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When we use the simulation to assess the performance of stochastic systems, the input models used to drive

simulation experiments are often estimated from finite real-world data. There exist both input and simula-

tion estimation uncertainty in the system performance estimates. Without strong prior information on the

input models and the system mean response surface, in this paper, we propose a Bayesian nonparametric

hierarchical framework to quantify the impact from both sources of uncertainty. Specifically, nonparametric

input models are introduced to faithfully capture the important features of the real-world data, such as

heterogeneity, multi-modality, skewness and heavy tails. Bayesian posteriors of flexible input models char-

acterize the input uncertainty, which automatically accounts for both model selection and parameter value

uncertainty. Then, the input uncertainty is propagated to outputs by using the direct simulation with sim-

ulation estimation uncertainty quantified by the posterior distribution of the mean system response. Thus,

under very general conditions, our framework delivers a credible interval accounting for both input and

simulation uncertainty. A variance decomposition is further developed to quantify the relative contributions

from both sources of uncertainty. Our approach is supported by rigorous theoretical and empirical study.
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1. Introduction

Simulation is widely used in many applications to assess the performance of stochastic systems,

e.g., manufacturing, supply chain and health care systems. The input models, defined as the driving

stochastic processes in simulation experiments, are often estimated from finite real-world data.

Therefore, there exist both input estimation error, called the input uncertainty, and simulation

estimation error, called the simulation uncertainty. Ignoring either source of uncertainty could lead

to unfounded confidence in the simulation assessment of system performance.

Various approaches have been proposed in the literature to quantify the input and simulation

uncertainty; see Barton (2012), Song et al. (2014) and Lam (2016) for a comprehensive review.

Based on methodologies developed for characterizing the input uncertainty, they can be divided

into frequentist and Bayesian approaches. The frequentist approaches typically study the sampling

distributions of point estimators of underlying input models. Since it could be hard to get the exact

sampling distributions in many situations, the asymptotic approximation, including the normal

approximation and the bootstrap, is often used to quantify the input uncertainty, which is valid

when the amount of real-world data is large. However, even in the current big data world, we

often face the situations where the amount of real-world data is limited, especially for the high-tech

products with short life cycles. For example, biopharma manufacturing requires 9 to 12 months

from raw materials sourcing to the finish drug products, and it requires another 2 to 3 months for

quality testing. However, the drug substances typically expire after 18 to 36 months; see Otto et al.

(2014). Compared to frequentist methods, Bayesian approaches derive the posterior distributions

quantifying the input uncertainty and they do not need a large-sample asymptotic approximation

for their validation. It is also straightforward for Bayesian approaches to incorporate the prior

information about the underlying input models. See Xie et al. (2014) for the discussion of frequentist

v.s. Bayesian approaches for input uncertainty.

In this paper, we focus on developing a rigorous Bayesian framework to quantify the estimation

uncertainty of system mean performance when we do not have strong prior information on the
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input models and system mean response surface. We consider univariate input models, which model

independent and identically distributed (i.i.d.) data by mutually independent input distributions.

Many existing methods assume specific parametric families for input models with unknown

parameter values estimated from finite real-world data. Thus, the input uncertainty can be quanti-

fied by the posteriors of input parameters, see for example Cheng and Currie (2003), Ng and Chick

(2006) and Xie et al. (2014), etc. Parametric approaches tend to work well when one has strong

prior beliefs on the families of input models. However, they are considered to be too restrictive in

general. If the selected parametric families do not have sufficient flexibility and cannot represent

the underlying input models well, there always exists the distribution family selection error which

does not vanish as the amount of real-world data becomes large. This inconsistent estimation could

lead to incorrect inference even for the moderate size of real-world data (Hjort et al. 2011).

One possible remedy for the inconsistency of parametric approaches is to introduce the fam-

ily uncertainty, which accounts for the input model selection error among a prespecified pool of

different candidate parametric families. For example, Chick (2001) proposed the Bayesian Model

Averaging (BMA) to quantify input uncertainty from both families and parameter values, where

the family uncertainty is characterized by the posterior probabilities of different candidate para-

metric models. However, BMA is based on the assumption that all data come from one of candidate

distributions (Bishop 2006). In other words, BMA relies on the assumption that all data are gen-

erated from a single true underlying parametric family, and this family must be included as a

candidate priori. Furthermore, if the selected parametric families are not mutually exclusive, such

as exponential and Gamma distributions, it can potentially lead to model identification problems.

Instead of using parametric families, we explore nonparametric input modeling in the Bayesian

framework that we develop to quantify the overall system performance estimation uncertainty.

Our approach is based on the following consideration: In many situations, the real-world data

represent the variability caused by various latent sources of uncertainty. It is almost impossible to

find a single parametric family that can capture the important features in the real-world data. For
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example, in a raw material (RM) inventory system in the bio-pharmaceutical manufacturing, a

single RM is used to satisfy the demands from various production lines, called move orders. Different

latent sources of uncertainty in production lines could lead to multi-modality. Heterogeneity is

commonly observed because the variability of different sources of uncertainty could be different. In

addition, contamination and cross-contamination in the production processes, which could cause

the shutdown of production lines and the throwaway of batches of products, can lead to the right

skewness and the tail in the move orders. As a result, the underlying physical input distributions

characterizing the variability from various sources of uncertainty could have the important features,

including heterogeneity, multi-modality, skewness and tails. These important properties are also

observed in the real-world data collected from other industries; see for example Wagner et al.

(2009), Ma (2011) and Akcay et al. (2011).

Flexible Bayesian nonparametric input models are presented to efficiently capture important

features in the real-world data. For discrete random variables with finite support points, the multi-

nomial distribution could be used as a straightforward nonparametric estimator of the true under-

lying distribution. Therefore, in this paper, we focus on the input modeling of continuous random

variables. Specifically, our input models are based on the Dirichlet Processes Mixtures (DPM), a

popular Bayesian nonparametric modeling method in both statistics and machine learning com-

munities. For details about the DPM, we refer the readers to Ghosh and Ramamoorthi (2003).

Motivated by the kernel density estimation (KDE), the Bayesian nonparametric DPM approach

with Gaussian kernel was introduced in the statistics community (West 1990, Escobar and West

1995, etc.), which expresses the generative process of real-world data as a nonparametric mixture

distribution of normals. It is extended to other kernel functions; see for example Hanson (2006),

Kottas (2006), Wu and Ghosal (2008).

From the modeling perspective, DPM has clear advantages over all parametric families because

the variability across different mixing components naturally represents various latent sources of

uncertainty, which makes it straightforward to capture the important properties in the real-world
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data. Different from parametric approaches, the number of active mixing components and param-

eters can automatically adjust to the complexity of real data. Thus, our empirical study demon-

strates that DPM has better and more robust finite sample performance. From the theoretical

perspective, DPM is able to consistently estimate a wide class of distributions under very general

conditions (Ghosal et al. 1999, Wu and Ghosal 2008, etc.). This generality of consistent estimation

is clearly lacking in most parametric methods. Compared to BMA, our approach does not rely on

the assumption that the true underlying distribution comes from a particular parametric family,

and thus completely avoids the difficulty of select the “appropriate” candidate parametric distribu-

tions. From the computational perspective, one can develop efficient posterior samplers for DPM

of popular exponential families (see our Section 3.2, Escobar and West 1995, Neal 2000, etc.).

Among frequentist approaches, empirical distribution is the most commonly used nonparametric

approach in the simulation literature, and the bootstrap is typically used to quantify the input

estimation uncertainty; see for example Barton and Schruben (1993), Barton (2007). Empirical

distribution is simple and easy to implement. However, DPM has some important advantages com-

pared to empirical distribution. First, even though the underlying true distribution is continuous,

empirical distribution is always discrete. When we have a limited amount of real-world data, sam-

ples from the empirical distribution could overlook some important properties in the underlying

input models, such as the tails. Second, the validity of using the bootstrap to quantify the input

uncertainty relies on large sample asymptotics and therefore requires large samples of real-world

data. However, as we mentioned above, the decision makers often face the situations where the

amount of real-world data is limited. As a Bayesian approach, DPM can overcome these limitations.

Our empirical study demonstrates that DPM has better finite sample performance compared to

frequentist competitors, especially when the sample size of real-world data is small. Third, unlike

empirical distribution, DPM tries to model the underlying generative processes of inputs, which

could be used to identify the latent sources of uncertainty, and further study their impact on the

system performance.
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Therefore, in this paper, we develop a Bayesian nonparametric hierarchical framework to quan-

tify the system performance estimation uncertainty. We first introduce nonparametric input models

based on DPM with various kernels, which could capture the important properties in the real-world

data. The samples drawn from posteriors of flexible input models can automatically quantify both

model selection and parameters value uncertainty. Then, the input uncertainty is propagated to

the output through the direct simulation that runs simulations at each sample of input models,

while the simulation uncertainty is quantified by the posterior distributions of the mean system

responses. Our Bayesian framework leads to a sampling procedure that delivers a posterior distri-

bution and further a percentile credible interval (CrI) quantifying the overall uncertainty of system

performance estimates.

In sum, the main contributions of our paper are as follows:

1. Considering that the real-world data represent the variability caused by various latent sources

of uncertainty in many situations, DPM is used to model the underlying generative processes of

inputs. It provides sufficient flexibility to capture the important features in the real-world data,

and can overcome the limitations of existing approaches on input uncertainty, including parametric

approaches, BMA and empirical distribution. Further, DPM with Gamma, Gaussian and Beta

kernels can model input data with support on the non-negative half real line, the whole real line,

and an interval with finite length. The empirical study demonstrates that our input models have

better and more robust performance than existing approaches.

2. Without prior information about the underlying true input distributions and the system

response surface, we propose a Bayesian framework which accounts for both input and simulation

uncertainty in the Bayesian paradigm, and also delivers a CrI quantifying the overall uncertainty

of system mean performance estimates. Furthermore, a variance decomposition is developed to

quantify the relative contributions from the input and simulation uncertainty.

3. We provide a rigorous theoretical support for our Bayesian nonparametric framework. The

theory includes the posterior consistency of our CrI accounting for both input and simulation
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uncertainty. Given a fixed sample size of the real-world data, as the simulation budget increases,

this CrI converge to the CrI accounting for input uncertainty with the true mean response surface

known. Further, as the amount of real-world data and the simulation budget go to infinity, the CrI

converges to the true system performance.

The next section describes the related studies on input modeling and uncertainty quantification.

In Section 3, a Bayesian framework is introduced to quantify the overall uncertainty of the system

performance estimates. We then report results of finite sample behaviors on both input and system

performance estimation in Section 4, and we conclude this paper in Section 5. All proofs, derivations

and other supplementary studies are included in the online Appendix.

2. Background

Since Barton (2012), Song et al. (2014) and Lam (2016) provided the comprehensive review on input

uncertainty and uncertainty quantification, in this section, we briefly discuss existing Bayesian

approaches related to our approach. When the parametric families of input models are known, sam-

ples drawn from posteriors of input parameters can quantify the input uncertainty. Two approaches

are typically used to propagate the input uncertainty to the output: direct simulation and meta-

modeling. Zouaoui and Wilson (2003) run the simulations at each sample of input models. Then,

a random effect model and a hierarchical normal model were used to do inference on the system

mean response. Both models are built on the homogeneity assumption which requires the constant

variance of the simulation error at different posterior samples of input models.

Since each simulation run could be computationally expensive, an equation-based metamodel as

a function of input parameters could efficiently propagate the input uncertainty to output. Ng and

Chick (2006) developed a first-order metamodel based on a Taylor series approximation. This local

approximation is suitable to the situations when there is a large amount of real-world data and

posterior distributions locate in a small neighborhood of the true input parameters. To account for

more general situations when the amount of real-world data could be small, Xie et al. (2014) built

a Gaussian process global metamodel to propagate the input uncertainty to the output mean.
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Chick (2001) proposed BMA approach to account for both input model and parameter value

uncertainty. Given a set of candidate parametric distributions, Bayesian posteriors of the input

families and parameters are derived to quantify the input uncertainty. Then, the simulations are

driven by samples from the posteriors of input distributions, and the sample mean of simulation

outputs is used to estimate the system posterior mean response. To separate the relative contri-

butions from input model, parameters and simulation uncertainty on the system posterior mean

response, Zouaoui and Wilson (2004) developed a BMA-based simulation replication algorithm.

The key difference from Chick (2001) is that Zouaoui and Wilson (2004) assigned multiple simula-

tion replications to each sample of input distributions. Confidence intervals (CIs) are constructed

to quantify the overall variability for the posterior mean response. BMA is further extended to

input models with dependence by using Normal-to-Anything (NORTA) (Biller and Corlu 2011).

However, since BMA is based on the assumption that the real-world data come from a single candi-

date parametric distribution, it could be challenging to choose appropriate candidate distributions

when we do not have strong prior information on the underlying input models. In addition, BMA

does not quantify the simulation uncertainty in the Bayesian manner.

Although relatively new in the stochastic simulation community, the DPM model has been

extensively studied and widely applied in the statistics and machine learning communities during

the past decade; see Ferguson (1973), Lo (1984), Escobar (1994), Ghosh and Ramamoorthi (2003),

etc. In general, DPM has demonstrated robust performance in terms of density estimation (Escobar

and West 1995, Görür and Rasmussen 2010, etc.). The Markov chain Monte Carlo (MCMC) method

enables efficient sampling of mixture distributions from the posterior; see for example Escobar and

West (1995), Neal (2000), Hanson (2006), Kottas (2006), and Wang and Dunson (2011).

This paper completes and extends our prior work (Xie et al. 2014) on the input uncertainty

and the uncertainty quantification for the system performance estimation. Compared with the

parametric Bayesian approaches, our nonparametric input models can capture the important fea-

tures in the real-world data. The posteriors of flexible input models can automatically account for
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both model selection and parameter values uncertainty. Compared with BMA, our approach can

avoid the difficulty in selecting the “appropriate” parametric candidate distributions. Further, our

Bayesian framework accounts for both input and simulation uncertainty in the Bayesian paradigm

and delivers a CrI of the system true mean performance instead focusing on estimating the system

posterior mean response.

3. A Bayesian Nonparametric Hierarchical Framework

When we use the simulation to assess the stochastic system performance, the output from the jth

replication with input models, denoted by F , can be written as

Yj(F ) = µ(F ) + εj(F )

where µ(F ) denotes the mean system response and εj(F ) represents the simulation error following

the normal distribution εj(F )
i.i.d.∼ N (0, σ2

ε (F )). The normality assumption on the simulation error

could hold in many situations since the simulation output is often an average of a large number of

more basic outputs. For example, in a RM inventory control, when we assess the expected stock

level for an ordering policy, each simulation output is the average of stock levels collected from

many time periods. This normal assumption does not hold in general. The empirical study on an

M/M/1 queue with different utilization demonstrates the robustness of our approach in Section 4.

For notational simplification, suppose that F consists of a single univariate model. Denote the

unknown underlying true input model by F c.

Our interest is in the system mean response at the true input model, denoted by µc ≡ µ(F c).

