θθθ K))
> are obtained by using Equation (2) for ` = 1,2, . . . ,γ . Without

using the common random number across different design points, the variance of q̂D
α`

is represented by a
(K×K) diagonal matrix, Ωα`

≡ diag
{

σ2
α`
(θθθ 1),σ

2
α`
(θθθ 2), . . . ,σ

2
α`
(θθθ K)

}
, where σ2

α`
(θθθ k) for k = 1,2, . . . ,K is

estimated by the bootstrap. Specifically, we draw with replacement from simulation output data Y (θθθ k) to
get the bootstrapped data, denoted by Y (1)(θθθ k) and calculate the percentile estimate by using Equation (2),
denoted by q̂(1)α`

(θθθ k). By repeating this procedure for B0 times, we get q̂(1)α`
(θθθ k), q̂

(2)
α`
(θθθ k), . . . , q̂

(B0)
α`

(θθθ k). We
plug the sample variance, denoted by σ̂2

α`
(θθθ k), into Ωα`

to obtain Ω̂α`
.

For any prediction point θθθ 0, denote the (K× 1) spatial covariance vector between θθθ 0 and design
points by Σα`

(θθθ 0, ·), and denote the (K×K) variance-covariance matrix between design points by Σα`

for `= 1,2, . . . ,γ . Given the simulation outputs YD , the remaining uncertainty of the percentile response
surface qα`

(·) can be characterized by the updated GP, denoted by Mp
α`
(θθθ 0)∼GP(mp

α`
(θθθ 0),λ

2
α`
(θθθ 0)), with

the mean
mp

α`
(θθθ 0) = µ̂α`

+Σα`
(θθθ 0, ·)(Σα`

+Ωα`
)−1(q̂D

α`
− µ̂α`

·1K) (4)

and the corresponding variance

λ
2
α`
(θθθ 0) = τ

2
α`
−Σα`

(θθθ 0, ·)>(Σα`
+Ωα`

)−1
Σα`

(θθθ 0, ·)+η
>[1>K (Σα`

+Ωα`
)−11K ]

−1
η (5)

where µ̂α`
= [1>K (Σα`

+Ωα`
)−11K ]

−11>K (Σα`
+Ωα`

)−1q̂D
α`

, η = 1−1>K (Σα`
+Ωα`

)−1Σα`
(θθθ 0, ·), and 1K is a

(K×1) vector with each element equal to one; see Ankenman et al. (2010) and Yi and Xie (2016).
We plug Ω̂ into Equations (4) and (5). Then, we need to estimate φφφ and τ2

α`
for `= 1,2, . . . ,γ . Since we

share the same φφφ across different percentile curves, the cross-validation is used to estimate it. Specifically,
according to Ankenman et al. (2010), for each percentile response surface, the log-likelihood function of
(µα`

,τ2
α`
,φφφ) is given by,

L(µα`
,τ2

α`
,φφφ) =− ln[(2π)K/2]− 1

2
ln[|τ2

α`
R(φφφ)+Ωα`

|]

− 1
2
(q̂D

α`
−µα`

1K)
>[τ2

α`
R(φφφ)+Ωα`

]−1(q̂D
α`
−µα`

1K), (6)

where R(φφφ) is the (K ×K) correlation matrix with the (k1,k2)-th entry to be Cor[Z(θθθ k1),Z(θθθ k2)] for
k1,k2 ∈ {1,2, · · · ,K}. After taking partial derivatives with respect to τ2

α`
, setting it to zero, and then

plugging in µ̂α`
and Ω̂α`

, we can obtain

tr[Λ̌−1
α`

R(φφφ)] = (q̂D
α`
− µ̂α`

1K)
>

Λ̌
−1
α`

R(φφφ)Λ̌−1
α`
(q̂D

α`
− µ̂α`

1K), (7)

where Λ̌α`
= τ2

α`
R(φφφ)+ Ω̂α`

; see the derivation in Appendix A. Thus, the spatial variance τ2
α`

can be written
as a function of φφφ for `= 1,2, . . . ,γ . Let Λ̂α`

= τ̂2
α`

R(φφφ)+ Ω̂α`
. The leave-one-out cross-validation for each

α` and θθθ i can be quickly calculated using,

e`k =
(Λ̂−1

α`
)k

(Λ̂−1
α`
)kk

(q̂D
α`
− µ̂α`

1K),

(see Plumlee and Tuo (2014)), where ()k is the k-th row and ()kk is the k-th diagonal element. Thus, we
select correlation parameters as,

