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ABSTRACT

When we use simulation to estimate the performance of a stochastic system, lack of fidelity in the random
input models can lead to poor system performance estimates. Since the components of many complex
systems could be dependent, we want to build input models that faithfully capture such key properties.
In this paper, we use the flexible NORmal To Anything (NORTA) representation for dependent inputs.
However, to use the NORTA representation we need to estimate the marginal distribution parameters and
a correlation matrix from real-world data, introducing input uncertainty. To quantify this uncertainty, we
employ the bootstrap to capture the parameter estimation error and an equation-based stochastic kriging
metamodel to propagate the input uncertainty to the output mean. Asymptotic analysis provides theoretical
support for our approach, while an empirical study demonstrates that it has good finite-sample performance.

1 INTRODUCTION

Stochastic simulation is used to characterize the behavior of complex systems that are driven by random
input models. The choice of input models directly impacts the system performance estimates. It is common
practice to treat the input models as a collection of independent univariate distributions. However, these
simple input models do not always faithfully represent the physical input processes. For example, in a
manufacturing system the processing times for a single workpiece at a series of machining stations could
be dependent due to characteristics of that particular workpiece; and in a supply chain system the customer
demands over different products from multi-product warehouses could be related. Ignoring such dependence
can lead to poor estimates of system performance measures (Livny et al. 1993). Thus, it is desirable to
build input models that faithfully capture the dependence.

Considering the amount of information needed to construct full joint distributions, in this paper we focus
on input models characterized by marginal distributions and correlation matrix. The marginal distributions
have known parametric families with unknown parameter values. The dependence between different
components of the input models can be measured by various criteria (Biller and Ghosh 2006); we focus
on the Spearman rank correlation. Even though product-moment correlation is widely used in engineering
applications, it cannot capture complex nonlinear dependence and its definition needs the variances of the
components to be finite. The Spearman rank correlation can avoid these problems.

Since the input models are estimated from finite samples of real-world data, a complete statistical
characterization of stochastic system performance requires quantifying both simulation and input estimation
error. We build on Xie et al. (2014a), which used a metamodel-assisted bootstrapping approach to form
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a confidence interval (CI) accounting for the impact of input and simulation uncertainty on the system’s
mean performance estimates. However, their study assumes that the input distributions are univariate and
mutually independent.

To efficiently and correctly account for the dependence between various components of input models,
we introduce a more general metamodel-assisted bootstrapping framework that can quantify the impact of
dependent input models and simulation estimation error on system performance estimates, while simulta-
neously reducing the influence of simulation estimation error compared with direct simulation methods.
Specifically, we estimate the key properties of a flexible input model with real-world data. The bootstrap
is then used to quantify the estimation error of input marginal distributions and dependence measures. An
equation-based stochastic kriging metamodel propagates the input uncertainty to the output mean. From
this, we can derive a CI that accounts for both simulation and input uncertainty. Notice that we are interested
in the dependence between different components of the input distributions instead the dependence among
the estimated input-model parameter values.

There are two central contributions of this paper: First, we generalize the metamodel-assisted bootstrap
framework of Xie et al. (2014a) to stochastic simulations with dependent input models. Second, we propose
a rigorous analysis for cases where the dependence is measured by Spearman rank correlation.

The next section reviews some previous work for input uncertainty in simulation. This is followed by a
formal description of the problem of interest in Section 3. In Section 4, we propose a generalized metamodel-
assisted bootstrapping framework and provide an algorithm to build a CI accounting for both input and
simulation estimation error on the system mean performance estimates. Our approach is supported with
asymptotic analysis. We then report results of finite-sample behavior from an empirical study in Section 5
and conclude the paper in Section 6.

2 BACKGROUND

Various approaches to account for input uncertainty in stochastic simulations have been proposed, see Barton
(2012) for a review. The metamodel-assisted bootstrapping approach was introduced in Barton et al. (2014).
In that paper the input models are a collection of independent univariate parametric distributions with known
parametric families and unknown parameters values. The input parameters are estimated by real-world data
and the bootstrap is used to quantify the input-parameter uncertainty. Based on the simulation outputs at a
few design points, a flexible stochastic kriging (SK) metamodel is built to propagate the input uncertainty
to the output mean. A CI is derived to quantify the impact of input uncertainty. Compared with the direct
simulation approach, the metamodel can reduce the impact of simulation estimation error. However, Barton
et al. (2014) assumed that the simulation budget is not tight and the metamodel uncertainty can be ignored.