Since the simulation output depends on the choice of input distribution F , the input model failing

to capture important features of F c can lead to poor estimates of system performance. Thus, it is

desirable to construct the input model that can faithfully capture the heterogeneity, multi-modality,

skewness and tails in the real-world data. Without strong prior information on F c, in Section 3.1, we

present nonparametric DPM that provides a natural way to model the input generative processes

with various latent sources of uncertainty. Thus, it can capture the important features in the

real-world data.
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The underlying true input distribution F c is estimated by finite real-world data of size m, denoted

by Xm ≡ {X1,X2, . . . ,Xm}, with Xi
i.i.d.∼ F c. The posterior distribution of the flexible input model

derived from the Bayes’ rule can be used to quantify the input uncertainty,

p(F |Xm)∝ p(F ) · p(Xm|F )

where p(F ) characterizes our prior belief about the true input model F c and p(Xm|F ) denotes

the likelihood function of data Xm under a generic input model F . Since the DPM model does

not have closed form distributions for analytical posterior analysis, we describe Gibbs samplers in

Section 3.2 to efficiently draw posterior samples of input models, {F̃ (1), F̃ (2), . . . , F̃ (B)}, quantifying

the input uncertainty. Then, we discuss the asymptotic consistency of p(F |Xm) in Section 3.3.

When the Bayesian nonparametric approach is used to quantify the input uncertainty, the num-

ber of active parameters varies at different posterior samples of input model; see the explanation

in Sections 3.1 and 3.2. This poses difficulties in constructing an appropriate metamodel as a

functional of nonparametric input model. Thus, the direct simulation is used to propagate the

input uncertainty to the output. Given finite simulation resource, we characterize the simula-

tion estimation uncertainty by the Bayesian posteriors of mean system responses in Section 3.4.

Specifically, at any sample F̃ (b) drawn from p(F |Xm), we generate nb replications and obtain the

outputs Yb = {Y1(F̃ (b)), Y2(F̃ (b)), . . . , Ynb(F̃
(b))}. The simulation uncertainty of mean response at

F̃ (b) is characterized by the posterior distribution, denoted by p(µb|Yb, F̃
(b)), where µb ≡ µ(F̃ (b)).

Let µ̃b ≡ µ̃(F̃ (b))∼ p(µb|Yb, F̃
(b)) be a random draw from the posterior.

Thus, our belief on µc is characterized by the posterior distribution of the compound ran-

dom variable U ≡ µ̃(F̃ ), denoted by FU(·|Xm,Yn), given the information obtained from the real-

world data Xm and the simulation outputs Yn ≡ {Y1,Y2, . . . ,YB}, where the number of repli-

cations allocated to the samples of input distribution {F̃ (1), F̃ (2), . . . , F̃ (B)} is collected in the

vector n ≡ {n1, n2, . . . , nB}. In Section 3.5.1, we propose a sampling procedure to construct a

(1 − α∗)100% percentile CrI quantifying the overall estimation uncertainty of µc, denoted by

[qα∗/2(Xm,Yn), q1−α∗/2(Xm,Yn)], where

qγ(Xm,Yn)≡ inf{q : FU(q|Xm,Yn)≥ γ}
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with γ = α∗/2,1 − α∗/2. Then, we study the asymptotic properties of the CrI in Section 3.5.2.

As real-world systems have to evolve rapidly to be competitive, the decision makers often

face the situations where the amount of real-world data is limited. Thus, we prove that

given a finite amount of real-world data Xm, as the simulation budget increases, the interval

[qα∗/2(Xm,Yn), q1−α∗/2(Xm,Yn)] converges to the CrI quantifying the impact of input uncertainty,

denoted by [qα∗/2(Xm, µ(·)), q1−α∗/2(Xm, µ(·))], where

qγ(Xm, µ(·))≡ inf{q : FU(q|Xm, µ(·))≥ γ}

and FU(·|Xm, µ(·)) denotes the posterior distribution of µ(F̃ ) with F̃ ∼ p(F |Xm). We also show

that as the real-world data and the simulation budget go to infinity, this interval converges to µc.

If the interval [qα∗/2(Xm,Yn), q1−α∗/2(Xm,Yn)] accounting for both input and simulation uncer-

tainty is too large, the decision maker needs to know if the additional simulation could improve

the estimation accuracy of µc. Here, we consider the situations where the additional real-world

data are not easy to collect. Otherwise, the input uncertainty may not be a concern. Thus, we

derive a variance decomposition to estimate the relative contributions from input and simulation

uncertainty in Section 3.6.

3.1. Input Modeling by Dirichlet Process Mixtures

Given a kernel density function h(·), an input distribution from DPM is represented as an infinite

mixture with the density

f(x) =
+∞∑
j=1

πjh(x|ψψψj) (1)

where πj denotes the mixing weights and h(·|ψψψj) represents the kernel density function with param-

eters ψψψj. The mixing distribution of parameters
{

(πj,ψψψj)
+∞
j=1

}
, which is

∑+∞
j=1 πjδ(ψψψj) (δ(a) is the

Dirac function at a), is drawn from the Dirichlet process DP(α,G0), where G0 denotes the base

distribution and α denotes the dispersion parameter. The weight sequence {π1, π2, . . .} is controlled

by α, πj = βjΠ
j−1
`=1(1−β`), with βj ∼Beta(1, α), and the parameters are generated by G0, ψψψj ∼G0.
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Theoretically, the number of latent sources of uncertainty could be infinity. However, given finite

real-world data Xm = (X1,X2, . . . ,Xm), there is a finite number of active components, denoted

by K. It is bounded by m since each active component requires more than one data points asso-

ciated with. Let c = (c1, c2, . . . , cm) denote the latent indicator variables that give the indices of

components that the data Xm are associated to. Then, DPM model can be written as (Neal 2000),

πππ∼Dirichlet(α/K, . . . ,α/K)

ci|πππ
i.i.d.∼ Multinomial(π1, . . . , πK)

ψψψj
i.i.d.∼ G0(ψψψ|θθθG)

Xi|ci,Ψ∼ h(·|ψψψci)

(2)

for i = 1,2, . . . ,m and j = 1,2, . . . ,K, where πππ ≡ (π1, π2, . . . , πK), Ψ ≡ (ψψψ1,ψψψ2, . . . ,ψψψK) and θθθG

denotes the hyper-parameters for G0(·). By integrating out πππ, the conditional prior of ci is

P
(
ci = j|c−i) =


m−i
j

m+α−1
if ∃cq = j for all q 6= i

α
m+α−1

otherwise

(3)

where c−i are all the latent variables except for ci, and m−ij is the number of latent variables with

cq = j for all q 6= i; see Neal (2000).

DPM is specified by three key components: the dispersion parameter α, the kernel density h(·),

and the base distribution G0. The parameter α represents the complexity of input model and the

dispersion of the data. From Equation (3), conditional on all other samples, the probability of

assigning Xi to a new mixing component is α/(m+ α− 1). DPM with a larger value of α tends

to generate samples of the input density f(·) with more distinct active components, which implies

higher complexity. The appropriate value of α could be inferred from the real-world data; see the

inference in Section 3.2. Therefore, differing from parametric approaches, densities generated as

DPM can adapt its complexity to the data.

The choice of the kernel density h(·) is based on the support of F c, and meanwhile accounts

for the feasibility of implementation in the posterior computation. Here, suppose that the support
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of underlying input model is known. It could be a limitation for some cases where the support is

unknown; see for example Section 6.8 of Law (2015). We present DPM models with three kernel

densities, including Gamma, Gaussian and Beta, which account for the real-world data that are

supported on the half real line <+, the whole real line < and a finite interval [a1, a2] with −∞<

a1 < a2 <∞. Notice that the scaled version of DPM with Beta kernel could be applicable to

continuous distributions with a finite support interval. As a result, the DPMs with these kernels can

be widely applied to different types of real-world data. Further, since Gamma, Gaussian and Beta

distributions belong to the exponential family, with conjugate priors, we derive efficient samplers

to generate posterior samples of input model quantifying the input uncertainty.

To simplify the posterior sampling, we consider the conjugate prior G0 for component parameters

ψψψ. For DPM with Gamma kernel, we let ψψψ = (V,u)
>

with V and u denoting the shape and mean

parameters. Motivated by the study on Gamma mixture distributions in Wiper (2001), we consider

a conditional conjugate prior for V and u,

V ∼Exponential(θ) and u∼ Inv-Gamma(γ,β). (4)

Equation (4) specifies G0(V,u) with the hyper-parameters θθθG = (θ, γ,β).

For DPM with Gaussian kernel, we letψψψ= (u,σ2)> with u and σ2 denoting the mean and variance

of the Gaussian component. Following Gelman et al. (2004), we choose the conjugate prior,

u|σ2 ∼N (u0, σ
2/k0) and σ2/σ2

0 ∼ Inv-Gamma

(
v0

2
,
1

2

)
. (5)

Equation (5) specifies G0(u,σ2) with hyper-parameters θθθG = (u0, k0, v0, σ0)>.

For DPM with Beta kernel, we let ψψψ= (γ,β)
>

with γ and β denoting the two shape parameters.

Since the Beta distribution belongs to the exponential family, we choose the conjugate prior,

γ,β|λ0, λ1, λ2 ∝ exp

{
−λ1γj −λ2β−λ0 log

[
Γ(γ)Γ(β)

Γ(γ+β)

]}
. (6)

Equation (6) specifies G0(γ,β) with the hyper-parameters θθθG = (λ0, λ1, λ2)>.

Based on our empirical study, these base distributions demonstrate good performance. Notice

that it is possible to impose hyper-priors on both G0 and α, which adds more model flexibility and
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adaptivity to the data. However, this leads to more complex sampling procedure, and further our

empirical studies indicate that adding these hyper-priors has insignificant influence on the posterior

inference. Therefore, we only consider the posterior analysis on Ψ,c, α.

3.2. Gibbs Sampler for DPM

The DPM model (2) does not have closed form distributions for analytical posterior analysis.

Motivated by Neal (2000), we present a Gibbs sampler for the parameters of distinct components

Ψ, the indicator variables c = (c1, c2, . . . , cm), and the dispersion parameter α. Each iteration in

the Gibbs sampler includes three main steps as follows. In Step (1), for each observation Xi in

the real-world data Xm, we update its latent indicator ci conditional on all the other parameters,

and then record the number of active distinct components K. In Step (2), for each component, we

update its parameters ψψψj given the data associated to this component. In Step (3), we update the

dispersion parameter α conditional on the current number of active components.

(1) For i = 1 to m, generate ci from the conditional posterior p(ci = j|c−i,ψψψj, α,Xi). Remove

empty components and record the number of active distinct components K.

(2) For j = 1 to K, generate the kth parameter in ψψψj, denoted by ψjk, from the conditional

posterior p(ψjk|ψψψ−kj ,Xj), where ψψψ−kj denotes the remaining parameters in ψψψj and Xj denotes all

the data associated to the j component.

(3) Generate α from the posterior p(α|K).

The posterior inference and sampling for the indicator variables c and component parameters

ψψψj for j = 1,2, . . . ,K in Steps (1) and (2) can be found in the Appendix. When we update the

dispersion parameter α in Step (3), its posterior only depends on the number of active distinct

components K, i.e. p(α|K) ∼ p(α)p(K|α). We impose a prior, p(α) = Gamma(a, b), on α, with

shape a > 0 and scale b > 0. Thus, the hyper-parameters for α are θθθα = (a, b)>. To simplify the

sampling procedure for p(α|K), following Escobar and West (1995), we introduce a new random

variable η and generate α from p(α|K) by

η|α,K ∼Beta(α+ 1,m)

α|η,K ∼ τGamma(a+K,b− log(η)) + (1− τ)Gamma(a+K − 1, b− log(η)).
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where τ is defined by τ/(1−τ) = (a+K−1)/[m(b− log(η))]. Notice that the approaches proposed

to improve the Gibbs sampling efficiency for DPM through a collapse of the state space of the

Markov chain in Maceachern (1994, 1998), MacEachern and Muller (2000) could be incorporated

into our Bayesian framework.

Thus, this sampling procedure can generate samples {F̃ (1), F̃ (2), . . . , F̃ (B)} quantifying the input

uncertainty. Given c from Step (1), we can estimate the weights πj =
∑m

i=1 δ(ci = j)/m for j =

1,2, . . . ,K and i = 1,2, . . . ,m, where δ(·) denotes a Delta function. Combining ΨΨΨ from Step (2),

we can get a posterior sample of input model, which is a finite mixture with density f̃(x) =∑K

j=1 πjh(x|ψψψj). To further estimate the system mean response, we can generate input variates by

c|πππ∼Multinomial(π1, . . . , πK) and X|c∼ h(·|ψψψc) (7)

to drive the simulation. Notice that the number of active components, K, can vary at different

samples of input model.

3.3. Posterior Consistency of Input Models

In the Bayesian paradigm, a very basic requirement is the posterior consistency at the true input

distribution (Ghosal et al. 1999). This means that as the amount of real-world data increases,

the posterior becomes more and more concentrated near F c with probability approaching 1. The

posterior consistency for DPM is studied in the statistics literature, such as Ghosal et al. (1999),

Tokdar (2006), Wu and Ghosal (2008), etc. Given the prior distributions in Equations (4) and (5),

Theorem 1 summarizes posterior consistency results on DPM with Gamma and Gaussian kernels

for input distributions supported on <+ and <.

The posterior consistency in Theorem 1 is stated in the following sense of weak consistency. For

two generic distributions (and measures) F1 and F2 on < with the Borel sigma algebra B(<), their

Lévy-Prokhorov (L-P) distance (Billingsley 1999) is defined by dLP (F1,F2)≡ inf{η > 0 | F1(A)≤

F2(Aη) + η and F2(A) ≤ F1(Aη) + η, for all A ∈ B(<)}, where Aη ≡ {a ∈ < | ∃b ∈ A, |a − b| <

η}. The L-P distance, denoted by dLP , is a metric under which the convergence is equivalent
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to the weak convergence of measures on <. If F̃m is drawn from the posterior p(F |Xm) and

limm→∞P{dLP (F̃m,F
c) > ε} = 0 for any ε > 0, then F̃m converges in probability to F c, and we

write F̃m
P→ F c as m→∞. Then, the posterior p(F |Xm) is defined as weakly consistent at F c.

Theorem 1. Let Xm ≡ {X1,X2, . . . ,Xm} with Xi
i.i.d.∼ F c for i= 1,2, . . . ,m.

(i) (Wu and Ghosal 2008 Theorem 14) Suppose the DPM with Gamma kernel has the prior

specified as Equation (4). Let f c be a continuous and bounded density with support on <+ sat-

isfying the following conditions: (a) f c(x) ∈ (0,Cf ] for some constant 0 < Cf < ∞ for all x;

(b) |
∫∞

0
f c(x) log f c(x)dx| < ∞; (c)

∫∞
0
f c(x) log fc(x)

φδ(x)
dx < ∞ for some δ > 0, where φδ(x) =

inf [x,x+δ) f
c(t) if 0 < x < 1 and φδ(x) = inf(x−δ,x] f

c(t) if x ≥ 1; (d) there exists ζ > 0 such that∫∞
0

max(x−ζ−2, xζ+2)f c(x)dx<∞. Then, the posterior p(F |Xm) from DPM with Gamma kernel is

weakly consistent at F c.