φ̂φφ = argmin
γ

∑
`=1

K

∑
k=1

e2
`k.
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The MLE estimate τ̂2
α`

can be computed through solving Equation (7) with φ̂φφ . By plugging in φ̂φφ and τ̂2
α`

for `= 1,2, . . . ,γ into Equations (4) and (5), we can obtain the GP metamodel for qα`
(·).

4 UNCERTAINTY QUANTIFICATION FOR QUANTILE ESTIMATION

In this section, we propose a sampling procedure that can provide a joint posterior distribution of percentiles,
Q̃ = (Q̃α1 , Q̃α2 , . . . , Q̃αγ

), where Q̃α`
≡ q̃α`

(θ̃θθ) with θ̃θθ ∼ p(θθθ |X(0)
m ) and q̃α`

(·) ∼ GP(mp
α`
(·),λ 2

α`
(·)) for

`= 1,2, . . . ,γ . It further delivers percentile CrIs accounting for the overall estimation uncertainty of qc(θθθ c).
The main steps are shown as follows.

0. Provide the priors on input parameters ΘΘΘ and the distributional GP metamodel M(·).
1. Find the smallest ellipsoid E that covers most likely random samples from the posterior distribution

p(θθθ |X(0)
m ). To obtain an experiment design D = {(θθθ k,nk),k = 1,2, . . . ,K}, use a Latin hypercube

sample to generate K design points evenly covering the design space E, and assign equal replications
to these points. See the detailed procedure in Barton et al. (2014).

2. Run simulations at the design points to obtain outputs YD . Construct the distributional metamodel
of Mp

α`
(θθθ) by using Equations (4) and (5).

3. For b = 1,2, . . . ,B,

(a) Generate a posterior samples of input parameters, θ̃θθ
(b)
∼ p(θθθ |X(0)

m ).

(b) Generate a sample (q̃α1(θ̃θθ
(b)
), q̃α2(θ̃θθ

(b)
), . . . , q̃αγ

(θ̃θθ
(b)
)) by using common random number to

avoid the crossing issue of different percentiles. Specifically, first generate U (b) ∼ Unif(0,1),
and then use the inverse cumulative distribution function (CDF) to generate the α`-th percentile

q̃α`
(θ̃θθ

(b)
) = Φ−1(U (b);θ̃θθ

(b)
,α`) with `= 1,2, . . . ,γ , where Φ−1(·;θ̃θθ

(b)
,α`) is the inverse CDF

of N (mp
α`
(θ̃θθ

(b)
),λ 2

α`
(θ̃θθ

(b)
)).

End loop
4. Report the two-sided (1−ξ )% percentile CrI for qc

α`
(θθθ c) with `= 1,2, . . . ,γ

CrIDM
α`

= [Q̃α`,(d(ξ/2)Be), Q̃α`,(d(1−ξ/2)Be)] (8)

where the order statistics Q̃α`,(1) ≤ Q̃α`,(2) ≤ . . .≤ Q̃α`,(B) and Q̃α`,b = q̃α`
(θ̃θθ

(b)
) for b = 1,2, . . . ,B.