If the true mean response surface is complex, especially for high-dimensional problems with many
input distributions, and the computational budget is tight, then the impact of metamodel uncertainty can
no longer be ignored. The metamodel-assisted bootstrapping approach was improved in Xie et al. (2014a)
to build a CI accounting for the impact from both input and metamodel uncertainty on the system mean
estimates. Further, a variance decomposition was proposed to estimate the relative contribution of input to
overall uncertainty, which is very useful for decision makers to determine where to put more effort to reduce
the system uncertainty. The metamodel-assisted bootstrapping approach demonstrated robust performance
even when there is a tight computational budget and simulation estimation error is large. However, Xie
et al. (2014a) also assumed that the input models are mutually independent univariate distributions.

To faithfully capture the dependence between different components of input models, Cario and Nelson
(1997) proposed a flexible NORmal To Anything (NORTA) distribution to represent and generate random
vectors with almost arbitrary marginal distributions and correlation matrix. Since NORTA representations
are estimated from finite samples of real-world data, Biller and Corlu (2011) proposed a Bayesian approach
to account for parameter uncertainty. Specifically, the uncertainty about the NORTA distribution parameter
estimates is quantified by posterior distributions. For complex stochastic systems with a large number
of correlated inputs, a fast algorithm was proposed to draw samples from these posterior distributions
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to quantify the input uncertainty. Then, the direct simulation method was used to propagate the input
uncertainty to the output mean. However, when the simulated system is complex and the computational
budget is tight, the direct simulation method can not efficiently use the computational budget and incurs
substantial simulation estimation error.

The good performance of metamodel-assisted bootstrapping for stochastic simulations with independent
univariate input distributions in Barton et al. (2014) and Xie et al. (2014a) motivates us to extend it to
more complex cases with dependence in the input models. Therefore, in this paper, we use flexible NORTA
representations for unknown dependent inputs. Since the NORTA method is based on estimating marginal
distribution parameters and a correlation matrix from real-world data, metamodel-assisted bootstrapping
is generalized to quantify the impact of both NORTA parameters and simulation estimation error while
simultaneously reducing the influence of simulation estimation error due to output variability.

3 PROBLEM STATEMENT

The stochastic simulation output is a function of random numbers and the input models denoted by F ,
where F is composed of a collection of input distributions used to drive the simulation. For notation
simplification, we do not explicitly include the random numbers. The output from the jth replication of a
simulation with input models F can be written as

Yj(F) = µ(F)+ ε j(F)

where µ(F) = E[Yj(F)] denotes the unknown output mean and ε j(F) represents the simulation error with
mean zero. Notice that the simulation output depends on the choice of input models.

Let Fc denote the true “correct” input models, which are unknown and estimated from finite samples
of real-world data. Our goal is to quantify the impact of the statistical error on system mean performance
estimates by finding a (1−α)100% CI [QL,QU ] such that

Pr{µ(Fc) ∈ [QL,QU ]}= 1−α.

Let F = {F1,F2, . . . ,FL} with F1,F2, . . . ,FL mutually independent; F could be composed of univariate
and multivariate joint distributions. In this paper, we do not consider time-series input processes. Let F̀
be a d` dimensional distribution having marginal distributions denoted by {F̀ ,1, F̀ ,2, . . . , F̀ ,d`} with d` ≥ 1.
For the `th distribution F̀ with d` > 1, let X` ∼ F̀ be a d`×1 random vector having a d`×d` Spearman
rank correlation matrix denoted by RX`

with elements

RX`
(i, j) = cor(F̀ ,i(X`,i), F̀ , j(X`, j)) =

E[F̀ ,i(X`,i)F̀ , j(X`, j)]−E[F̀ ,i(X`,i)]E[F̀ , j(X`, j)]√
Var(F̀ ,i(X`,i))Var(F̀ , j(X`, j))

with i, j = 1,2, . . . ,d`. Since the correlation matrix is symmetric and diagonal terms are 1, we can view
a d`× d` correlation matrix as an element of a d∗` ≡ d`(d`− 1)/2 dimensional vector space. Then, the
Spearman rank correlation matrix can be uniquely specified by a d∗` × 1 vector denoted by VX`