(ii) (Tokdar 2006 Theorem 3.3) Suppose the DPM with Gaussian kernel has the prior specified

as Equation (5). Let F c (and the density f c) be supported on < and assume that it satisfies the

following conditions: (a)
∣∣∣∫ +∞
−∞ f c(x) log f c(x)dx

∣∣∣ < +∞; (b) there exists an η ∈ (0,1), such that∫ +∞
−∞ |x|

ηf c(x)dx <+∞; (c) there exist constants σ0 > 0, c1 ∈ (0, η), c2 > c1, b1 > 0, b2 > 0, such that

for the base measure G0(u,σ) and for all large x> 0:

max
{
G0

(
[x−σ0x

η/2,+∞)× [σ0,+∞)
)
,G0

(
[0,+∞)× (x1−η/2,+∞)

)}
≥ b1x

−c1 ;

max
{
G0

(
(−∞,−x+σ0x

η/2]× [σ0,+∞)
)
,G0

(
(−∞,0]× (x1−η/2,+∞)

)}
≥ b1x

−c1 ;

G0

(
(−∞, x)× (0, ex

η−1/2)
)
> 1− b2x

−c2 ; G0

(
(x,+∞)× (0, ex

η−1/2)
)
> 1− b2x

−c2 .

Then, the posterior p(F |Xm) from DPM with Gaussian kernel is weakly consistent at F c.

Theorem 1 indicates that the posterior from DPM with Gamma and Gaussian kernels can consis-

tently estimate the true input distributions under very weak conditions on the existence of moments

and entropy of F c, as well as the boundedness and continuity of f c. Essentially, no assumptions on

the analytical forms of F c and f c are required for the posterior consistency. Distributions with sup-

port on <+, including Lognormal, Pearson Type V, Johnson SB, Johnson SU , log-logistic, Gamma
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and Weibull with shape parameter greater than 1, satisfy the conditions in Part (i) of Theorem 1.

Distributions with support on <, including Normal, Logistic, Student’s t and Cauchy, satisfy the

conditions in Part (ii) of Theorem 1. For Part (ii), Condition (c) on the base measure G0 are satis-

fied by the normal-inverse-gamma prior in Equation (5) if we choose appropriate hyperparameters;

see the remarks after Theorem 3.3 in Tokdar (2006). Furthermore, Condition (b) includes many

heavy tailed distributions, such as Cauchy distribution and Student’s t-distribution with at most

two degrees of freedom. Therefore, Part (ii) indicates that the posterior of DPM with Gaussian

kernel is weakly consistent for all these heavy tailed distributions.

Conditions (a) and (d) in Part (i) of Theorem 1 may seem restrictive, as they have excluded some

distributions, such as the gamma, log-logistic, and Weibull distributions with shape parameters

less than or equal to 1. However, our empirical study indicates that the performance of DPM with

Gamma kernel is robust to the conditions in Part (i).

In Theorem 1, we do not discuss the weakly consistency of DPM with Beta kernel. Existing

Bayesian asymptotic results in the literature mainly focus on slightly different versions of Beta

mixtures, such as the finite mixtures of Bernstein polynomials (Petrone and Wasserman 2002, Wu

and Ghosal 2008), or the finite Beta mixtures in Rousseau (2010). Ghosal et al. (2008) contains

partial results on the classes of distributions that can be expressed an infinite mixture of Betas.

In general, the posterior consistency for DPM with Beta kernel is still an open problem. However,

our empirical study demonstrate its flexibility and adaptiveness to different types of input models.

3.4. Simulation Estimation Uncertainty Quantification

The Gibbs sampling in Section 3.2 can generate samples {F̃ (1), F̃ (2), . . . , F̃ (B)} quantifying the

input uncertainty. Without any prior information on the true mean response surface µ(·), we run

simulations at each sample of input model to estimate the mean response. Given a finite simulation

budget, the system responses are estimated with error. Thus, at each F̃ (b) with b= 1,2, . . . ,B, we

develop the posterior of µ(F̃ (b)) to quantify the simulation uncertainty.
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Specifically, at any F̃ (b), we run nb replications and obtain the outputs Yb =

{Y1(F̃ (b)), Y2(F̃ (b)), . . . , Ynb(F̃
(b))} with Yj(F̃

(b))
i.i.d.∼ N (µb, σ

2
b ) for j = 1,2, . . . , nb, where µb = µ(F̃ (b))

and σ2
b = σ2

ε (F̃
(b)). By the Bayes’ rule, the posterior of system mean response at F̃ (b) is

p
(
µb|F̃ (b),Yb

)
∝ p(µb) ·

nb∏
j=1

1√
2πσb

exp

−
[
Yj(F̃

(b))−µb
]2

2σ2
b

 .

Since there is no prior information on the system response, we choose the flat prior p(µb) to be

N (µ0, σ
2
0) with µ0 = 0 and 1/σ2

0 = c, where c is a very small value. Thus, by following the similar

derivation with Gelman et al. (2004), the posterior becomes N (µ̂b, σ̂
2
b ) with

µ̂b =
µ0/σ

2
0 +nbȲ /σ

2
b

1/σ2
0 +nb/σ2

b

and
1

σ̂2
b

=
1

σ2
0

+
nb
σ2
b

where Ȳb =
∑nb

j=1 Yj(F̃
(b))/nb. By letting c→ 0, the posterior p(µb|F̃ (b),Yb) becomes N (Ȳb, σ

2
b/nb).

Since σ2
b is unknown, we consider the empirical Bayesian by replacing it with the sample variance,

S2
b =

∑nb
j=1[Yj(F̃

(b)) − Ȳb]2/(nb − 1). Thus, the random draw µ̃b from the posterior distribution

characterizing our belief on the system mean response at F̃ (b) is

µ̃b|F̃ (b),Yb ∼N
(
Ȳb,

S2
b

nb

)
. (8)

Our empirical study over an M/M/1 in Section 4.2 demonstrates that the performance of our

approach is robust to the normal assumption on the simulation estimation error and also the use

of plug-in empirical Bayesian in Equation (8).

3.5. Quantify the Overall Estimation Uncertainty for µc

Without strong prior information on F c and µ(·), the Bayesian hierarchical framework is intro-

duced to quantify the overall estimation uncertainty of µc = µ(F c). In Section 3.5.1, we provide

the sampling procedure to construct the posterior for the compound random variable U = µ̃(F̃ )

characterizing our belief of µc and build a percentile CrI quantifying both input and simulation

estimation uncertainty. Then, we study the asymptotic properties of the CrI in Section 3.5.2.
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3.5.1. Procedure to Construct the CrI The procedure includes the main steps as follows.

Based on the support of input model F c, choose an appropriate kernel density function h(·), and

then specify the hyper-parameters for both G0 and α in Step 1. See Section 4.1 for the values

of hyper-parameters used in our empirical study. In Step 2(a), given the real-world data Xm,

generates samples from the posterior of input distribution F̃ (b) ∼ p(F |Xm) with b = 1,2, . . . ,B

to account for the input uncertainty as described in Section 3.2. At each F̃ (b), generate input

variates with Equation (7), use them to drive the simulations, and obtain simulation outputs

Yb with nb replications in Step 2(b). Then, draw samples µ̃b from the posterior p(µb|F̃ (b),Yb)

characterizing the simulation estimation uncertainty in Step 2(c). Thus, {µ̃1, µ̃2, . . . , µ̃B} obtained

from this hierarchical sampling are the samples of U = µ̃(F̃ ) from the posterior FU(·|Xm,Yn)

given the information from the real-world data Xm and simulation experiments with outputs

Yn = {Y1,Y2, . . . ,YB}. We further construct a (1−α∗)100% percentile CrI quantifying the overall

uncertainty of system performance estimation in Step 3.

1. Based on the support of F c, choose an appropriate kernel density function h(·). Then, specify

hyper-parameters θθθG and θθθα for the base distribution G0 and the dispersion parameter α.

2. For b= 1,2, . . . ,B

(a) Given the real-world data Xm, generate the sample of input model F̃ (b) ∼ p(F |Xm) by

following the Gibbs sampling procedure described in Section 3.2.

(b) At F̃ (b), generate input variates by using Equation (7), run simulations with nb replica-

tions, and obtain the outputs Yb.

(c) Generate the posterior sample of response, µ̃b ∼ p(µb|F̃ (b),Yb), by using Equation (8).

Next b

3. Report a (1−α∗)100% two-sided percentile CrI for µc

CrI =
[
µ̃(d(α∗/2)Be), µ̃(d(1−α∗/2)Be)

]
(9)

with the order statistics µ̃(1) ≤ µ̃(2) ≤ . . .≤ µ̃(B).
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According to Xie et al. (2014), we need B to be at least one thousand to estimate the percentile

CrI. Without any prior information about the mean response µ(·), in this paper, we assign equal

replications to all samples of input distribution {F̃ (1), F̃ (2), . . . , F̃ (B)}. Since each simulation run

can be computationally expensive, a sequential design of experiments could efficiently use the

computational budget and reduce the impact of simulation estimation uncertainty on the system

performance by finding the optimal setting for (B,n1, n2, . . . , nB) (Yi and Xie 2017).

3.5.2. Asymptotic Properties of the CrI In this section, we study the asymptotic prop-

erties of the CrI constructed from our Bayesian framework in Section 3.5.1. In many situations,

it could be hard or expensive to collect more real-world data when we make decisions. There-

fore, in Theorem 2 part (i), we show that given finite real-world data Xm, as the simulation

budget increases, the CrI constructed by our approach, [µ̃(d(α∗/2)Be), µ̃(d(1−α∗/2)Be)], converges to

the (1− α∗)100% percentile CrI induced by the input uncertainty with the true mean response

surface µ(·) known, [qα∗/2(Xm, µ(·)), q1−α∗/2(Xm, µ(·))]. Then, in Theorem 2 part (ii), we show

that as the amount of real-world data and the simulation budget go to infinity, the interval,

[µ̃(d(α∗/2)Be), µ̃(d(1−α∗/2)Be)], shrinks to the true mean response µc.

In Theorem 2, the convergence between two credible intervals is measured under the Hausdorff

distance, denoted by dH(·, ·), which is widely used for measuring the distance between two sets.

It has a simplified expression when A1 and A2 are both closed intervals: If A1 = [a1, b1] and A2 =

[a2, b2], then dH(A1,A2) = max(|a1 − a2|, |b1 − b2|). In this case, the convergence under Hausdoff

distance is the same as the point-wise convergence for the two endpoints of CrIs.

Theorem 2. Let nmin = min(n) and nmin ≥ (logB)3/min
(

minb=1,...,B−1

(
µ[b+1]−µ[b]

)2
,1
)

, where

µ[1] ≤ µ[2] ≤ . . .≤ µ[B] denote the order statistics of µ1, µ2, . . . , µB. Suppose the following conditions

hold:

(1) The posterior distribution FU(·|Xm, µ(·)) is continuous with a density on its support, and its

support includes an open set and is connected;

(2) For almost surely all F̃ ∼ p(F |Xm), there exists a finite constant Cσ > 0 with σ2
ε (F̃ )≤Cσ;



Xie et al.: A Bayesian Nonparametric Hierarchical Framework for Uncertainty Quantification in Simulation
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 21

(3) For any ε > 0, there exists a finite δ > 0 such that |µ(F )−µ(F c)|< ε if dLP (F,F c)< δ;

(4) The posterior distribution p(F |Xm) is weakly consistent at F c.

Then,

(i) If Conditions (1) and (2) hold, then the CrI in Equation (9) satisfies

dH
([
µ̃(d(α∗/2)Be), µ̃(d(1−α∗/2)Be)

]
,
[
qα∗/2(Xm, µ(·)), q1−α∗/2(Xm, µ(·))

])
=Op

(
logB
√
nmin

)
+Op

(
1√
B

)
(10)

where Op denotes the order under the conditional measure of the simulation outputs Yn given{
F̃ (1), F̃ (2), . . . , F̃ (B)

}
and Xm.

(ii) If Conditions (1) - (4) hold, then as m,B→∞, the CrI in Equation (9) converges to the

true system response µc in posterior probability.

Condition (1) assumes that the posterior of system response µ(F̃ ) with F̃ ∼ p(F |Xm) is a contin-

uous distribution with a regular support. This is mainly used as a regularity condition for showing

the convergence of the interval
[
µ̃(d(α∗/2)Be), µ̃(d(1−α∗/2)Be)

]
. Condition (2) requires that the simula-

tion errors have a bounded variance. Condition (3) is about the continuity of the system response

µ(F ) with respect to F around F c in terms of the L-P distance used in the convergence of input

model. The similar continuity assumption is commonly used in the literature on input uncertainty

and the Gaussian process metamodel when the parametric family of input model is known; see for

example Ankenman et al. (2010), Barton et al. (2014) and Xie et al. (2014). Condition (3) gener-

alizes it to the nonparametric situations. Condition (4) is a direct consequence from Theorem 1

which only provides the asymptotic consistency for input models with support on <+ and <.

Given finite real-world data Xm, Part (i) of Theorem 2 shows that as the simulation budget goes

to infinity with B→∞ and nmin→∞, the CrI obtained by our Bayesian framework in Equation (9)

converges to [qα∗/2(Xm, µ(·)), q1−α∗/2(Xm, µ(·))]. For finite B and nmin, it further provides a detailed

breakdown of the approximation error from the simulation estimation uncertainty. The first error

term in (10) comes from the finite replications (nmin) allocated to the posterior samples of input

model quantifying the input uncertainty. The logB term comes from a technical union bound over
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all B samples and we can choose nmin sufficiently large to make the first error small. The second

error term in (10) comes from using finite (B) posterior samples. The convergence of CrI in (10)

is stated in the Bayesian setup conditional on the real-world data Xm and it does not require the

sample size m→∞. Therefore, the bound in Part (i) is non-asymptotic in m and only asymptotic

in the simulation budget (nmin,B). Part (i) is important and also practically useful since we often

face the situations with a limited amount of real-world data. Notice that Part (i) only requires

Conditions (1) and (2). Part (ii) is a direct consequence of Part (i) and the posterior consistency of

µ̃(F̃ ) at µc from Conditions (3) and (4). The detailed proof of Theorem 2 is provided in Appendix B.

3.6. Variance Decomposition

Given the real-world data Xm and the simulation outputs Yn, the hierarchical sampling procedure

described in Section 3.5 generates samples from the posterior of U = µ̃(F̃ ) accounting for both

input and simulation uncertainty. In this section, we develop a variance decomposition to measure

the relative contributions from both sources of uncertainty. It provides a guidance on how to reduce

the system performance estimation uncertainty if the overall uncertainty of U is too large.

Theorem 3. For every fixed b= 1,2, . . . ,B, the total variance of µ̃(F (b)) with F̃ (b) ∼ p(F |Xm) can

be decomposed as

Var
[
µ̃(F̃ (b))

∣∣∣Xm

]
= σ2

I +σ2
S (11)

where σ2
I ≡Var[µb|Xm] and σ2

S ≡E[2σ2
b/nb|Xm] measure the impacts from the input and simulation

uncertainty.

Theorem 3 provides a variance decomposition to quantify the relative contributions from input

and simulation uncertainty. The variance component σ2
I ≡Var[µb|Xm] measuring the impact from

input uncertainty decreases as the amount of real-world data increases. For input models with

support on <+ and <, as m→∞, the posterior of input model p(F |Xm) converges to F c by

Theorem 1, and the impact of input uncertainty disappears σ2
I → 0 if µ(·) is continuous around F c

in terms of L-P distance. The variance component σ2
S ≡ E[2σ2

b/nb|Xm] measures the impact from
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the simulation uncertainty and it is the expected simulation estimation uncertainty weighted by

p(F |Xm). Suppose that µ(·) and σ2
ε (·) are bounded in the design space. Let nmin = minb=1,2,...,B nb.