The CrI in Equation (8) constructed by using the distributional metamodel (DM) accounts for the overall
uncertainty of qc

α`
(θθθ c) with `= 1,2, . . . ,γ . We further conduct the variance decomposition to estimate the

relative contributions from input and simulation uncertainties. Given X(0)
m and YD , the total estimation

uncertainty of α`-th percentile is,

Var
[
Mα`

(ΘΘΘ)
∣∣∣X(0)

m ,YD

]
= EΘΘΘ

[
VarMp

α`
(Mα`

(ΘΘΘ) |ΘΘΘ)
∣∣∣X(0)

m ,YD

]
+VarΘΘΘ

[
EMp

α`
(Mα`

(ΘΘΘ) |ΘΘΘ)
∣∣∣X(0)

m ,YD

]
= EΘΘΘ

[
λ

2
α`
(ΘΘΘ)

∣∣∣X(0)
m ,YD

]
+VarΘΘΘ

[
mp

α`
(ΘΘΘ)

∣∣∣X(0)
m ,YD

]
, (9)

where σ2
M ≡ EΘΘΘ

[
λ 2

α`
(ΘΘΘ)|X(0)

m ,YD

]
is a measure of simulation estimation uncertainty and σ2

I ≡

VarΘΘΘ

[
mp

α`
(ΘΘΘ)|X(0)

m ,YD

]
is a measure of input uncertainty. We can estimate σ2

M by sample mean of

λ 2
α`
(θ̃θθ

(b)
) and estimate σ2

I by sample variance mp
α`
(θ̃θθ

(b)
) as the following,

σ̂
2
M =

1
B

B

∑
b=1

λ
2
α`

(
θ̃θθ
(b))

, σ̂
2
I =

1
B−1

B

∑
b=1

[
mp

α`

(
θ̃θθ
(b))
− m̄p

α`

]2

,

where m̄p
α`
= ∑

B
b=1 mp

α`
(θ̃θθ

(b)
)/B. Since B is large, we could ignore the finite sampling estimation uncertainty.
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5 EMPIRICAL STUDY

In this section, we first compare the performance of our distributional metamodel (DM) with the stochastic
kriging (SK) introduced in Ankenman et al. (2010), quantile kriging (QK) introduced by Plumlee and Tuo
(2014), and commonly used direct simulation for percentile prediction. Then, an M/M/1 queue example
is used to study the behaviors of our Bayesian framework for qc(θθθ c) estimation uncertainty.

5.1 Prediction of Percentile Response Surfaces

We are interested in the percentiles of time staying in an M/M/1 queue with arrival rate equal to one. The
unknown input parameter is the utilization, denoted by θ , varying in range Iθ = [0.2,0.95]. We consider the
percentile curves, qα`

(θ) with ` = 1,2, . . . ,γ and γ = 19, where (α1,α2, . . . ,α19) = (5%,10%, . . . ,95%).
Let the total simulation budget to be C = 1000 replications, and let the runlength to be L = 30,100 number
of customers.

Given the same simulation budget, we compare the performance of our distributional metamodel (DM),
stochastic kriging (SK), quantile kriging (QK), and direct simulation (DS), which is assessed by the percentile
prediction at Ntest = 500 test points with {θ test

k ,k = 1,2, . . . ,Ntest} equally spaced on [0.2,0.95]. For the
distributional metamodel, by following the “10d rule” (Jones et al. 1998), we select D = {(θk,nk),k =
1,2, . . . ,10}with design points {θ1, . . . ,θ10} equally spaced on [0.2,0.95], and allocate the same replications
at each design point, nk = C/10 = 100. By following the procedure in Section 3, we construct the
distributional GP for percentiles qα`

(θ) with `= 1,2, . . . ,γ . For SK, we use the same experiment design D ,
and at each design point θk for k = 1,2, . . . ,10, the percentile estimate q̂S

α`
(θk) in Equation (3) is based on

the summary order statistics of outputs. The estimation variance at each design point is based on the sample
variance of percentile estimation uncertainty over replications, 1

nk(nk−1) ∑
nk
r=1[Yr,(dL·α`e)(θk)−Ȳ(dL·α`e)(θk)]

2,

where Ȳ(dL·α`e)(θk) =
1
nk

∑
nk
r=1Yr,(dL·α`e)(θk). Then, the SK metamodel introduced in Ankenman et al. (2010)

is used to construct the metamodel of qα`
(·). In QK, we use the same percentile estimate as in SK. For

the direct simulation, we equally allocate the simulation budget to all test points, ntest
k =C/Ntest = 2.