. For F̀
with d` = 1, VX`

is empty and d∗` = 0.
For F̀ with ` = 1,2, . . . ,L, we assume that the families of marginal distributions {F̀ ,1, F̀ ,2, . . . , F̀ ,d`}

are known, but not their parameter values. Let an h`,i×1 vector θθθ `,i denote the unknown parameters for the
ith marginal distribution F̀ ,i. By stacking θθθ `,i with i = 1,2, . . . ,d` together, we have a d†

` ×1 dimensional
parameter vector θθθ>` ≡ (θθθ>`,1,θθθ

>
`,2, . . . ,θθθ

>
`,d`) with d†

` ≡ ∑
d`
i=1 h`,i.

Suppose the input model is characterized by marginal distributions and correlation matrix, which are
specified by ϑϑϑ ≡ {(θθθ `;VX`

), `= 1,2, . . . ,L} that includes d ≡ ∑
L
`=1 d†

` +∑
L
`=1 d∗` elements. We call ϑϑϑ the

input model parameters. By abusing notation, we can rewrite µ(F) as µ(ϑϑϑ). The true input parameters
ϑϑϑ c are unknown and estimated from finite samples of real-world data. Thus, our goal can be restated as
finding a (1−α)100% CI [QL,QU ] such that

Pr{µ(ϑϑϑ c) ∈ [QL,QU ]}= 1−α. (1)
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Let m` denote the number of i.i.d. real-world observations available from the `th input process X`,m`
≡{

X(1)
` ,X(2)

` , . . . ,X(m`)
`

}
with d`× 1 random vector X(i)

`
i.i.d∼ Fc

` for i = 1,2, . . . ,m`. Let Xm = {X`,m`
, ` =

1,2, . . . ,L} be the collection of samples from all L input distributions in Fc, where m = (m1,m2, . . . ,mL).
The estimators for the input model parameters are denoted by ϑ̂ϑϑ m ≡ {(θ̂θθ `,m`

; V̂X`,m`
), `= 1,2, . . . ,L} and

are a function of Xm. The real-world data are a particular realization of Xm, say x(0)m .
Input uncertainty is quantified by the sampling distribution of µ(ϑ̂ϑϑ m). Further, since the underlying

response surface µ(·) is unknown, for any ϑϑϑ let µ̂(ϑϑϑ) denote the corresponding mean response estimator.
Thus, there are both input and simulation estimation errors in the system mean performance estimates. This
paper focuses on estimating the performance of complex stochastic systems with input models including
multivariate distributions. Our objective is to propose an approach to quantify the overall impact of
both input and simulation estimation error on system mean performance estimates and then build a CI
satisfying Equation (1). Further, since each simulation run could be computationally expensive and we
have computational budget denoted by N, we want to reduce the influence of simulation estimation error
due to output variability.

4 METAMODEL-ASSISTED BOOTSTRAPPING FRAMEWORK

For simulations with parametric input distributions that are univariate and mutually independent, a
metamodel-assisted bootstrapping framework was used to account for the impact of both input and sim-
ulation estimation errors in Xie et al. (2014a). In this section, we generalize the metamodel-assisted
bootstrapping approach to allow NORTA input models. A procedure to build a CI for the system mean
performance that accounts for overall uncertainty is described and supported by asymptotic analysis.

4.1 Bootstrap for Input Uncertainty

The way we choose to represent input models plays an important role in the implementation of metamodel-
assisted bootstrapping. For the `th input distribution F̀ , instead of using the natural parameters θθθ ` to
characterize the marginal distributions, we can use moments; see Barton et al. (2014) for an explanation.
Suppose that the parametric marginal distribution F̀ ,i can be uniquely characterized by its first h`,i finite
moments denoted by the h`,i×1 vector ψψψ`,i for i = 1,2, . . . ,d`. By stacking ψψψ`,i with i = 1,2, . . . ,d` together,
we have a d†

` × 1 dimensional vector of marginal moments ψψψ>` ≡ (ψψψ>`,1,ψψψ
>
`,2, . . . ,ψψψ

>
`,d`). Therefore, the

input models can be characterized by the moments M ≡ {(ψψψ`;VX`
), ` = 1,2, . . . ,L}. Abusing notation,

we rewrite µ(ϑϑϑ) as µ(M ).
The true moments of dependent input models, denoted by M c, are unknown and estimated using Xm.