Then, as nmin→∞, the impact of the simulation estimation uncertainty disappears σ2
S→ 0. The

detailed derivation of Theorem 3 is provided in Appendix C. Since B is recommended to be at

least one thousand, we could ignore the finite sampling uncertainty for the variance estimation.

We can estimate the contributions from both input and simulation uncertainty. At each posterior

sample F̃ (b) with b= 1,2, . . . ,B, the response sample mean Ȳb and variance S2
b are asymptotically

consistent estimators of µb and σ2
b . Thus, we can estimate the variance components σ2

I and σ2
S by

σ̂2
I =

1

B− 1

B∑
b=1

(
Ȳb− ¯̄Y

)2

and σ̂2
S =

2

B

B∑
b=1

S2
b

nb
, where ¯̄Y =

1

B

B∑
b=1

Ȳb. (12)

If the width of the CrI in Equation (9) is larger than the desired level, the ratio σ̂I/σ̂S can be used

to locate the main source of uncertainty and further guide the decision maker on improving the

system performance estimation.

4. Empirical Study

We first study the finite-sample performance of nonparametric input models by using simulated

data in Section 4.1 and real RM demand data collected from the bio-pharmaceutical manufacturing

in Appendix E. Results demonstrate that DPM with appropriate kernel can capture the important

properties in real-world data, and it has better and more robust finite-sample performance than

existing approaches, including finite mixture, empirical distribution, KDE and parametric distri-

butions. Since some test examples in Section 4.1 violate the conditions in Theorem 1, results also

indicate that the performance of DPM is robust to the conditions required for input asymptotic

consistency. Then, we use an M/M/1 queue and an inventory example with compound Poisson

demand to study the performance of our Bayesian framework in Sections 4.2 and Appendix F.

Results show that our approach has good and robust performance when there is no strong prior

information on the input model and the mean response surface. As the amount of real-world data

and the simulation budget increase, the CrI
[
µ̃(d(α∗/2)Be), µ̃(d(1−α∗/2)Be)

]
shrinks closer to µc. Given
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finite real-world data Xm, the probability content (PC) of µ(F̃ ) with F̃ ∼ p(F |Xm) located in the

CrI is close to the nominal significant level (1−α∗)100%. Further, the ratio σ̂I/σ̂S provides a good

indicator of the relative contributions from both input and simulation uncertainty. In addition,

results of the M/M/1 queue under different utilization demonstrate that our approach is robust

to the violation of the normal assumption on the simulation estimation error and also the plug-in

empirical Bayesian approach used for quantifying the simulation estimation uncertainty.

4.1. Input Density Estimation

In the empirical study, a Gamma prior is used for the dispersion parameter α. Escobar and West

(1995) recommend to choose α around 1. We use the prior, α∼Gamma(a, b) with a= 1 and b= 1,

which puts a fair degree of support at values around α= 1. Our sensitivity study in Appendix D

indicates that the input model performance is not sensitive to the values of hyper-parameters θθθα.

In the empirical study, we choose the hyper-parameters θθθG for the base distribution G0 as

noninformative as possible. We set θ = 0.01, γ = 2 and β = X̄m for DPM with Gamma kernel

density, set µ0 = X̄m, v0 = 1, k0 = 0.01 and σ0 equal to the sample standard deviation of real-world

data for DPM with Gaussian kernel density, and set λ0 = 1, λ1 = λ2 = 0.01 for DPM with Beta

kernel density, where X̄m =
∑m

i=1Xi/m.

Since the real-world data could represent the variability caused by various latent sources of

uncertainty, different mixture distributions listed in Table 1 are used to study the finite-sample

performance of our nonparametric input models. Example 1 is an exponential distribution with

the support on <+. We use it to test the robustness of DPM when the conditions for posterior

consistency in Part (i) of Theorem 1 are violated. Example 2 is a mixture distribution of Lognormal

with the support on <+, and it is also used to model the demand for each Poisson arrival in the

inventory example in Appendix F. Example 3 is a mixture distribution of Gumbel with the support

on <. Both Lognormal and Gumbel mixtures have heavy tails. Example 4 is a mixture of Beta

distributions, which has the support on [0,1].
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Table 1 Test examples to study the input distribution estimation

Example 1 Exponential (exp) exp(1)

Example 2 Lognormal (L) 0.3L(-0.005,0.1)+0.4L(0.378,0.2)+0.3L(0.654,0.3)

Example 3 Gumbel (Gum) 0.3Gum(1.5,0.1)+0.4Gum(2.5,0.3)+0.3Gum(5,0.5)

Example 4 Beta (Be) 0.3Be(10,90)+0.4Be(20,60)+0.3Be(10,10)

For Bayesian approaches, there exist various model selection criteria, including Bayes Factor

(Kass and Raftery 1995), Posterior predictive density (Gelman et al. 2004), and Deviance Infor-

mation Criteria (Spiegelhalter et al. 2002). However, they are not suitable here since we consider

both frequentist and Bayesian candidates. As the Kolmogorov-Smirnov (KS) and Anderson-Darling

(AD) test statistics are commonly used to study the goodness of fit in the simulation commu-

nity, we use KS and AD criteria to study the fitting performance of various approaches, including

empirical distribution and finite mixture. Specifically, since the underlying true input model F c

for examples listed in Table 1 are known, we replace the hypothesized distribution in these test

statistics with F c to obtain corresponding distance measures. The KS distance records the largest

vertical distance between F c(·) and the distribution estimated by m real-world data, denoted by

F̂m(·), which could be obtained by different approaches, including DPM with various kernel densi-

ties, empirical distribution, KDE and parametric approaches, Dm ≡ sup
x∈<

(|F c(x)− F̂m(x)|). The KS

distance puts equal weight to all x ∈ <. Since it is typically more challenging to estimate the tail

behavior compared to the central part, the AD distance places more weight on the tails of F c, A2
m ≡

m
∫∞
−∞ |F

c(x) − F̂m(x)|2w(x)dF c(x), where the weight function is w(x) = 1/ (F c(x)(1−F c(x))).

Thus, the AD distance can detect the discrepancies at the tails better.

Table 2 records the statistical behaviors of KS and AD distances (Dm and Am) obtained by DPM

with Gamma, Gaussian and Beta kernel densities, finite mixture (Cheng and Currie 2003), empir-

ical distribution, KDE, and parametric distributions selected based on KS and AD criteria when

m= 50,100,500. All results are based on N = 1000 macro-replications. In each macro-replication,

we first draw m samples, denoted by Xm, from F c listed in Table 1 to mimic the procedure col-

lecting m “real-world data”. Then, various approaches are used to fit the real-world data, and
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calculate the KS and AD distances for the fitted distributions. In the table, “parametric (AD)” and

“parametric (KS)” refer to the parametric distributions selected based on the AD and KS statistics

by using @Risk. KDE is obtained by using the R function, kde, and the bandwidth is selected to

minimize the mean integrated squared error (Sheather and Jones 1991). For empirical distribution,

KDE and parametric distributions selected baed on the AD and KS statistics, we find the fitted

distributions and then record the KS and AD distances for these fitted distributions. Differing from

these frequentist approaches that provide the point estimates of input distribution, DPM and the

finite mixture proposed in Cheng and Currie (2003) are Bayesian approaches. According to Gelman

et al. (2004), the posterior predictive distribution, defined by f(X|Xm) =
∫
f(X|F )dP (F |Xm), is

recommended for assessing the fit of input model to the real-world data. Thus, the posterior pre-

dictive distribution is used to calculate the KS and AD distances. Specifically, we use the Gibbs

samplers described in Section 3.2 and Appendix A to generate 100 samples of input model with

the warmup equal to 500 and we save the sample for each 10 draws. Then, we aggregate these sam-

ples of input distribution to obtain the posterior predictive distribution. In each macro-replication,

we obtain the KS and AD distances, denoted by D(b)
m and A(b)

m with b = 1,2, . . . ,N . After that,

we record 95% symmetric CIs for both KS and AD distances, denoted by D̄ ± 1.96SD/
√
N and

Ā± 1.96SA/
√
N , where D̄=

∑N

b=1D
(b)
m /N , Ā=

∑N

b=1A
(b)
m /N , SD =

[∑N

b=1(D(b)
m − D̄)2/(N − 1)

]1/2
and SA =

[∑N

b=1(A(b)
m −Ā)2/(N−1)

]1/2
. We highlight the smallest KS and AD distances in Table 2.

From Table 2, we observe that as m increases, the KS and AD distances obtained from all

approaches decrease. Even though the parametric distributions are selected based on KS and AD

tests, DPM with appropriate kernel density typically has smaller KS and AD distances. Notice that

DPM with Gamma and Beta kernel densities performs better than DPM with Gaussian kernel,

which is the main focus of study in both statistics and machine learning communities. Further,

DPM with Gamma kernel fits different input models with support on <+ well. Based on the

results of AD distance, DPM can provide better estimation on the tail behavior compared with

the empirical, KDE and parametric distributions, especially when m is not large. Note that for

Example 1 with the exponential distribution, parametric families can fit the data well. However,

when the input model becomes complex, parametric distributions cannot fit the data well.
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4.2. An M/M/1 Queue and An Inventory Example

An M/M/1 queue and an inventory example are used to study the performance of our Bayesian

framework. We first consider the M/M/1 queue. Suppose that the arrival process is known with

the arrival rate equal to λ= 0.5,0.7,0.9. The distribution of service time is exp(τ c) with the rate

τ c = 1. Thus, the underlying utilization ρc = λ/τ c is 0.5, 0.7 and 0.9. We are interested in the

expected waiting time in the system and the unknown true response is µc = 1/(τ c−λ).

To evaluate the performance of our approach, we pretend that the underlying distribution for

service time is unknown and it is estimated by m observations drawn from F c. Since the exponential

distribution has support <+, we use DPM with Gamma kernel to estimate the input distribution.

Empirical distribution, KDE and parametric approaches studied in Section 4.1 are frequentist

approaches. Since frequentist and Bayesian approaches have different perspectives on quantifying

the uncertainty and we also assess their performance differently (Xie et al. 2014), we focus on

studying the finite-sample behavior of our Bayesian framework here. Also, suppose that the mean

response is unknown and estimated by the simulation. Each simulation run starts with the empty

system, and we set both warmup and runlength equal to 1000 customers. Since the exponential

service distribution violates the conditions in Theorem 1 and also the normal assumption on the

simulation estimation error does not hold when the utilization ρc is high, this example could be used

to study the robustness of our approach.

By following the sampling procedure described in Section 3.5, we generate samples µ̃b from

the posterior FU(·|Xm,Yn) with b = 1,2, . . . ,B, estimate the posterior mean E[U |Xm,Yn], and

construct the 95% percentile CrI, denoted by C̃rI = [µ̃(d(α∗/2)Be), µ̃(d(1−α∗/2)Be)], accounting for both

input and simulation uncertainty. To evaluate the performance of our approach, we first record

the mean and standard deviation (SD) of the deviation of posterior mean from µc, defined by

err = |E[U |Xm,Yn]− µc|. Then, we record the mean and SD of the CrI width, denoted by |CrI|.

The probability content (PC) of FU(·|Xm, µ(·)) located in C̃rI,

PC(C̃rI) =

∫
C̃rI

dFU(q|Xm, µ(·)),
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Table 2 KS and AD distances obtained from DPM with Gamma, Gaussian and Beta kernel densities, empirical

distribution, KDE and parametric distributions selected based on KS and AD tests.

m= 50 Example 1 Example 2 Example 3 Example 4

DPM with Gamma
Dm 0.103±0.002 0.071±0.001 NA 0.072±0.001

Am 11.344±0.147 7.336±0.092 NA 8.603±0.102

DPM with Gaussian
Dm 0.109±0.002 0.082±0.001 0.072±0.001 0.081±0.001

Am 11.641±0.154 9.125±0.117 6.018±0.097 9.684±0.120

DPM with Beta
Dm NA NA NA 0.069±0.001

Am NA NA NA 8.626±0.094

Finite Mixture
Dm 0.147±0.002 0.115±0.002 0.095±0.002 0.085±0.001

Am 14.328±0.166 10.824±0.127 9.674±0.115 10.377±0.140

Empirical Distribution
Dm 0.127±0.002 0.099±0.002 0.082±0.001 0.085±0.001

Am 13.451±0.162 8.085±0.096 6.679±0.747 10.126±0.139

KDE
Dm 0.112±0.002 0.076±0.001 0.124±0.002 0.089±0.001

Am 12.406±0.141 8.429±0.098 10.674±0.132 10.572±0.138

Parametric (KS)
Dm 0.104±0.001 0.080±0.001 0.125±0.002 0.109±0.002

Am 11.709±0.136 8.825±0.083 12.107±0.138 11.243±0.148

Parametric (AD)
Dm 0.105±0.002 0.080±0.001 0.125±0.002 0.112±0.002

Am 11.684±0.134 8.245±0.087 11.937±0.001 11.095±0.146

m= 100 Example 1 Example 2 Example 3 Example 4

DPM with Gamma
Dm 0.085±0.001 0.054±0.001 NA 0.050±0.001

Am 8.406±0.107 5.283±0.102 NA 6.421±0.102

DPM with Gaussian
Dm 0.088±0.001 0.065±0.001 0.058±0.001 0.054±0.001

Am 9.278±0.133 5.930±0.098 4.782±0.061 7.208±0.117

DPM with Beta
Dm NA NA NA 0.048±0.001

Am NA NA NA 6.576±0.081

Finite Mixture
Dm 0.107±0.002 0.064±0.001 0.063±0.001 0.059±0.001

Am 11.328±0.149 5.824±0.087 5.374±0.093 7.582±0.096

Empirical Distribution
Dm 0.114±0.002 0.071±0.001 0.064±0.001 0.060±0.001

Am 12.370±0.155 6.132±0.098 5.016±0.089 7.467±0.093

KDE
Dm 0.109±0.002 0.060±0.001 0.081±0.001 0.058±0.001

Am 11.477±0.151 5.709±0.081 6.258±0.094 8.295±0.101

Parametric (KS)
Dm 0.084±0.001 0.076±0.001 0.087±0.002 0.084±0.001

Am 8.735±0.094 7.645±0.076 8.025±0.118 9.328±0.130

Parametric (AD)
Dm 0.085±0.001 0.077±0.001 0.088±0.002 0.084±0.002

Am 8.409±0.091 7.267±0.071 7.742±0.106 9.267±0.126
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m= 500 Example 1 Example 2 Example 3 Example 4

DPM with Gamma
Dm 0.061±0.001 0.028±0.001 NA 0.028±0.001

Am 5.723±0.079 2.388±0.052 NA 3.947±0.058

DPM with Gaussian
Dm 0.064±0.001 0.029±0.001 0.027±0.001 0.032±0.001

Am 6.038±0.133 2.532±0.048 2.618±0.047 4.175±0.069

DPM with Beta
Dm NA NA NA 0.025±0.001

Am NA NA NA 3.243±0.042

Finite Mixture
Dm 0.076±0.001 0.032±0.001 0.039±0.001 0.033±0.001

Am 8.314±0.112 2.731±0.051 4.064±0.061 5.096±0.083

Empirical Distribution
Dm 0.078±0.001 0.035±0.001 0.036±0.001 0.036±0.001

Am 8.962±0.117 2.874±0.050 3.727±0.054 4.529±0.066

KDE
Dm 0.083±0.001 0.030±0.001 0.045±0.001 0.031±0.001

Am 9.633±0.124 3.097±0.054 5.880±0.089 4.827±0.070

Parametric (KS)
Dm 0.061±0.001 0.069±0.001 0.074±0.001 0.064±0.001

Am 5.875±0.072 6.782±0.038 7.341±0.062 7.343±0.055

Parametric (AD)
Dm 0.062±0.001 0.070±0.001 0.076±0.001 0.067±0.001

Am 5.606±0.071 6.462±0.031 7.208±0.067 6.905±0.049

is used to evaluate the CrI constructed through our approach. To estimate PC(C̃rI), we draw

B = 1000 posterior samples of the input models F̃ (b) ∼ p(F |Xm) with b= 1, . . . ,B. At each F̃ (b), the

expected time staying in the system is µ(F̃ (b)) = (1+ 1+C2
v

2
ρ(b)

1−ρ(b) )M
(b)
1 , where M

(b)
1 and M

(b)
2 denote

the first and second moments of F̃ (b), ρ(b) = λM
(b)
1 and C2

v =M
(b)
2 /(M

(b)
1 )2. The PC is estimated

with P̂C(C̃rI) = 1
B

∑B

b=1 δ
(
µ(F̃ (b))∈ C̃rI

)
. In addition, we calculate the ratio σ̂I/σ̂S to estimate

the relative contributions from input and simulation uncertainty, where σ̂I and σ̂S are obtained by

using Equation (12).