Since the steady-state time staying in the M/M/1 system follows the exponential distribution with
rate equal to service rate minus arrival rate, the true percentiles, qc

α`
(θ) for `= 1,2, . . . ,γ , can be obtained

directly. We evaluate the accuracy of estimated percentiles through integrated mean squared error (IMSE)
at each percentile level α`,

IMSEα`
=
∫

θ∈Iθ

MSEα`
(θ)dθ =

∫
θ∈Iθ

(
qc

α`
(θ)− fα`

(θ)
)2 dθ ,

where fα`
(·) is the predicted α` percentile responses from DM, SK, or DS. We can estimate IMSE,

IMSEα`
=

1
W

W

∑
w=1

[∫
θ∈Iθ

(
qc

α`
(θ)− f (w)α`

(θ)
)2

dθ

]
≈ 1

W

W

∑
w=1

{
Ntest

∑
k=2

θ test
k −θ test

k−1

2

[(
qc

α`
(θ test

k )− f (w)α`
(θ test

k )
)2

+
(

qc
α`
(θ test

k−1)− f (w)α`
(θ test

k−1)
)2
]}

,

where f (w)α`
(θ test

k ) is the predicted α`-th percentile at θ test
k from the w-th micro-replication.

The results in Table 1 are obtained by using W = 200 macro-replications. At any θ , the underlying true
output distribution, GY (θ), is exponential and the time staying in the M/M/1 system increases dramatically
as the utilization approaches one. The upper tail percentiles are much harder to estimate than lower tail,
which explains the increasing trend in IMSE as percentile level α` increases as shown in Table 1. For most
cases, the direct simulation performs worst, because given a tight simulation budget, each test point only
has few simulation runs. The percentile estimates are very inaccurate, especially for extreme tail part. SK
performs slightly better than QK since QK assumes equal estimation variance at different percentile levels,
which does not hold. Compared to SK and QK, the distributional metamodel has dominant advantage at
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Table 1: IMSE of percentiles estimation of time staying in M/M/1 system.

IMSE L = 30 L = 100
α` DM SK QK DS DM SK QK DS
5% 0.0019 0.3280 0.4583 5.5586 0.0007 0.0716 0.1917 2.9205

10% 0.0059 0.3786 0.4467 5.5506 0.0023 0.1048 0.2014 3.1700
15% 0.0121 0.3654 0.4060 5.4476 0.0047 0.1188 0.1961 3.3293
20% 0.0189 0.3211 0.3456 5.2898 0.0079 0.1173 0.1805 3.4331
25% 0.0262 0.2542 0.2760 5.0809 0.0119 0.1049 0.1590 3.4902
30% 0.0343 0.1789 0.2097 4.8414 0.0170 0.0850 0.1369 3.5207
35% 0.0432 0.1106 0.1596 4.5902 0.0233 0.0650 0.1214 3.5313
40% 0.0517 0.0644 0.1415 4.3357 0.0305 0.0515 0.1217 3.5189
45% 0.0602 0.0599 0.1778 4.1085 0.0388 0.0545 0.1510 3.5004
50% 0.0689 0.1278 0.2989 3.9146 0.0500 0.0933 0.2291 3.4894
55% 0.0837 0.3050 0.5485 3.8076 0.0652 0.1925 0.3858 3.5138
60% 0.1067 0.6535 0.9914 3.8253 0.0854 0.3866 0.6651 3.5984
65% 0.1420 1.2699 1.7317 4.0659 0.1194 0.7372 1.1380 3.8017
70% 0.2166 2.3109 2.9378 4.6564 0.1765 1.3556 1.9256 4.2143
75% 0.3502 4.0400 4.8978 5.8396 0.2794 2.4219 3.2425 4.9963
80% 0.6122 6.9670 8.1580 8.0972 0.4827 4.3100 5.5087 6.4962
85% 1.1789 12.2005 13.8975 12.4324 0.9131 7.8267 9.6573 9.4650
90% 2.5809 22.6219 25.2116 21.5785 1.9018 15.1947 18.2153 15.9533
95% 6.8904 49.5667 54.1472 46.2258 5.0069 35.4785 41.4324 34.5595

most percentile levels, and this advantage becomes even more obvious when we have limited runlength, e.g.,
L = 30 case. One reason for the better performance is because the distributional metamodel automatically
accounts for the dependence between different percentiles, which could improve the percentile curves
estimation. Another reason is that we explore the detailed outputs which can achieve more accurate
percentile estimation.