We use moment estimators for marginal distributions, denoted by ψ̂ψψ`,m`
. The estimation error of input

models can be quantified by the sampling distribution of M̂m ≡ {(ψ̂ψψ`,m`
; V̂X`,m`

), `= 1,2, . . . ,L}, denoted

by Fc
Mm

. Therefore, the input uncertainty can be measured by the sampling distribution of µ(M̂m) with

M̂m ∼ Fc
Mm

.
Since it is hard to derive the sampling distribution Fc

Mm
, we use bootstrap resampling to approximate

it (Shao and Tu 1995). Since F1,F2, . . . ,FL are mutually independent, we can do bootstrapping for each
distribution separately. For distribution F̀ , let A` ≡ {1,2, . . . ,m`} be the index set of the real-world
observations. The procedure to quantify the input uncertainty by the bootstrap is as follows:

1. For the `th distribution F̀ with ` = 1,2, . . . ,L, draw m` samples with replacement from set
A` and obtain indexes {i1, i2, . . . , im`

}; choose corresponding samples from real-world data x(0)m

and get x̃(1)`,m`
≡ {x(i1)` ,x(i2)` , . . . ,x(im`

)

` }. Denote the collection of bootstrap samples by x̃(1)m =
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{x̃(1)`,m`
, ` = 1,2, . . . ,L} and use it to calculate the bootstrapped moment estimates, denoted by

M̃
(1)
m ≡

{
(ψ̃ψψ

(1)
`,m`

; Ṽ(1)
X`,m`

), `= 1,2, . . . ,L
}

.

2. Repeat the previous step B times to generate M̃
(b)
m for b = 1,2, . . . ,B.

The bootstrap resampled moments are drawn from the bootstrap distribution denoted by F̃Mm(·|x
(0)
m ) with

M̃
(b)
m ∼ F̃Mm(·|x

(0)
m ). For estimation of a CI, B is recommended to be a few thousand. In this paper, a ̂

denotes a quantity estimated from real-world data, while a˜denotes a quantity estimated from bootstrapped
data.

4.2 NORTA Representation

In this paper, multivariate input models are characterized by their marginal distributions and correlation
matrix. Since this partial characterization does not uniquely determine the joint distributions except in
special cases, we use the NORTA representation introduced by Cario and Nelson (1997); NORTA vectors
are completely specified by their marginal distributions and correlation matrix. In this section we describe
how to apply NORTA in our metamodel-assisted bootstrapping approach.

Since F = {F1,F2, . . . ,FL} with F1,F2, . . . ,FL mutually independent, we only need to apply NORTA
separately for the distributions F̀ with d` > 1. Specifically, we represent X` as a transformation of a d`
dimensional standard multivariate normal (MVN) vector Z` = (Z`,1,Z`,2, . . . ,Z`,d`)

> with product-moment
correlation matrix ρZ`

,

X>` =
(

F−1
`,1 [Φ(Z`,1);θθθ `,1],F−1

`,2 [Φ(Z`,2);θθθ `,2], . . . ,F−1
`,d`

[Φ(Z`,d`);θθθ `,d` ]
)
. (2)

If the marginal distribution families are given, as we assume here, then the NORTA representation for F̀ is
(θθθ `,ρZ`

). Let RZ`
denote a d`×d` Spearman rank correlation matrix for Z`. Notice that there is a closed

form relationship between product-moment and Spearman rank correlations for the standard multivariate
normal distribution (Clemen and Reilly 1999): For any i, j = 1,2, . . . ,d`, we have

RZ`
(i, j) =

6
π

sin−1
(

ρZ`
(i, j)
2

)
. (3)

In this paper, we focus on continuous marginal distributions with strictly increasing cdfs{F̀ ,1, F̀ ,2, . . . , F̀ ,d`}
for `= 1,2, . . . ,L. Since the Spearman rank correlation is invariant under the monotone one-to-one trans-
formation F−1

`,i [Φ(·)], we have RX`
= RZ`

. Given ϑϑϑ = {(θθθ `;VX`
), `= 1,2, . . . ,L}, the procedure to generate

the NORTA random variates is as follows:

1. From VX`
, get the Spearman rank correlation matrix RZ`

= RX`
.