When we study the finite-sample performance of our approach, we generate B = 1000 posterior

samples of input model {F̃ (1), F̃ (2), . . . , F̃ (B)} to quantify the input uncertainty and assign equal

replications n to each sample. The amount of real-world data m controls the input uncertainty

and the number of replications n controls the simulation uncertainty. As the utilization increases,

there is more obvious skewness and tail in the simulation outputs. Thus, ρc is used to control the

violation of the normal assumption on the simulation estimation error; see the Normal Q-Q plots
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Figure 1 Normal Q-Q Plots of the Simulation Outputs

(a) When ρc = 0.5 (b) When ρc = 0.7 (c) When ρc = 0.9

for ρc = 0.5,0.7,0.9 in Figure 4.2. The results are from 1000 replications. Even though the normal

assumption holds reasonably well when ρc = 0.5, there exist strong skewness and tail when ρc = 0.9.

Notice that the proportion of unstable posterior samples of input model F̃ (b) for b= 1,2, . . . ,B,

defined as those with the utilization ρ(b) greater and equal to one, increases as m decreases and ρc

increases. Based on a side experiment, mean and SD (in the bracket) of the percentage of unstable

posterior samples estimated by 1000 replications are: 0.009 (0.014) when m = 50 and ρc = 0.5;

0.011 (0.008) when m = 50 and ρc = 0.7; 0.285 (0.0082), 0.17 (0.055) and 0.062 (0.019) when

m= 50,100,500 and ρc = 0.9. The unstable issue is negligible when m= 100,500 and ρc = 0.5,0.7.

For simplification, we set the mean response at unstable samples of input model to be infinity.

When ρc = 0.9, the percentage of unstable posterior samples is greater than α∗/2 = 2.5%. Thus,

we record the one-sided percentile CrI, denoted by [µ̃(dα∗Be),+∞).

The results with m= 50,100,500, n= 100,1000 and ρc = 0.5,0.7,0.9 are shown in Table 3. They

are estimated based on 100 macro-replications. From Table 3, as m or n increases, the posterior

mean of system mean response becomes closer to µc, and the overall estimation uncertainty of µ̃

gets smaller. The PC is close to the nominal value 95%, which indicates that our approach is robust

to the normal assumption on the simulation estimation error and the plug-in empirical Bayesian

approach used for quantifying the simulation estimation uncertainty. In addition, the ratio σ̂I/σ̂S

provides a good measure of the relative contributions from the input and simulation uncertainty.

In addition, we use a RM inventory example to study the performance of the proposed Bayesian

framework. The arrivals of move order follow a Poisson process with rate equal to 3. The accu-

mulated move order in the ith time period is Xi =
∑Ni

k=1Dk, where Ni denotes the number of
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Table 3 Results of the M/M/1 queue when m= 50,100,500, n= 100,1000 and ρc = 0.5,0.7,0.9.

Mean and SD of |CrI|/2 Mean and SD of |err| Mean and SD of P̂C(C̃rI) σ̂I/σ̂S

ρc = 0.5

m= 50, n= 100 1.098 (0.140) 0.652 (0.058) 94.7% (0.7%) 1.779

m= 50, n= 1000 0.925 (0.125) 0.597 (0.050) 94.5% (0.8%) 9.046

m= 100, n= 100 0.847 (0.109) 0.448 (0.034) 94.4% (0.8%) 0.855

m= 100, n= 1000 0.762 (0.086) 0.370 (0.027) 94.3% (0.9%) 4.890

m= 500, n= 100 0.603 (0.081) 0.315 (0.021 ) 94.1% (0.9%) 0.562

m= 500, n= 1000 0.525 (0.072 ) 0.269 (0.016) 94.0%(1.0%) 2.527

Mean and SD of |CrI|/2 Mean and SD of |err| Mean and SD of P̂C(C̃rI) σ̂I/σ̂S

ρc = 0.7

m= 50, n= 100 1.706 (0.224) 0.886 (0.077) 94.6% (0.8%) 1.462

m= 50, n= 1000 1.474 (0.189) 0.802 (0.072) 94.6% (0.7%) 8.389

m= 100, n= 100 1.355 (0.162) 0.723 (0.065) 94.5% (0.9%) 0.767

m= 100, n= 1000 1.149 (0.143) 0.659 (0.054) 94.3% (0.9%) 4.262

m= 500, n= 100 0.958 (0.115) 0.588 (0.048) 94.2% (0.8%) 0.533

m= 500, n= 1000 0.820 (0.096) 0.515 (0.044) 94.2%(0.9%) 2.074

Mean and SD of µ̃(dα∗Be) Mean and SD of |err| Mean and SD of P̂C(C̃rI) σ̂I/σ̂S

ρc = 0.9

m= 50, n= 100 6.093 (0.739) 4.745 (0.586) 94.9% (0.4%) 1.142

m= 50, n= 1000 6.428 (0.784) 4.283 (0.521) 94.8% (0.5%) 7.861

m= 100, n= 100 7.304 (0.832) 3.308 (0.427) 94.7% (0.7%) 0.670

m= 100, n= 1000 7.686 (0.850) 2.794 (0.360 ) 94.7% (0.6%) 3.283

m= 500, n= 100 8.053 (0.884) 2.591 (0.318) 94.5% (0.8%) 0.452

m= 500, n= 1000 8.244 (0.903) 2.042 (0.266) 94.6%(0.8%) 1.749

arrivals occurring in the ith time period and the size of each move order, denoted by Dk, follows

the Log-normal mixture distribution 0.3L(−0.005,0.1) + 0.4L(0.378,0.2) + 0.3L(0.654,0.3). DPM

with Gamma kernel is used to model the underlying unknown distribution of accumulated move

order in each time period. We are interested in the steady-state expected inventory level, type-I

and type-II service levels. The empirical results recorded in Appendix F also demonstrate the good

performance of our approach.
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5. Conclusions

Without strong prior information on the true input models and the system mean response surface,

in this paper, a Bayesian nonparametric hierarchical framework is proposed to quantify the over-

all uncertainty of system performance estimates. Nonparametric DPM can capture the important

properties in the real-world data, including heterogeneity, multi-modality, skewness and tails. The

posteriors of flexible input models can automatically account for both model selection and param-

eters value uncertainty. Then, the direct simulation is used to propagate the input uncertainty

to the outputs with the simulation uncertainty quantified by the posteriors of system responses.

Therefore, our framework leads to a sampling procedure that can deliver a posterior distribution of

the system mean response and provide a percentile CrI accounting for both input and simulation

uncertainty. A variance decomposition is further developed to quantify the relative contributions

from both sources of uncertainty. Our approach is supported with a rigorous asymptotic study.

Given a finite amount of real-world data, as the simulation budget increases, our CrI converges

to the CrI accounting for input uncertainty with the true mean response surface known. As both

real-world data and simulation budget go to infinity, our CrI converges to the true system response.

An empirical study demonstrates obvious advantages of Bayesian nonparametric approaches for

input density estimation compared to existing approaches, including empirical distribution, KDE

and parametric approaches. The simulation results for an M/M/1 queue demonstrate that our

framework is robust to the normal assumption on the simulation estimation error. As the amount

of real-world data and the simulation budget increase, the CrI accounting for both input and

simulation uncertainty shrinks closer to the true system mean response and the probability content

of the CrI on FU(·|Xm, µ(·)) is close to the nominal value. The ratio σI/σS provides a good measure

of the relative contributions from both sources of uncertainty.

Appendix A: Gibbs Samplers for DPM with Gamma, Gaussian and Beta Kernels

For DPM with Gamma, Gaussian and Beta kernels, we provide the posterior inference and sampling

for the indicator variables c and component parameters ψψψj for j = 1,2, . . . ,K used in Steps (1)

and (2) of the Gibbs samplers presented in Section 3.2. We describe the main results to support

the Gibbs sampling in Section A.1. Then, in Section A.2, we provide the detailed derivation of the

results used in the sampling procedure.
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A.1. Gibbs Sampling for c and ψψψ

A.1.1. DPM with Gamma Kernel Here, we present a posterior sampler for the DPM with

Gamma kernel. Given the base distribution G0 in Equation (4), we first generate samples of latent

variables c for Step (1) of the Gibbs sampler in Section 3.2. By the Bayes’ rule, the conditional

posterior of ci with i= 1,2, . . . ,m given other variables is

p(ci = j|c−i,ψψψj, α,Xi)∝ p(ci = j|c−i,ψψψj, α) · p(Xi|c−i,ψψψj, α, ci = j)

where the prior p(ci = j|c−i,ψψψj, α) is obtained from Equation (3). Then, the conditional posterior

probabilities of ci in which Xi is associated with either an existing component or a new component

with parameters ψψψ= (V,u) drawn from the base distribution G0 are

p(ci = j|c−i,ψψψj, α,Xi) =

{
b0

m−i
j

m+α−1
X
Vj−1

i e
−
Vj
uj
Xi if ∃cq = j for all q 6= i

b0
α

m+α−1

∫
XV−1
i e−

V
uXidG0(V,u) otherwise

(13)

where b0 denotes the normalizing constant. When Xi comes from a new component, the conditional

posterior for ci in Equation (13) is not analytically tractable and a sampling approach is used to

generate samples of c by following Algorithm 4 in Neal (2000).

Next we generate samples of the parameters ψψψj = (Vj, uj)
>

for Step (2) of the Gibbs sampler.

By the Bayes’ rule, p(Vj|uj,Xj)∝ p(Vj)f(Xj|Vj, uj) and p(uj|Vj,Xj)∝ p(uj)f(Xj|Vj, uj), the con-

ditional posteriors of Vj and uj are given by

Vj|uj,Xj ∝
V
mjVj
j

Γ(Vj)
mj

exp

[
−Vj

(
θ+

∑mj
k=1X

j
k

uj
+mj log(uj)−

mj∑
k=1

log(Xj
k)

)]
(14)

uj|Vj,Xj ∼ Inv-Gamma

(
γ+mjVj, β+Vj

mj∑
k=1

Xj
k

)

where Xj
k are the kth observation associated to the jth component and mj is the size of Xj. The

detailed derivation for these posteriors can be found in Appendix A.2.1.

The conditional posterior p(Vj|uj,Xj) in Equation (14) is not a standard distribution. A

Metropolis-Hasting (M-H) nested Gibbs sampler is developed to generate samples of Vj from the

conditional posterior. Specifically, denote the sample from the previous iteration in the nested M-H

sampling by V 0
j . We first generate a candidate sample Ṽj from a proposal distribution, denoted by

g(·, V 0
j ), and accept it with probability

min

{
1,
p(Ṽj|uj,Xj)g(V 0

j , Ṽj)

p(V 0
j |uj,Xj)g(Ṽj, V 0

j )

}
,

where p(V 0
j |uj,Xj) and p(Ṽj|uj,Xj) are the conditional posteriors from Equation (14). Otherwise,

retain the value of V 0
j . The proposal distribution g(·, V 0

j ) is chosen to be Gamma(r, r/V 0
j ) with
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mean located at V 0
j . This proposal distribution is determined by using the Stirling approximation

so that it can capture the tail of the conditional posterior p(Vj|uj,Xj) well. The detailed derivation

can be found in Appendix A.2.1. To make the proposal distribution relatively flat, we recommend

that the value of r is set to be small, e.g., r= 2 used in our empirical study.

A.1.2. DPM with Gaussian Kernel Given the base distribution G0 in Equation (5), we first

generate samples of the latent variables c for Step (1) of the Gibbs sampler. If ci is associated with

an existing jth component, then

p(ci = j|c−i,ψψψj, α,Xi) = b0

m−ij
m+α− 1

1√
2πσj

e
−(Xi−uj)

2/
2σ2
j .

If ci is associated with a new component, then

p(ci = j|c−i,ψψψj, α,Xi) = b0

α

m+α− 1

(v0/2)
v0/2

Γ(v0/2)
σv0

0

√
k0

2π(k0 + 1)

Γ(A)

BA

where A= (v0 + 1)/2, B = [v0σ
2
0 +k0(Xi−u0)2/(k0 + 1)]/2 and b0 is the normalizing constant. The

detailed derivation for this conditional posterior can be found in Appendix A.2.2.

Next we generate samples of the parameters ψψψj = (uj, σ
2
j )
> for Step (2) of the Gibbs sampler.

The conditional posteriors for uj and σj are derived by following Chapter 3 in Gelman et al. (2004)

uj|σj,Xj ∼ N
(

k0

k0 +mj

u0 +
mj

k0 +mj

X̄j,
σ2

0j

k0 +mj

)
,

σ2
j/σ

2
0

∣∣∣Xj ∼ Inv-Gamma

(
v0 +mj

2
,
1

2

)
,

where

σ2
0j =

v0σ
2
0 +
∑mj

k=1(Xj
k − X̄j)2 +

k0mj(X̄
j−u0)2

k0+mj

v0 +mj

with X̄j =
1

mj

mj∑
k=1

Xj
k.

A.1.3. DPM with Beta Kernel Here we develop a posterior sampler for DPM with the Beta

kernel density to fit the input models with compact supports. We assume that Xi|ci = j, γj, βj ∼

Beta(γj, βj) and denote the parameters for the jth component by ψψψj = (γj, βj)
>

. Equation (6)

provides the base function G0(γ,β). The derivation for this prior can be founded in Appendix A.2.3.