5.2 Percentile Estimation Uncertainty Quantification

In this section, an M/M/1 queue is used to compare the performance of proposed Bayesian framework,
the SK metamodel assisted approach, and direct simulation on the system risk performance estimation. We
are interested in the percentile of time staying in the system, denoted by qc(θθθ c). The underlying arrival
and service rates θθθ c = (θ c

1 ,θ
c
2 ) = (2, 2/0.7) are unknown, and they are estimated from finite real-world

data X(0)
m . With the non-informative Gamma conjugate prior, the posterior is a Gamma distribution for

both arrival or service rates, i.e., p(θh|X
(0)
m ) = Γ(m,∑m

i=1 X (0)
hi ) for h = 1,2, where {X (0)

hi : i = 1,2, . . . ,m}
represents the real-world data for inter-arrival or service times.

We compare the three different methods and construct the 95% two-sided percentile CrI for qα`
(θθθ) with

`= 1,2, . . . ,γ . For distributional- and SK metamodel-assisted approaches, by following Barton et al. (2014),
we find the smallest ellipsoid design space E covering the 99% of posterior samples of input parameters,
use Latin hypercube sample to generate K = 20 design points evenly distributed in the ellipsoid, and assign
equal replications to each point. Let the total simulation budget C = 1000 replications, the runlength
L = 30,100 number of customers, and the size of real-world data m = 300.

Specifically, we generate B = 1000 posterior samples θ̃θθ
(b)

for b = 1,2, . . . ,B. For our approach, we
follow the procedure provided in Section 4, and report the estimated 95% CrI (i.e. ξ = 0.05). For the
SK metamodel assisted approach, we use the same experiment design D , calculate the percentile estimate
q̂S

α`
(θθθ k) and its variance at each design point θθθ k. Then, we construct the SK metamodel of qα`

, denoted
by GP(ḿp

α`
(·), λ́ 2

α`
(·)); see Ankenman et al. (2010) for the detailed information of SK. To avoid the
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percentiles crossing issue, following the same CRN approach described in Section 4, generate samples,

Q̃′
α`,b = q̃′α`

(θ̃θθ
(b)
) = Φ′−1(U (b);θ̃θθ

(b)
,α`) with ` = 1,2, . . . ,γ , where Φ′−1(·;θ̃θθ

(b)
,α`) is the inverse CDF

of N (ḿp
α`
(θ̃θθ

(b)
), λ́ 2

α`
(θ̃θθ

(b)
)). Based on the order statistics Q̃′

α`,(1)
≤ Q̃′

α`,(2)
≤ . . . ≤ Q̃′

α`,(B)
, SK gives the

two-sided (1−ξ )% percentile CrI for qc
α`
(θθθ c) with `= 1,2, . . . ,γ ,

CrISK
α`

= [Q̃′
α`,(d(ξ/2)Be), Q̃

′
α`,(d(1−ξ/2)Be)]. (10)

For the direct simulation, we run stochastic simulation at each posterior sample θ̃θθ
(b)

, and obtain the percentile
estimate, denoted by Q̂′′

α`,b, by using Equation (3), and report the CrI for qc
α`
(θθθ c) with `= 1,2, . . . ,γ ,

CrIDS
α`

= [Q̂′′
α`,(d(ξ/2)Be), Q̂

′′
α`,(d(1−ξ/2)Be)] (11)

where Q̂′′
α`,(1)

≤ Q̂′′
α`,(2)

≤ . . .≤ Q̂′′
α`,(B)

are order statistics.
If the true percentile response surface qc

α`
(·) is known, the fidelity or target CrI is

CrI0
α`

= [Qα`,(d(ξ/2)Be),Qα`,(d(1−ξ/2)Be)].