2. Calculate ρZ`
(i, j) = 2sin(πRZ`

(i, j)/6) for i, j = 1,2, . . . ,d`.

3. Generate Z`
i.i.d.∼ MVN(0,ρZ`

) and obtain X` by using Equation (2).
4. Repeat Steps 1–3 for all F̀ with d` > 1.

Notice that when we use Spearman rank correlation to measure the input model dependence, the choice of
marginal distributions and correlation is separable. Thus, for any feasible ϑϑϑ , we can find the corresponding
NORTA representations.

4.3 Stochastic Kriging Metamodel

Instead of running simulations for systems with input models represented by bootstrap moment samples
{M̃ (1)

m ,M̃
(2)
m , . . . ,M̃

(B)
m }, we can choose a small number of design points and run simulations there to

build a metamodel; see Xie et al. (2014a). We then propagate the input uncertainty to the output mean
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by using the metamodel. In this paper, we use a flexible stochastic kriging (SK) metamodel introduced by
Ankenman et al. (2010). We briefly review it in this section. For more detailed information, see Ankenman
et al. (2010).

Suppose that the underlying true (but unknown) response surface is a realization of a stationary Gaussian
Process (GP). We model the simulation output Y by

Yj(x) = β0 +W (x)+ ε j(x). (4)

This model includes two sources of uncertainty: the simulation output uncertainty ε j(x) and the mean
response uncertainty W (x).

Since stochastic systems with dependent input models having similar key properties tend to have mean
responses close to each other, SK uses a mean-zero, second-order stationary GP W (·) to account for this
spatial dependence of the response surface. The uncertainty about the unknown true response surface µ(x)
is represented by a GP M(x) ≡ β0 +W (x) (note that β0 can be replaced by a more general trend term
f(x)>βββ ). For many, but not all, simulation settings the output is an average of a large number of more
basic outputs, so a normal approximation can be applied: ε(x)∼ N(0,σ2

ε (x)).
In SK, the covariance between W (x) and W (x′) quantifies how knowledge of the surface at one location

affects the prediction at another location. In this paper, a parametric form of the covariance is used to
capture this spatial dependence, Σ(x,x′) = Cov[W (x),W (x′)] = τ2r(x−x′), where τ2 denotes the variance
and r(·) is a correlation function that depends only on the distance x−x′. Using prior information about
the smoothness of µ(·), we can choose the form of correlation function. Based on previous study (Xie
et al. 2010), we use the product-form Gaussian correlation function

r(x−x′) = exp
(
−

d

∑
j=1

φ j(x j− x′j)
2
)

(5)

for the empirical evaluation in Section 5. Let φφφ = (φ1,φ2, . . . ,φd) represent the correlation function
parameters. So in summary, before having any simulation results the uncertainty about µ(x) is represented
by a Gaussian process M(x)∼ GP(β0,τ

2r(x−x′)).
To reduce the uncertainty about µ(x) we choose an experiment design consisting of pairs D ≡

{(xi,ni), i = 1,2, . . . ,k} at which to run simulations, where (xi,ni) denotes the location and the num-
ber of replications, respectively, at the ith design point. The simulation outputs at D are YD ≡
{(Y1(xi),Y2(xi), . . . ,Yni(xi)); i = 1,2, . . . ,k} and the sample mean at design point xi is Ȳ (xi) =∑

ni
j=1Yj(xi)/ni.

Let the sample means at all k design points be ȲD = (Ȳ (x1),Ȳ (x2), . . . ,Ȳ (xk))
T . Since the use of

common random numbers is detrimental to prediction (Chen et al. 2012), the simulations at differ-
ent design points are independent and the variance of ȲD is represented by a k× k diagonal matrix
C = diag

{
σ2

ε (x1)/n1,σ
2
ε (x2)/n2, . . . ,σ

2
ε (xk)/nk

}
.