We first generate samples of the latent variable ci for Step (1) of the Gibbs sampler. By applying

the Bayes’ rule, we get the conditional posterior probabilities of ci, in which Xi is associated with

either an existing component or a new component with parameters ψψψ = (γ,β)> drawn from the

base distribution G0(γ,β)

p(ci = j|c−i,ψψψj, α,Xi) =

{
b0

m−i
j

m+α−1
X
γj−1

i (1−Xi)
βj−1 if ∃cq = j for all q 6= i

b0
α

m+α−1

∫
Xγ−1
i (1−Xi)

β−1dG0(γ,β) otherwise
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where b0 denotes the normalizing constant. Since the conditional posterior for ci associated with a

new component does not have a closed form, we use the sampling approach by following Algorithm 4

in Neal (2000) to generate samples of ci.

Next we generate samples of the parameters ψψψj = (γj, βj)
> for Step (2) of the Gibbs sampler.

By applying the Bayes’ rule, p(γj|βj,Xj)∝ p(γj)p(Xj|γj, βj) and p(βj|γj,Xj)∝ p(βj)p(Xj|γj, βj),

the conditional posteriors of component parameters γj and βj are given by

γj|βj,Xj ∝ exp

{[
−λ1 +

mj∑
k=1

log(Xj
k)

]
γj − (λ0 +mj) log

[
Γ(γj)

Γ(γj +βj)

]}
, (15)

βj|γj,Xj ∝ exp

{[
−λ2 +

mj∑
k=1

log(1−Xj
k)

]
βj − (λ0 +mj) log

[
Γ(βj)

Γ(γj +βj)

]}
. (16)

The detailed derivation for these posteriors can be found Appendix A.2.3.

Since the conditional posteriors in Equations (15) and (16) are not standard distributions, we

again develop an M-H nested Gibbs sampler to generate samples for γj and βj. Denote the samples

from the previous iteration in the M-H sampling by γ0
j and β0

j . By using the Stirling approxi-

mation, we choose Gamma(r, r/a) with relatively small r and mean a equal to γ0
j or β0

j as the

proposal distribution; See the detailed derivation in Appendix A.2.3. Denote the proposal density

by g(·, a). Specifically, for γj, we randomly sample a candidate γ̃j from the proposal distribution

Gamma(r, r/γ0
j ), and accept γ̃j with probability

min

{
1,
p(γ̃j|β0

j ,X
j)g(γ0

j , γ̃j)

p(γ0
j |β0

j ,X
j)g(γ̃j, γ0

j )

}
,

where p(γ̃j|β0
j ,X

j) and p(γ0
j |β0

j ,X
j) are the conditional posterior in Equation (15). Otherwise,

retain the value of γ0
j . Similarly, for βj, we randomly sample a candidate β̃j from the proposal

distribution Gamma(r, r/β0
j ), and accept β̃j with probability

min

{
1,
p(β̃j|γ0

j ,X
j)g(β0

j , β̃j)

p(β0
j |γ0

j ,X
j)g(β̃j, β0

j )

}
,

where p(β̃j|γ0
j ,X

j) and p(β0
j |γ0

j ,X
j) are the conditional posteriors in Equation (16). Otherwise,

retain the value of β0
j . In our empirical study, we set r= 2 when we sample both γj and βj.

A.2. Derivation of the Results Used in the Gibbs Sampling

In this section, we provide the detailed derivation of priors, proposal distributions, and conditional

posteriors used in the Gibbs samplers for DPM with Gamma, Gaussian and Beta kernel densities

in Section A.1.
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A.2.1. Conditional Posteriors of DPM with Gamma Kernel We derive the conditional

posteriors of parameters ψψψj = (Vj, uj) with j = 1,2, . . . ,K for DPM with Gamma kernel. Given the

priors Vj ∼ exp(θ), uj ∼ Inv-Gamma(γ,β) and the likelihood Xi|ci = j,ψψψj ∼Gamma(Vj, Vj/uj), by

the Bayes’ rule, we have the conditional posterior for Vj

p(Vj|Xj, uj)∝ p(Vj)
mj∏
k=1

p
(
Xj
k|Vj, uj

)
∝ e−θVj

mj∏
k=1

(Vj/uj)
Vj

Γ(Vj)
(Xj

k)
Vj−1e−(Vj/uj)X

j
k

∝
V
mjVj
j

Γ(Vj)
mj

exp

{
−Vj

[
θ+

∑mj
k=1X

j
k

uj
+mj log(uj)−

mj∑
k=1

log
(
Xj
k

)]}
. (17)

Since the conditional posterior of Vj in Equation (17) is not a standard distribution, we develop

an M-H sampling algorithm to generate samples of Vj. We first find an appropriate proposal

distribution for the M-H sampling. To get a fair degree of probability drawing samples from the

tail part of the conditional posterior p(Vj|Xj, uj), the Stirling approximation, n!≈
√

2πn(n/e)n for

large n, is used to find an appropriate family for the proposal distribution. Since Γ(n) = (n− 1)!,

p
(
Vj|Xj, uj

)
∝

V
mjVj
j

Γ(Vj)
mj

exp

{
−Vj

[
θ+

∑mj
k=1X

j
k

uj
+mj log(uj)−

mj∑
k=1

log(Xj
k)

]}

≈

 V
Vj
j√

2π(Vj − 1)
(
Vj−1

e

)Vj−1


mj

e−VjB, if Vj is large

≈

[
V
Vj
j

(Vj − 1)Vj

√
Vj − 1

2π
eVj−1

]mj
e−VjB

≈

(√
Vj − 1

2π
eVj

)mj
e−VjB ≈

(
1

2π

)mj/2
(Vj)

mj/2e−Vj(B−mj)

where B = θ +
∑mj

k=1X
j
k/uj + mj log(uj) −

∑mj
k=1 log(Xj

k). This approximation holds when Vj is

large and it returns a Gamma kernel function. Thus, we choose the proposal distribution to be

Gamma(r, r/V 0
j ) with mean V 0

j denoting the sample obtained from the previous M-H iteration. To

have a non-negligible probability to draw samples far from V 0
j , the value of r is recommended to

be small, e.g., r= 2 used in our empirical study.

Next we derive the conditional posterior for parameter uj. By applying the Bayes’ rule, we have

p(uj|Xj, Vj)∝ p(uj)
mj∏
k=1

p(Xj
k|Vj, uj)

∝ u
−(γ+1)
j e−β/uj

mj∏
i=1

(Vj/uj)
Vj

Γ(Vj)
(Xj

k)
Vj−1e−(Vj/uj)X

j
k
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∝ u
−(γ+1+mjVj)

j exp

[
−β+Vj

∑mj
k=1X

j
k

uj

]
∼ Inv-Gamma

(
γ+mjVj, β+Vj

mj∑
k=1

Xj
k

)
.

A.2.2. Conditional Posteriors of DPM with Gaussian Kernel For DPM with Gaussian

kernel, we choose a conditional conjugate joint prior distribution for the component parameters

ψψψj = (uj, σ
2
j ) with j = 1,2, . . . ,K,

uj|σ2
j ∼N (u0, σ

2
j/k0) and σ2

j/σ
2
0 ∼ Inv-Gamma

(
v0

2
,
1

2

)
which determines the base function G0(u,σ2) with hyper-parameters θθθG = (u0, k0, v0, σ0).

Here, we derive the conditional posteriors of the latent variables c. For i= 1,2, . . . ,m, if Xi is

associated to an existing component, by applying the Bayes’ rule,

p(ci = j|c−i,ψψψj, α,Xi) = b0 · p(ci = j|α,c−i)p(Xi|ci = j,ψψψj) = b0

m−ij
m+α− 1

1√
2πσj

e−(Xi−uj)2/2σ2
j .

If Xi is associated to a new component,

p(ci = j|c−i,ψψψj, α,Xi) = b0 · p(ci = j|α,c−i)p(Xi|ci = j,ψψψj)

= b0

α

m+α− 1

∫ ∞
0

∫ ∞
−∞

p(Xi|uj, σ2
j )p(uj|σ2

j )p(σ
2
j )dujdσ

2
j

= b0

α

m+α− 1

∫ ∞
0

∫ ∞
−∞

(2πσ2
j )
−1/2e

−
(Xi−uj)2

2σ2
j ×

(
2πσ2

j

k0

)−1/2

exp

[
−k0(uj −u0)2

2σ2
j

]

×(v0/2)v0/2

Γ(v0/2)
σv0

0 (σ2
j )
−(v0/2+1)e

(
− v0σ

2
0

2σ2
j

)
dujdσ

2
j

= b0

α

m+α− 1

(v0/2)v0/2

Γ(v0/2)
σv0

0

√
k0/2π

∫ ∞
0

∫ ∞
−∞

(σ2
j )
−(

v0+3
2 )(2πσ2

j )
−1/2

× exp

−
(k0 + 1)(uj − Xi+k0u0

k0+1
)2 + k0(Xi−u0)2

k0+1
+ v0σ

2
0

2σ2
j

dujdσ2
j

= b0

α

m+α− 1

(v0/2)v0/2

Γ(v0/2)
σv0

0

√
k0

2π(k0 + 1)

∫ ∞
0

∫ ∞
−∞

(
2πσ2

j

k0 + 1

)−1/2

× exp

−

(
uj − Xi+k0u0

k0+1

)2

2σ2
j/(k0 + 1)


duj exp

−
 k0(Xi−µ0)2

k0+1
+ v0σ

2
0

2σ2
j

 (σ2
j )
−(

v0+1
2 +1)dσ2

j

= b0

α

m+α− 1

(v0/2)v0/2

Γ(v0/2)
σv0

0

√
k0

2π(k0 + 1)

∫ ∞
0

exp

−
 k0(Xi−u0)2

k0+1
+ v0σ

2
0

2σ2
j

 (σ2
j )
−(

v0+1
2 +1)dσ2

j

= b0

α

m+α− 1

(v0/2)v0/2

Γ(v0/2)
σv0

0

√
k0

2π(k0 + 1)

Γ(A)

BA

where b0 is a normalization constant, A= v0+1
2

and B =
[
v0σ

2
0 + k0(Xi−u0)2

k0+1

]
/2.
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A.2.3. Conditional Posteriors of DPM with Beta Kernel In this section, we first find a

conjugate joint prior and then derive the conditional posteriors of parameters ψψψj = (γj, βj) with

j = 1,2, . . . ,K for DPM with Beta kernel density. The likelihood is Xi|ci = j,ψψψj ∼ Beta(γj, βj).

Since Beta distribution belongs to the exponential family, we rewrite the Beta density into the

general form

p(x|γj, βj) =
Γ(γj +βj)

Γ(γj)Γ(βj)
xγj−1(1−x)βj−1 =

Γ(γj +βj)

Γ(γj)Γ(βj)
e(γj−1) log(x)+(βj−1) log(1−x).

Thus, we choose a conjugate joint prior for (γj, βj) with the hyper-parameters θθθG = (λ0, λ1, λ2)

(Chick 2001)

γj, βj|λ0, λ1, λ2 ∝ exp

{
−λ1γj −λ2βj −λ0 log

[
Γ(γj)Γ(βj)

Γ(γj +βj)

]}
.

Then, we derive the conditional posteriors for parameters (γj, βj) used in the Gibbs sampler in

Appendix A.1.3. By applying the Bayes’ rule, the conditional posterior for γj is

p(γj|βj,Xj)∝ p(γj|βj)p(Xj|γj, βj)

∝ exp

{
−λ1γj −λ0 log

[
Γ(γj)

Γ(γj +βj)

]} mj∏
k=1

Γ(γj +βj)

Γ(γj)
(Xj

k)
γj−1

∝ exp

{(
−λ1 +

mj∑
k=1

log(Xj
k)

)
γj − (λ0 +mj) log

[
Γ(γj)

Γ(γj +βj)

]}
. (18)

Since the conditional posterior for γj in Equation (18) is not a standard distribution, we develop

an M-H sampling algorithm to draw samples of γj by following the similar procedure used in DPM

with Gamma kernel density. The Stirling approximation is used to find an appropriate proposal

distribution family. As γj is large, the conditional posterior distribution can be approximated by

p(γj|βj,Xj)∝ e
(
−λ1+

∑mj
k=1

log(X
j
k

)
)
γj−(λ0+mj) log

[
Γ(γj)

Γ(γj+βj)

]

≈ e
(
−λ1+

∑mj
k=1

log(X
j
k

)
)
γj

[
(γj +βj − 1)!

(γj − 1)!

]λ0+mj

≈ e
−
(
λ1−

∑mj
k=1

log(X
j
k

)
)
γj
(
γ
βj
j

)λ0+mj
, if γj is large

∼ Gamma

(
βj(λ0 +mj) + 1, λ1−

mj∑
k=1

log(Xj
k)

)
.

Thus, Gamma(r, r/γ0
j ) with small r, e.g., r= 2 used in the empirical study, is used as the proposal

distribution, where γ0
j denotes the sample obtained from the previous M-H sampling iteration.

Next, by applying the Bayes’ rule, we derive the conditional posterior for βj

p(βj|γj,Xj)∝ p(βj|γj)p(Xj|γj, βj)

∝ exp

{
−λ2βj −λ0 log

[
Γ(βj)

Γ(γj +βj)

]} mj∏
k=1

Γ(γj +βj)

Γ(βj)

(
1−Xj

k

)βj−1

∝ exp

{(
−λ2 +

mj∑
k=1

log(1−Xj
k)

)
βj − (λ0 +mj) log

[
Γ(βj)

Γ(γj +βj)

]}
. (19)
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Notice that Equations (18) and (19) have the similar form, and they do not belong to any stan-

dard distribution. Thus, an M-H sampling approach is developed to generate samples for βj. An

appropriate proposal distribution family is found by applying the Stirling approximation,

p(βj|γj,Xj)∝ e
(
−λ2+

∑mj
k=1

log(1−Xj
k

)
)
βj−(λ0+mj) log

[
Γ(βj)

Γ(γj+βj)

]

≈ e
(
−λ2+

∑mj
k=1

log(1−Xj
k

)
)
βj

[
(γj +βj − 1)!

(βj − 1)!

]λ0+mj

≈ e
−
(
λ2−

∑mj
k=1

log(1−Xj
k

)
)
βj
(
β
γj
j

)λ0+mj , if βj is large

∼ Gamma

(
γj(λ0 +mj) + 1, λ2−

mj∑
k=1

log(1−Xj
k)

)
.

In the M-H sampling, Gamma(r, r/β0
j ) with small r is used as the proposal distribution, where β0

j

denotes the sample obtained from the previous iteration.

Appendix B: Asymptotic Properties of Bayesian Nonparametric Framework

In this section we prove Theorem 2. Let FB ≡ {F̃ (1), F̃ (2), . . . , F̃ (B)} be the sample of distributions

drawn from the posterior p(F |Xm). In the algorithm outlined in Section 3.5, we have ranked the

sampled responses {µ̃(b)}Bb=1 as µ̃(1) < µ̃(2) < . . . < µ̃(B). We can directly neglect the possibility of ties

because the distributions of all µ̃b’s are continuous. Now suppose (i1, i2, . . . , iB) is the permutation

of integers (1,2, . . . ,B) such that µ̃ib = µ̃(b) for b = 1,2, . . . ,B. In other words, ib is the original

subscript of µ̃(b) before they are ranked. We define a sequence with subscript “(b)” as the same

sequence with the original subscript ib, i.e. µ(b) = µib , σ(b) = σib , n(b) = nib , S(b) = Sib , Ȳ(b) = Ȳib ,

for b= 1,2, . . . ,B.