We compare the estimated CrI delivered by different approaches to this CrI. We first compute the mean
absolute error of lower bound (LB MAE) and upper bound (UB MAE) associated with the CrI obtained
from distributional metamodel,

MAEDM
LB (α`) =

1
W

W

∑
w=1

∣∣∣Q(w)
α`,(d(ξ/2)Be)− Q̃(w)

α`,(d(ξ/2)Be)

∣∣∣
MAEDM

UB (α`) =
1

W

W

∑
w=1

∣∣∣Q(w)
α`,(d(1−ξ/2)Be)− Q̃(w)

α`,(d(1−ξ/2)Be)

∣∣∣ , (12)

where w indicating results from w-th micro-replication. In our empirical study, we use W = 200 macro-
replications. By replacing Q̃(w)

α`,(d(ξ/2)Be), Q̃(w)
α`,(d(1−ξ/2)Be) in (12) with Q̃′(w)

α`,(d(ξ/2)Be), Q̃′(w)
α`,(d(1−ξ/2)Be) or

Q̂′′(w)
α`,(d(ξ/2)Be), Q̂′′(w)

α`,(d(1−ξ/2)Be), we can obtain corresponding lower bound and upper bound MAE for SK
and DS methods respectively.

In addition, we consider the coverage probability of proposed CrI at each percentile level α`, given by
P
(
qc

α`
(ΘΘΘ) ∈ CrIMα`

)
with ΘΘΘ∼ p(θθθ |X(0)

m ), where M = DM,SK,DS implies CrI from different methods (8),
(10) and (11), which can be estimated through,

P̂
(

qc
α`
(Θ̃ΘΘ) ∈ CrIMα`

)
=

1
B

B

∑
b=1

I
(

qc
α`
(θ̃θθ

(b)
) ∈ CrIMα`

)
where I(·) is an indicator function. The CrI width

∣∣CrIMα`

∣∣ is also recorded for evaluating the sharpness
of uncertainty quantification. We compute the average coverage probability and CrI width for each α`

percentile obtained from 200 micro-replications as shown in Table 2.
In Table 2, we provide the MAE of estimated CrI lower bound, upper bound, coverage of CrI plus

minus corresponding standard error, and the CrI width with standard deviation in parentheses. The direct
simulation method has the worst performance. The CrI obtained by our approach has the coverage close to
the nominal level 95%. The SK assisted approach tends to have under coverage, and this problem becomes
worse at the tail part. Comparing with the SK metamodel assisted and direct simulation approaches, our
framework has dominant better performance in most cases.

Our framework can deliver CrIs quantifying the overall uncertainty of percentile estimates. We can
further estimate the relative contributions of input and simulation uncertainties. Given a fixed amount of
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Table 2: MAE of lower and upper bound, coverage and width of CrI for percentile responses from three
methods under input uncertainty.