Let Σ be the k× k spatial covariance matrix of the design points and let Σ(x, ·) be the k× 1 spatial
covariance vector between each design point and a fixed prediction point x. If the parameters (τ2,φφφ ,C)
are known, then the metamodel uncertainty can be characterized by a refined GP Mp(x) that denotes the
conditional distribution of M(x) given all simulation outputs,

Mp(x)∼ GP(mp(x),σ2
p(x)) (6)

where mp(·) is the minimum mean squared error (MSE) linear unbiased predictor

mp(x) = β̂0 +Σ(x, ·)>(Σ+C)−1(ȲD − β̂0 ·1k×1), (7)

and the corresponding variance is

σ
2
p(x) = τ

2−Σ(x, ·)>(Σ+C)−1
Σ(x, ·)+η

>[1>k×1(Σ+C)−11k×1]
−1

η (8)
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where β̂0 = [1>k×1(Σ+C)−11k×1]
−11>k×1(Σ+C)−1ȲD and η = 1−1>k×1(Σ+C)−1Σ(x, ·) (Ankenman et al.

2010).
Since in reality the spatial correlation parameters τ2 and φφφ are unknown, maximum likelihood estimates

are typically used for prediction, and the sample variance is used as an estimate for the simulation variance
at design points C (Ankenman et al. 2010). By plugging these into Equations (7) and (8) we can obtain
the estimated mean m̂p(x) and variance σ̂2

p(x). Thus, the metamodel we use is µ̂(x) = m̂p(x) with variance
estimated by σ̂2

p(x). Notice that since accounting for the parameter estimation error is intractable, this
plug-in estimator is commonly used in the kriging literature. In the metamodel-assisted bootstrapping
approach, the dependent input model characterized by moments M can be interpreted as a location x in a
d dimensional space.

4.4 Procedure to Build CI

Since there are both input and simulation estimation errors in the system mean performance estimates,
in this section, we propose a procedure to build a CI quantifying the overall uncertainty by using our
generalized metamodel-assisted bootstrapping approach. Asymptotic analysis shows that as m,B→∞, the
CI is consistent.

Based on a hierarchical approach, we propose the following procedure to build a (1−α)100% bootstrap
percentile CI:

1. Identify a design space E for input model moments M over which to fit the metamodel. Since the
metamodel is used to propagate the input uncertainty measured by the bootstrapped moments M̃m
to the output mean, the design space is chosen to be the smallest ellipsoid covering most likely
bootstrapped moments. See Barton et al. (2014) for more detailed information.

2. To obtain an experiment design D = {(Mi,ni), i = 1,2, . . . ,k}, use a Latin hypercube sample to
embed k design points into the design space E and assign equal replications to these points to
exhaust N.

3. For i = 1 to k (loop through k design points)
(a) Use moment matching to calculate the marginal parameters θθθ

(i)
` for `= 1,2, . . . ,L.

(b) By following the description in Section 4.2, find the NORTA representation with parameters(
θθθ
(i)
` ,ρ

(i)
Z`

)
for F̀ with `= 1,2, . . . ,L and d` > 1.

Next i
4. At all design points, generate samples of X` by using NORTA representations for F̀ with d` > 1

and using standard approaches (Nelson 2013) for F̀ with d` = 1, `= 1,2, . . . ,L. Use these samples
to drive simulations (see Section 4.2) and obtain outputs yD . Compute the sample average ȳ(Mi)
and sample variance s2(Mi) of the simulation outputs, i = 1,2, . . . ,k. Fit a SK metamodel to obtain
m̂p(·) and σ̂2

p(·) using
(
ȳ(Mi),s2(Mi),Mi

)
, i = 1,2, . . . ,k.

5. For b = 1 to B
(a) Generate bootstrap moments M̃

(b)
m by following the procedure in Section 4.1.

(b) Draw M̂b ∼ N
(

m̂p(M̃
(b)
m ), σ̂2

p(M̃
(b)
m )
)

.

Next b
6. Report CI:

[
M̂(dB α

2 e),M̂(dB(1− α

2 )e)

]
where, M̂(1) ≤ M̂(2) ≤ ·· · ≤ M̂(B) are the sorted values.

If SK parameters (τ2,φφφ ,C) are known and we replace M̂b in Step 5(b) of the CI procedure with Mb ∼
N
(
mp(M̃

(b)
m ),σ2

p(M̃
(b)
m )
)
, then we can show that the CI obtained [M(dB α

2 e),M(dB(1− α

2 )e)] is asymptotically
consistent by Theorem 1. Further, this CI characterizes the impact from both input and metamodel uncertainty
on the system performance estimate.
Theorem 1 Suppose that the following assumptions hold.
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Figure 1: A stochastic activity network.