We can also rank the mean system response {µb}Bb=1 into µ[1] < µ[2] < . . . < µ[B], neglecting

the possibility of ties. Similarly to above, suppose (j1, j2, . . . , jB) is the permutation of integers

(1,2, . . . ,B) such that µjb = µ[b] for b= 1,2, . . . ,B. In other words, jb is the original subscript of µ[b]

before they are ranked. We define a sequence with subscript “[b]” as the same sequence with the

original subscript jb, i.e. σ[b] = σjb , n[b] = njb , S[b] = Sjb , Ȳ[b] = Ȳjb , µ̃[b] = µ̃jb , for b= 1,2, . . . ,B.

Finally we can rank the sample means of simulation outputs {Ȳb}Bb=1 into Ȳ{1} < Ȳ{2} ≤ . . . < Ȳ{B},

neglecting the possibility of ties. Similarly to above, suppose (k1, k2, . . . , kB) is the permutation

of integers (1,2, . . . ,B) such that Ȳkb = Ȳ{b} for b = 1,2, . . . ,B. In other words, kb is the original

subscript of Ȳ{b} before they are ranked. We define a sequence with subscript “{b}” as the same

sequence with the original subscript kb, i.e. µ{b} = µkb , σ{b} = σkb , n{b} = nkb , S{b} = Skb , µ̃{b} = µ̃kb ,

for b= 1,2, . . . ,B.

To prove the bounds in Part (i) of Theorem 2, we first show that the aforementioned three

different types of ranking from {µ[b]}Bb=1, {Ȳ{b}}Bb=1 and {µ̃(b)}Bb=1 agree with each other with high

probability.
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Lemma 1. Suppose Conditions (1) and (2) of Theorem 2 hold. Then conditional on

FB and the real-world data Xm, with probability at least 1 − 1/B2 for nmin ≥

(logB)3/min
(

minb=1,...,B−1

(
µ[b+1]−µ[b]

)2
,1
)

and for all large B, the rankings of three sequences

{µ[b]}Bb=1, {Ȳ{b}}Bb=1 and {µ̃(b)}Bb=1 agree with each other, i.e. the permutations (i1, i2, . . . , iB),

(j1, j2, . . . , jB), and (k1, k2, . . . , kB) are exactly identical to each other.

Proof of Lemma 1:

Define two events E1 = {(j1, j2, . . . , jB) is identical to (k1, k2, . . . , kB)} and E2 =

{(i1, i2, . . . , iB) is identical to (k1, k2, . . . , kB)}. We proceed in 3 steps: First, show that P(E1) ≥

1− 1/(2B2) for all large B; Second, show that P(E2)≥ 1− 1/(2B2) for all large B; Third, show

the conclusion of the lemma.

Step 1: Show that with probability at least 1− 1/(2B2) for all large B, the ranking of {Ȳ{b}}Bb=1

agrees with the ranking of {µ[b]}Bb=1, i.e. P(E1)≥ 1− 1/(2B2) for all large B.

According to the definitions above, we have

Ȳ[b]

∣∣∣ µ[b], σ
2
[b] ∼N

(
µ[b],

σ2
[b]

n[b]

)
, (20)

µ̃[b]

∣∣∣ Ȳ[b], S
2
[b] ∼N

(
Ȳ[b],

S2
[b]

n[b]

)
. (21)

Define new random variables ∆µ[b] ≡ µ[b+1]−µ[b] and ∆Ȳ[b] ≡ Ȳ[b+1]− Ȳ[b] for all b= 1,2, . . . ,B. Note

that conditional on {µ[b]}Bb=1 and {σ[b]}Bb=1, all {Ȳ[b]}Bb=1 are independent normal random variables.

Therefore, we can obtain directly from (20) that

∆Ȳ[b]

∣∣∣ µ[b], µ[b+1], σ
2
[b], σ

2
[b+1] ∼N

(
∆µ[b],

σ2
[b]

n[b]

+
σ2

[b+1]

n[b+1]

)
. (22)

Using a union bound, we can obtain that

P
(
Ȳ[1] ≤ Ȳ[2] ≤ . . .≤ Ȳ[B] does not hold

∣∣ {µ[b]}Bb=1,{σ2
[b]}Bb=1

)
= P

(
Ȳ[1] ≤ Ȳ[2], Ȳ[2] ≤ Ȳ[3], . . . , Ȳ[B−1] ≤ Ȳ[B] does not hold

∣∣ {µ[b]}Bb=1,{σ2
[b]}Bb=1

)
≤

B−1∑
b=1

P
(
Ȳ[b] > Ȳ[b+1]

∣∣ {µ[b]}Bb=1,{σ2
[b]}Bb=1

)
≤

B−1∑
b=1

P
(∣∣∆Ȳ[b]−∆µ[b]

∣∣≥∆µ[b]

∣∣ {µ[b]}Bb=1,{σ2
[b]}Bb=1

)
(∗)
≤

B−1∑
b=1

2exp

(
−
nmin(µ[b+1]−µ[b])

2

4Cσ

)
(∗∗)
≤ 2B exp

(
−(logB)3

4Cσ

)
(∗∗∗)
≤ 1

2B2
.
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In the display above, (*) follows from the Gaussian concentration inequality (Theorem 3.4 in

Massart 2007) and Condition (2), which implies that Var(Ȳ[b+1]− Ȳ[b])≤ 2Cσ/nmin; (**) is from our

condition that nmin ≥ (logB)3/minb=1,...,B−1

(
µ[b+1]−µ[b]

)2
; (***) follows because for B sufficiently

large, (logB)3/(4Cσ)− log(2B)� 2 logB+ log 2. This concludes the proof in Step 1.

Step 2: Show that with probability at least 1− 1/(2B2) for all large B, the rankings of {µ̃(b)}Bb=1

agrees with the ranking of {µ[b]}Bb=1, i.e. P(E2)≥ 1− 1/(2B2) for all large B.

Define new random variables ∆µ̃[b] ≡ µ̃[b+1] − µ̃[b] for all b= 1,2, . . . ,B. From (21) and the con-

ditional independence between µ̃[b]’s, the conditional distribution of the difference ∆µ̃[b] is given

by

∆µ̃[b]

∣∣∣ Ȳ[b], Ȳ[b+1], S
2
[b], S

2
[b+1], µ[b], µ[b+1], σ

2
[b], σ

2
[b+1] ∼N

(
∆Ȳ[b],

S2
[b]

n[b]

+
S2

[b+1]

n[b+1]

)
. (23)

Define new random variables W[b] = (n[b+1]/σ
2
[b+1])Ȳ[b+1] + (n[b]/σ

2
[b])Ȳ[b] for b = 1,2, . . . ,B.

Then (W[b],∆Ȳ[b]) is a one-to-one transformation of (Ȳ[b+1], Ȳ[b]). Since the σ-algebra gener-

ated by
{
Ȳ[b], Ȳ[b+1], S

2
[b], S

2
[b+1], µ[b], µ[b+1], σ

2
[b], σ

2
[b+1]

}
is the same as the σ-algebra generated by{

W[b],∆Ȳ[b], S
2
[b], S

2
[b+1], µ[b], µ[b+1], σ

2
[b], σ

2
[b+1]

}
, (23) implies that

∆µ̃[b]

∣∣∣ W[b],∆Ȳ[b], S
2
[b], S

2
[b+1], µ[b], µ[b+1], σ

2
[b], σ

2
[b+1] ∼N

(
∆Ȳ[b],

S2
[b]

n[b]

+
S2

[b+1]

n[b+1]

)
. (24)

From (20), we know that conditional on µ[b] and σ[b], the sample mean Ȳ[b] is a normal ran-

dom variable. Furthermore, conditional on {µ[b], µ[b+1], σ
2
[b], σ

2
[b+1]}, we have that Ȳ[b] and Ȳ[b+1] are

also independent normal random variables. Since (W[b],∆Ȳ[b]) is a one-to-one transformation of

(Ȳ[b+1], Ȳ[b]), we have that conditional on {µ[b], µ[b+1], σ
2
[b], σ

2
[b+1]}, W[b] and ∆Ȳ[b] are also jointly

normal, with the conditional covariance

Cov
(
W[b],∆Ȳ[b]

∣∣∣ µ[b], µ[b+1], σ
2
[b], σ

2
[b+1]

)
= Cov

(
(n[b+1]/σ

2
[b+1])Ȳ[b+1] + (n[b]/σ

2
[b])Ȳ[b], Ȳ[b+1]− Ȳ[b]

∣∣∣ µ[b], µ[b+1], σ
2
[b], σ

2
[b+1]

)
=
n[b+1]

σ2
[b+1]

Var
(
Ȳ[b+1]

∣∣∣ µ[b], µ[b+1], σ
2
[b], σ

2
[b+1]

)
−
n[b]

σ2
[b]

Var
(
Ȳ[b]

∣∣∣ µ[b], µ[b+1], σ
2
[b], σ

2
[b+1]

)
=
n[b+1]

σ2
[b+1]

·
σ2

[b+1]

n[b+1]

−
n[b]

σ2
[b]

·
σ2

[b]

n[b]

= 0.

Hence W[b] and ∆Ȳ[b] are also independent normal random variables conditional on

{µ[b], µ[b+1], σ
2
[b], σ

2
[b+1]}. Since Ȳ[b] and Ȳ[b+1] are sample means, conditional on {µ[b], µ[b+1], σ

2
[b], σ

2
[b+1]},

we have that the random vector (Ȳ[b+1], Ȳ[b]) is independent of the sample variances (S2
[b], S

2
[b+1]).
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Hence (W[b],∆Ȳ[b]) is also independent of the sample variances (S2
[b], S

2
[b+1]) conditional on

{µ[b], µ[b+1], σ
2
[b], σ

2
[b+1]}. In other words, for the joint density of W[b] and ∆Ȳ[b], we have

p
(
w[b],∆ȳ[b]

∣∣∣ S2
[b], S

2
[b+1], µ[b], µ[b+1], σ

2
[b], σ

2
[b+1]

)
= p

(
w[b],∆ȳ[b]

∣∣∣ µ[b], µ[b+1], σ
2
[b], σ

2
[b+1]

)
= p

(
∆ȳ[b]

∣∣∣ µ[b], µ[b+1], σ
2
[b], σ

2
[b+1]

)
· p
(
w[b]

∣∣∣ µ[b], µ[b+1], σ
2
[b], σ

2
[b+1]

)
(25)

For short let v1b =
σ2

[b]

n[b]
+

σ2
[b+1]

n[b+1]
and v2b =

S2
[b]

n[b]
+

S2
[b+1]

n[b+1]
. By combining (22), (24) and (25) together,

we can marginalize out W[b] and ∆Ȳ[b], and obtain that

p
(

∆µ̃[b]

∣∣∣ S2
[b], S

2
[b+1], µ[b], µ[b+1], σ

2
[b], σ

2
[b+1]

)
=

∫∫
p
(

∆µ̃[b]

∣∣∣ w[b],∆ȳ[b], S
2
[b], S

2
[b+1], µ[b], µ[b+1], σ

2
[b], σ

2
[b+1]

)
· p
(
w[b],∆ȳ[b]

∣∣∣ S2
[b], S

2
[b+1], µ[b], µ[b+1], σ

2
[b], σ

2
[b+1]

)
d∆ȳ[b]dw[b]

=

∫∫
p
(

∆µ̃[b]

∣∣∣ w[b],∆ȳ[b], S
2
[b], S

2
[b+1], µ[b], µ[b+1], σ

2
[b], σ

2
[b+1]

)
· p
(

∆ȳ[b]

∣∣∣ µ[b], µ[b+1], σ
2
[b], σ

2
[b+1]

)
· p
(
w[b]

∣∣∣ µ[b], µ[b+1], σ
2
[b], σ

2
[b+1]

)
d∆ȳ[b]dw[b]

(∗)
=

∫
p
(

∆µ̃[b]

∣∣∣ w[b],∆ȳ[b], S
2
[b], S

2
[b+1], µ[b], µ[b+1], σ

2
[b], σ

2
[b+1]

)
· p
(

∆ȳ[b]

∣∣∣ µ[b], µ[b+1], σ
2
[b], σ

2
[b+1]

)
d∆ȳ[b]

∝
∫

exp

{
−
(
∆µ̃[b]−∆ȳ[b]

)2

2v2b

}
· exp

{
−
(
∆ȳ[b]−∆µ[b]

)2

2v1b

}
d∆ȳ[b]

=

∫
exp

{
−

(v−1
1b + v−1

2b )
(
∆ȳ[b]

)2

2
+
(
v−1

1b ∆µ[b] + v−1
2b ∆µ̃[b]

)
∆ȳ[b]−

(
∆µ[b]

)2

2v1b

−
(
∆µ̃[b]

)2

2v2b

}
d∆ȳ[b]

=

∫
exp

{
−(v−1

1b + v−1
2b )

2

[
∆ȳ[b]−

v−1
1b ∆µ[b] + v−1

2b ∆µ̃[b]

v−1
1b + v−1

2b

]2
}
d∆ȳ[b]

· exp

{(
v−1

1b ∆µ[b] + v−1
2b ∆µ̃[b]

)2

2
(
v−1

1b + v−1
2b

) −
(
∆µ[b]

)2

2v1b

−
(
∆µ̃[b]

)2

2v2b

}
(∗∗)
= exp

{(
v−1

1b ∆µ[b] + v−1
2b ∆µ̃[b]

)2

2
(
v−1

1b + v−1
2b

) −
(
∆µ[b]

)2

2v1b

−
(
∆µ̃[b]

)2

2v2b

}

= exp

{
−
(
∆µ̃[b]

)2

2(v1b + v2b)
+

∆µ[b] ·∆µ̃[b]

v1b + v2b

−
(
∆µ[b]

)2

2(v1b + v2b)

}

= exp

{
−
(
∆µ̃[b]−∆µ[b]

)2

2(v1b + v2b)

}
,

where (*) follows because the integral with respect to w[b] is equal to 1, and (**) follows because

the integral with respect to ȳ[b] is a Gaussian integral and is equal to a constant. Therefore, we

have shown that

∆µ̃[b]

∣∣∣ µ[b], µ[b+1], σ
2
[b], σ

2
[b+1], S

2
[b], S

2
[b+1] ∼N

(
∆µ[b],

σ2
[b]

n[b]

+
σ2

[b+1]

n[b+1]

+
S2

[b]

n[b]

+
S2

[b+1]

n[b+1]

)
.
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Similar to the proof in Step 1, we can control the probability of incorrect ranking:

P
(
µ̃[1] ≤ µ̃[2] ≤ . . .≤ µ̃[B] does not hold

∣∣ {S2
[b]}Bb=1,{µ[b]}Bb=1,{σ2

[b]}Bb=1

)
≤P

(
µ̃[1] ≤ µ̃[2], . . . , µ̃[B−1] ≤ µ̃[B] does not hold

∣∣ {S2
[b]}Bb=1,{µ[b]}Bb=1,{σ2

[b]}Bb=1

)
≤
B−1∑
b=1

P
(
µ̃[b] > µ̃[b+1]

∣∣ {S2
[b]}Bb=1,{µ[b]}Bb=1,{σ2

[b]}Bb=1

)
≤
B−1∑
b=1

P
(∣∣∆µ̃[b]−∆µ[b]

∣∣>∆µ[b]

∣∣ {S2
[b]}Bb=1,{µ[b]}Bb=1,{σ2

[b]}Bb=1

)
(∗)
≤2

B−1∑
b=1

exp

− nmin(µ[b+1]−µ[b])
2

2
(

2Cσ +S2
[b] +S2

[b+1]

)
 , (26)

where (*) comes from the Gaussian concentration inequality (Theorem 3.4 in Massart 2007) and

the fact that nmin ≤ nb for all b= 1,2, . . . ,B.