CrI Runlength = 30 Runlength = 100
DM
α` LB MAE UB MAE Coverage CrI Width LB MAE UB MAE Coverage CrI Width
5% 0.002±0.000 0.010±0.001 0.959±0.002 0.076(0.036) 0.002±0.000 0.009±0.001 0.957±0.001 0.076(0.044)
25% 0.011±0.001 0.049±0.004 0.956±0.001 0.408(0.188) 0.008±0.001 0.050±0.008 0.955±0.001 0.418(0.260)
50% 0.028±0.002 0.114±0.009 0.956±0.001 0.971(0.424) 0.019±0.002 0.104±0.014 0.955±0.001 0.993(0.562)
75% 0.065±0.005 0.234±0.019 0.957±0.001 1.906(0.798) 0.043±0.003 0.231±0.039 0.955±0.001 1.992(1.219)
95% 0.215±0.015 0.712±0.060 0.959±0.002 4.207(1.699) 0.151±0.010 0.572±0.061 0.958±0.001 4.319(2.288)
SK
α` LB MAE UB MAE Coverage CrI Width LB MAE UB MAE Coverage CrI Width
5% 0.016±0.000 0.151±0.008 0.549±0.008 0.202(0.130) 0.004±0.000 0.059±0.005 0.900±0.002 0.123(0.100)
25% 0.023±0.001 0.175±0.007 0.904±0.003 0.529(0.240) 0.007±0.000 0.106±0.008 0.949±0.001 0.487(0.281)
50% 0.016±0.001 0.081±0.006 0.937±0.001 0.851(0.320) 0.012±0.001 0.070±0.006 0.946±0.001 0.952(0.454)
75% 0.107±0.003 0.765±0.030 0.862±0.002 1.160(0.411) 0.033±0.002 0.415±0.025 0.926±0.001 1.481(0.595)
95% 0.750±0.011 3.290±0.098 0.258±0.006 1.390(0.459) 0.362±0.009 2.424±0.098 0.716±0.004 1.978(0.691)
DS
α` LB MAE UB MAE Coverage CrI Width LB MAE UB MAE Coverage CrI Width
5% 0.025±0.000 2.141±0.073 1.000±0.000 2.233(1.064) 0.019±0.000 0.479±0.036 1.000±0.000 0.567(0.535)
25% 0.118±0.001 2.567±0.065 1.000±0.000 3.063(1.086) 0.072±0.001 1.140±0.053 1.000±0.000 1.600(0.936)
50% 0.275±0.003 2.650±0.048 1.000±0.000 3.835(1.063) 0.164±0.002 1.717±0.052 0.999±0.000 2.816(1.176)
75% 0.579±0.007 2.147±0.027 0.998±0.000 4.544(1.040) 0.360±0.005 1.928±0.033 0.998±0.000 4.158(1.251)
95% 1.461±0.016 0.702±0.052 0.970±0.001 5.095(1.005) 1.021±0.015 0.865±0.049 0.983±0.001 5.423(1.227)

real-world data with m = 1000, the variance decomposition for four cases with L = 30,50 and C = 300,800
is provided in Figure 1. The solid line represents the CDF of qc

α`
(ΘΘΘ) with ΘΘΘ∼ p(θθθ |X(0)

m ). The segments
denote the CrIs for 10%,20%, . . . ,90% percentiles obtained by our framework. The orange and blue
proportions are corresponding variance contribution from input and simulation uncertainties. The overall
uncertainty increases as the level of percentile (α`) increases. Given a fixed amount of real-world data, the
overall estimation uncertainty and the proportion of simulation uncertainty decreases as either runlength
or replications increases. As we increase the runlength to 50 and the total number of replications to
800, we can accurately estimate the impact of input uncertainty on the system random behaviors since
the simulation estimation error only contributes about 5% of overall uncertainty, which indicates that the
additional simulation runs are not needed.

6 CONCLUSIONS

We consider the system random behaviors characterized by a sequence of percentiles. We develop a Bayesian
framework quantifying the overall estimation uncertainty of percentile responses. The input uncertainty is
quantified by posterior distributions of input parameters. Further, a distributional metamodel is introduced
to explore the detailed outputs and simultaneously model percentile response surfaces. It can efficiently
propagate the input uncertainty to outputs. Our framework can deliver credible intervals of percentiles,
and further quantify the relative contributions from input and simulation uncertainties. The empirical study
demonstrates the our approach could efficiently utilize the simulation resource for system risk analysis.

A APPENDICES

Here, we derive Equation (7). For the log-likelihood in (6), take the partial derivatives with respect to τ2
α`

,
and apply results (equations (22) and (23)) in Ankenman et al. (2010),

∂L(µα`
,τ2

α`
,φφφ)

∂τ2
α`

=− 1
2

tr
[
(τ2

α`
R(φφφ)+Ωα`

)−1R(φφφ)
]

+
1
2
(q̂D

α`
−µα`

1K)
>[τ2

α`
R(φφφ)+Ωα`

]−1R(φφφ)[τ2
α`

R(φφφ)+Ωα`
]−1(q̂D

α`
−µα`

1K).
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Figure 1: Variance decomposition for percentile responses of M/M/1 total time with utilization 0.7.
Top-left panel: L = 30 and C = 300; top-right panel: L = 50 and C = 300; bottom-left panel: L = 30 and
C = 800; bottom-right panel: L = 50 and C = 800.

By setting the partial derivative to be zero and plugging in estimated µ̂α`
and Ω̂α`

, Equation (7) follows.
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