1. We have i.i.d. observations X( j)
`

i.i.d∼ Fc
` for j = 1,2, . . . ,m` and `= 1,2, . . . ,L.

2. The ε j(x)
i.i.d.∼ N(0,σ2

ε (x)) for any x, and M(x) is a stationary, separable GP with a continuous
correlation function satisfying

1− r(x−x′)≤ c
|log(‖ x−x′ ‖2)|1+γ

for all ‖ x−x′ ‖2≤ δ

for some c > 0, γ > 0 and δ < 1, where ‖ x−x′ ‖2=
√

∑
d
j=1(x j− x′j)2.

3. The input processes, simulation noise ε j(x) and GP M(x) are mutually independent and the bootstrap
process is independent of all of them.

As m→∞, we have m`/m→ c` with `= 1,2, . . . ,L for a constant c`> 0. Then the interval [M(dB α

2 e),M(dB(1− α

2 )e)]
is asymptotically consistent, meaning the iterated limit

lim
m→∞

lim
B→∞

Pr{M(dBα/2e) ≤Mp(M
c)≤M(dB(1−α/2)e)}= 1−α. (9)

Proof: By Theorem 1 in Xie et al. (2014b), we have M̃m
a.s.→M c as m→∞. Then, following similar steps

as in proving Theorem 1 in Xie et al. (2014a), we can show Equation (9). 2

5 EMPIRICAL STUDY

Since F1,F2, . . . ,FL are mutually independent, without loss of generality we consider an example with
L = 1 and suppress the subscript for the `th input distribution. We use a stochastic activity network as
shown in Figure 1 to examine the finite-sample performance of our metamodel-assisted bootstrapping
approach. Suppose that the time required to complete task (arc) i is denoted by Xi for i = 1,2, . . . ,5 and
X> = (X1,X2, . . . ,X5). We wish to compute the time to complete the project, which is the longest path
through the network, Y = max{X1 +X2 +X5,X1 +X4,X3 +X5}. We are interested in the mean response
E[Y ].

We assume that Fc is NORTA. The marginal distributions are Xi ∼ exp(θ c
i ) for i = 1,2, . . . ,5 with

means θθθ c = (10,5,12,11,5)>. The Spearman rank correlation matrix is

Rc
X =


1 0.5 0.5 0.3 0

1 0.5 0 0.3
1 0 0.3

1 0.1
1

 .
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Therefore, the number of parameters characterizing the input model F is d = d†+d∗ = 5+(5×4)/2 = 15.
Since the true mean response µ(ϑϑϑ c) is unknown, we run 107 replications and obtain the estimated true
mean response 27.549 with standard error 0.005.

To evaluate our metamodel-assisted bootstrapping approach, we pretend that the input-model parameters
(θθθ c,Rc

X) are unknown and they are estimated by m i.i.d. observations from Fc; this represents obtaining
“real-world data.” The goal is to build a CI quantifying the impact of both input and simulation estimation
error on the system mean response estimate.

We compare metamodel-assisted bootstrapping to the conditional CI and direct bootstrapping. For the
conditional CI, we fit the input distribution to the real-world data by moment matching and allocate all
computational budget N replications to simulating the resulting system. In direct bootstrapping, we run
N/B replications of the simulation at each bootstrap moment M̃

(b)
m , record the average simulation output

Ȳb = Ȳ (M̃ (b)
m ), and report the percentile CI

[
Ȳ(dB α

2 e),Ȳ(dB(1− α

2 )e)

]
.

Table 1 shows the statistical performance of conditional and direct bootstrapping CIs and metamodel-
assisted bootstrapping with k = 80 design points, m = 100,500,1000 real-world observations, and com-
putational budget of N = 103, 104, and 105 replications. We ran 1000 macro-replications of the entire
experiment. In each macro-replication, we first generate m multivariate observations by using NORTA
with parameters (θθθ c,Rc

X). Then, for the conditional CI, we run N replications at the estimated parameters
(θ̂θθ m, R̂X,m) and build CIs with nominal 95% coverage of the response mean. For direct bootstrapping and
metamode-assisted bootstrapping, we use bootstrapping to generate B = 1000 samples moments to quantify
the input uncertainty. Since µ(·) is unknown, we use the fixed computational budget N to propagate the
input uncertainty either via direct simulation or the SK metamodel to build percentile CIs with nominal
95% coverage.

From Table 1 we observe that under the same computational budget N, the conditional CIs that only
account for the simulation uncertainty tend to have undercoverage. The CIs obtained by direct simulation
are much wider and they typically have obvious over-coverage. The CIs obtained by metamodel-assisted
bootstrapping have coverage much closer to the nominal level of 95%. As N increases and simulation
estimation error decreases, the undercoverage problem for the conditional CI becomes worse. Since
direct bootstrapping and metamodel-assisted bootstrapping use the same set of bootstrapped samples to
quantify input uncertainty, the overcoverage for the direct bootstrap represents the additional uncertainty
introduced while propagating the input uncertainty to the output mean. Table 1 shows that the metamodel
can effectively use the computational budget and reduce the impact from simulation estimation error.
Further, as the computational budget increases, the difference between the CIs obtained by the two methods
diminishes.

Figure 2 shows a scatter plot of conditional CIs and CIs obtained by direct simulation and metamodel-
assisted bootstrapping when m = 500, k = 80 and N = 104. It includes results from 100 macro-replications.
The horizontal axis represents (QL+QU)/2 that gives a point estimate of system mean performance, where
QL and QU are the lower and upper bounds of the CIs. The vertical axis is (QU −QL)/2 that gives half
width of the CIs. Region 1 contains points that correspond to CIs having underestimation and Region 3
contains points corresponding to overestimation, while Region 2 contains CIs that cover µ(Fc) (Kang and
Schmeiser 1990). Conditional CIs have short width and their centers have large variance. Therefore, they
have serious undercoverage. For results from metamodel-assisted bootstrapping, the proportion of CIs in
Region 2 is close to 95% and CIs outside tend to have underestimation.

6 CONCLUSIONS

In this paper, we extended the metamodel-assisted bootstrapping approach to cases with dependence in
the input models. The input models are characterized by their marginal distributions and Spearman rank
correlation, which are estimated from real-world data. Metamodel-assisted bootstrapping uses the bootstrap
to quantify the input uncertainty and propagates it to the output mean by using a SK metamodel. This
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Table 1: Results for CIs when m = 100,500,1000.

m = 100 N = 103 N = 104 N = 105

conditional CI coverage 43% 14.1% 4.4%
CI width (mean) 2.2 0.7 0.2
CI width (SD) 0.19 0.1 0.02

direct simulation coverage 100% 100% 99.4%
CI width (mean) 67.3 22.8 9.7
CI width (SD) 6 1.9 0.8

metamodel-assisted coverage 97.6% 96.1% 94.8%
CI width (mean) 12.4 8 7.4
CI width (SD) 2.5 1.2 0.9

m = 500 N = 103 N = 104 N = 105

conditional CI coverage 76.9% 32.1% 12%
CI width (mean) 2.2 0.7 0.2
CI width (SD) 0.1 0.02 0.01

direct simulation coverage 100% 100% 100%
CI width (mean) 66.4 21.9 7.5
CI width (SD) 3.6 1 0.3

metamodel-assisted coverage 96.3% 98.7% 97.2%
CI width (mean) 10.3 4.5 3.5
CI width (SD) 2.9 0.9 0.4

m = 1000 N = 103 N = 104 N = 105

conditional CI coverage 83.4% 42.2% 16.7%
CI width (mean) 2.2 0.7 0.2
CI width (SD) 0.09 0.02 0.01

direct simulation coverage 100% 100% 100%
CI width (mean) 66.5 21.7 7.2
CI width (SD) 3.2 0.9 0.3

metamodel-assisted coverage 97.1% 94% 96.6%
CI width (mean) 10.2 3.6 2.6
CI width (SD) 2.9 1.1 0.3
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Figure 2: Scatter plot of conditional CIs and CIs obtained by direct simulation and metamodel-assisted
bootstrapping when m = 500, k = 80 and N = 104.

approach delivers a CI quantifying the overall uncertainty of the system performance estimate. Compared
with the direct bootstrap, the metamodel can make effective use of the simulation budget. An empirical
study demonstrated that our metamodel-assisted bootstrap has good finite-sample performance under various
quantities of real-world data and simulation budget.
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