Next we remove the conditioning on {S2
[b]}Bb=1 in (26).

P
(
µ̃[1] ≤ µ̃[2] ≤ . . .≤ µ̃[B] does not hold

∣∣ {µ[b]}Bb=1,{σ2
[b]}Bb=1

)
= E

{S2
[b]
}B
b=1

∣∣{µ[b]}Bb=1
,{σ2

[b]
}B
b=1

P
(
µ̃[1] ≤ µ̃[2] ≤ . . .≤ µ̃[B] does not hold

∣∣ {S2
[b]}Bb=1,{µ[b]}Bb=1,{σ2

[b]}Bb=1

)
≤E

{S2
[b]
}B
b=1

∣∣{µ[b]}Bb=1
,{σ2

[b]
}B
b=1

2
B−1∑
b=1

exp

− nmin(µ[b+1]−µ[b])
2

2
(

2Cσ +S2
[b] +S2

[b+1]

)


≤E
{S2

[b]
}B
b=1

∣∣{µ[b]}Bb=1
,{σ2

[b]
}B
b=1

2
B−1∑
b=1

exp

− nmin(µ[b+1]−µ[b])
2

2
(

2Cσ +S2
[b] +S2

[b+1]

)
×

[
I(S2

[b] ≤C1σ
2
[b], S

2
[b+1] ≤C1σ

2
[b+1]) + I(S2

[b] >C1σ
2
[b]) + I(S2

[b+1] >C1σ
2
[b+1])

]
≤ 2B exp

(
−
nmin minb=1,...,B(µ[b+1]−µ[b])

2

4Cσ (1 +C1)

)
+ 4

B∑
b=1

P
(
S2

[b] >C1σ
2
[b]

∣∣{µ[b]}Bb=1,{σ2
[b]}Bb=1

)
, (27)

where I(·) is the indicator function and the constant C1 is chosen to satisfy C1 > 5. The first term

in (27) is summable for nmin = 1,2, . . .. To control the second term in (27), since (n[b]− 1)S2
[b]/σ

2
[b]

follows the chi-square distribution with n[b]− 1 degrees of freedom, we have

P
(
S2

[b] >C1σ
2
[b]

∣∣ {µ[b]}Bb=1,{σ2
[b]}Bb=1

)
= P

(
S2

[b]

σ2
[b]

− 1>C1− 1

∣∣∣∣∣ {µ[b]}Bb=1,{σ2
[b]}Bb=1

)

= P

(
1

n[b]− 1

(
(n[b]− 1)S2

[b]

σ2
[b]

)
− 1>C1− 1

∣∣∣∣∣ {µ[b]}Bb=1,{σ2
[b]}Bb=1

)
(∗)
≤ exp

(
−

(C1− 1)n[b]

4

)
≤ exp

(
−(C1− 1)nmin

4

)
, (28)
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where (*) follows from C1 > 5 and the concentration inequality for chi-square random variables

(Lemma 1 in Laurent and Massart 2000). Based on the condition on nmin, we can combine (27)

and (28) and obtain

P
(
µ̃[1] ≤ µ̃[2] ≤ . . .≤ µ̃[B] does not hold

∣∣ {µ[b]}Bb=1,{σ2
[b]}Bb=1

)
≤ 2B exp

(
− (logB)3

4Cσ(1 +C1)

)
+ 4B exp

(
−(C1− 1)(logB)3

4

)
(∗∗)
≤ 1

4B2
+

1

4B2
=

1

2B2
,

where (**) follows because (logB)3/[4Cσ(1 + C1)] − log(2B) � 2 logB + log 4 and (C1 −

1)(logB)3/4− log(4B)� 2 logB+ log 4. This concludes the proof in Step 2.

Step 3: The conclusion of Lemma 1 follows trivially from Step 1 and Step 2: If both E1 and E2

happen, then the rankings of {µ[b]}Bb=1, {Ȳ{b}}Bb=1 and {µ̃(b)}Bb=1 agree with each other. Therefore,

the probability that their rankings disagree is upper bounded by P(Ec
1 ∪Ec

2)≤ P(Ec
1) + P(Ec

2)≤

1/(2B2) + 1/(2B2) = 1/B2. Thus the conclusion of the lemma is proved. 2

Proof of Theorem 2 (i):

Similar to the derivation of the conditional distribution of ∆µ̃[b] in the proof of Lemma 1, on

ΘB for every fixed b with b= 1,2, . . . ,B, we can combine (20) and (21) and marginalize out Ȳ[b] to

obtain that

µ̃[b]

∣∣ S2
[b], µ[b], σ

2
[b] ∼N

(
µ[b],

σ2
[b] +S2

[b]

n[b]

)
. (29)

Note that the σ-algebra generated by {µ[b], σ
2
[b]} is included in the σ-algebra generated by FB.

On the other hand, in (20), our simulation mechanism indicates that Ȳ[b] is a normal random

variable that depends on only the value of {µ[b], σ
2
[b]}, but not any other information in the σ-algebra

generated by Fm and Xm. Therefore, the conditional distribution of Ȳ[b] given {FB,Xm} is still

N
(
µ[b], σ

2
[b]/n[b]

)
, which further implies that (29) can be rewritten as

µ̃[b]

∣∣ S2
[b],FB,Xm ∼N

(
µ[b],

σ2
[b] +S2

[b]

n[b]

)
.

For sufficiently large C1, B ≥ 2 and any fixed b∈ {1,2, . . . ,B},

P
(√
n[b]

∣∣µ̃[b]−µ[b]

∣∣>C1 logB | FB,Xm

)
= ES2

[b]
|FB ,XmP

(√
n[b]

∣∣µ̃[b]−µ[b]

∣∣>C1 logB
∣∣ S2

[b],FB,Xm

)
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(∗)
≤ ES2

[b]
|σ2

[b]
2exp

− (C1 logB)2

2
(
σ2

[b] +S2
[b]

)


= ES2
[b]
|σ2

[b]
2exp

− (C1 logB)2

2
(
σ2

[b] +S2
[b]

)
 · [I (S2

[b] ≤ (C1 logB)σ2
[b]

)
+ I

(
S2

[b] > (C1 logB)σ2
[b]

)]
≤ 2exp

(
− (C1 logB)2

2Cσ(1 +C1 logB)

)
+ 2P

(
S2

[b] > (C1 logB)σ2
[b]

∣∣∣ µ[b], σ
2
[b]

)
(∗∗)
≤ 2exp

(
−C1 logB

4Cσ

)
+ 2exp

(
−(C1 logB− 1)nmin

4

)
(∗∗∗)
≤ exp

(
−C1 logB

8Cσ

)
. (30)

In the display above, (*) follows from the Gaussian concentration inequality (Theorem 3.4 in

Massart 2007), and the conditional expectation ES2
[b]
|FB ,Xm is equivalent to the conditional expec-

tation ES2
[b]
|σ2

[b]
because the conditional distribution of the sample variance S2

[b] given {FB,Xm} only

depends on σ2
[b], as (n[b]−1)S2

[b]/σ
2
[b] follows the chi-square distribution with n[b]−1 degrees of free-

dom; (**) follows from (28) and sufficiently large C1; (***) follows because by our condition on nmin,

we have nmin→∞ as B→∞, C1 logB/(4Cσ)� (C1 logB− 1)nmin/4 and C1 logB/(8Cσ)� log 4.

Using the upper bound in (30) for a single b ∈ {1,2, . . . ,B}, we can derive that for sufficiently

large C1 > 0,

P

(
max

b=1,...,B

√
n[b]

∣∣µ̃[b]−µ[b]

∣∣>C1 logB
∣∣∣ FB,Xm

)
= 1−

B∏
b=1

[
1−P

(√
n[b]

∣∣µ̃[b]−µ[b]

∣∣>C1 logB
∣∣∣ FB,Xm

)]
≤ 1−

[
1− exp

(
−C1 logB

8Cσ

)]B
(∗)
≤ −B log

[
1− exp

(
−C1 logB

8Cσ

)]
(∗∗)
≤ 2B exp

(
−C1 logB

8Cσ

)
= exp

(
−C1 logB

8Cσ
+ log(2B)

)
(∗∗∗)
≤ 2

B2
,

where (*) uses 1− e−t ≤ t for t > 0; (**) is because − log(1− t)≤ 2t for t∈ (0,1/3); (***) follows if

we choose C1 sufficiently large such that C1 logB/(8Cσ)> log 3. This implies that

P

(
max

b=1,...,B

√
n[b]

∣∣µ̃[b]−µ[b]

∣∣≤C1 logB
∣∣∣ FB,Xm

)
≥ 1− 2

B2
, (31)

for the constant C1 chosen above, for all large B.

Now we are going to replace the difference
√
n[b]

∣∣µ̃[b]−µ[b]

∣∣ in (31) by
√
n(b)

∣∣µ̃(b)−µ(b)

∣∣. To do

this, we need the ranking of {µ̃(b)}Bb=1 to agree with the ranking of {µ[b]}Bb=1. From Lemma 1, we

already know that this event happens with large probability. Specifically, let ΘB be the event

that the rankings of {µ̃(b)}Bb=1,{Ȳ{b}}Bb=1,{µ[b]}Bb=1 agree with each other. Then Lemma 1 says that

P(ΘB | FB,Xm) ≥ 1 − 1/B2 for nmin ≥ (logB)3/min
(

minb=1,...,B−1

(
µ[b+1]−µ[b]

)2
,1
)

and for all

large B. It is clear that these events have the relation{
max

b=1,...,B

√
n(b)

∣∣µ̃(b)−µ(b)

∣∣≤C1 logB

}
⊇ΘB ∩

{
max

b=1,...,B

√
n[b]

∣∣µ̃[b]−µ[b]

∣∣≤C1 logB

}
.
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Therefore, using Lemma 1, Equation (31) and a union bound, we have

P

(
max

b=1,...,B

√
n(b)

∣∣µ̃(b)−µ(b)

∣∣>C1 logB
∣∣∣ FB,Xm

)
≤P(Θc

B) + P

(
max

b=1,...,B

√
n[b]

∣∣µ̃[b]−µ[b]

∣∣≥C1 logB
∣∣∣ FB,Xm

)
≤ 1

B2
+

2

B2
=

3

B2
,

which implies that

P

(
max

b=1,...,B

√
n(b)

∣∣µ̃(b)−µ(b)

∣∣≤C1 logB
∣∣∣ FB,Xm

)
≥ 1− 3

B2
. (32)

In (32), we can set b= dγBe (which is an index changing with B) for a fixed γ ∈ (0,1) and obtain

that for nmin ≥ (logB)3/min
(

minb=1,...,B−1

(
µ[b+1]−µ[b]

)2
,1
)

and for all large B,∣∣µ̃(dγBe)−µ(dγBe)
∣∣=Op

(
logB
√
nmin

)
, (33)

where Op is the conditional measure of the simulation outputs given FB and the input data Xm.

Since nmin ≥ (logB)3 by the condition on nmin, we have logB/
√
nmin ≤ 1/

√
logB→ 0 as B→∞.

Next we turn to the relation between µb and the quantiles of Pµ(·|Xm). For a fixed γ ∈ (0,1), by

the standard central limit theorem for quantiles, the sample quantile µ(dγBe) satisfies

√
B
(
µ(dγBe)− qγ(Xm, µ(·))

) d→N
(

0,
γ(1− γ)

p2
µ(qγ(Xm, µ(·))|Xm)

)
,

as B →∞, where
d→ represents the convergence in distribution, and pµ(·|Xm) denotes the pos-

terior density of µ(F ) given Xm. Condition (1) in Theorem 2 guarantees that for any γ ∈ (0,1),

pµ(qγ(Xm, µ(·))|Xm)> 0 so the variance in the limiting normal distribution exists. Therefore, con-

ditional on Xm,
∣∣µ(dγBe)− qγ(Xm, µ(·))

∣∣ = Op

(
1/
√
B
)

. If we rewrite this relation conditional on

both FB and Xm, then as B→∞, with high probability in FB and Xm,∣∣µ(dγBe)− qγ(Xm, µ(·))
∣∣=Op

(
1√
B

)
. (34)

We combine (33) and (34) by the triangular inequality to obtain that∣∣µ̃(dγBe)− qγ(Xm, µ(·))
∣∣=Op

(
logB
√
nmin

)
+Op

(
1√
B

)
(35)

for nmin ≥ (logB)3/min
(

minb=1,...,B−1

(
µ[b+1]−µ[b]

)2
,1
)

and for all large B.

Since the Hausdorff distance between two intervals has the simple expression dH([a1, b1], [a2, b2]) =

max(|a1− a2|, |b1− b2|), we can set γ = α∗/2 and γ = 1−α∗/2 respectively in (35) and obtain that

conditional on FB and Xm,

dH
([
µ̃(d(α∗/2)Be), µ̃(d(1−α∗/2)Be)

]
,
[
qα∗/2(Xm, µ(·)), q1−α∗/2(Xm, µ(·))

])
= max

{∣∣µ̃(dα∗Be)− qα∗/2(Xm, µ(·))
∣∣ , ∣∣µ̃(d(1−α∗/2)Be)− q1−α∗/2(Xm, µ(·))

∣∣}
=Op

(
logB
√
nmin

)
+Op

(
1√
B

)
.
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2

Proof of Theorem 2 (ii): Since nmin ≥ (logB)3, we have logB/
√
nmin ≤ 1/

√
logB→ 0 as B→∞.

The relation (33) implies that for nmin ≥ (logB)3/min
(

minb=1,...,B−1

(
µ[b+1]−µ[b]

)2
,1
)

and for all

large B, ∣∣µ̃(dγBe)−µ(dγBe)
∣∣→ 0 (36)

in probability as B→∞. Besides, from the derivation of (34), we also have the convergence of

sample quantiles, ∣∣µ(dγBe)− qγ(Xm, µ(·))
∣∣→ 0 (37)

in probability as B→∞.

Conditions (3) and (4) from Theorem 2 lead to the posterior consistency of µ(F ), i.e. the posterior

distribution Pµ(·|Xm) converges to the point mass at the true system mean response µ(F c) as

m→∞. As a result, we have

|qγ(Xm, µ(·))−µ(F c)| → 0 (38)

in probability as m→∞ .

We combine (36)-(38), and then by the triangular inequality, we obtain∣∣µ̃(dγBe)−µ(F c)
∣∣→ 0

in probability as B,m→∞. By setting γ = α∗/2,1−α∗/2, we conclude that the CrI in (9) converges

to µ(F c) for nmin ≥ (logB)3/min
(

minb=1,...,B−1

(
µ[b+1]−µ[b]

)2
,1
)

as in probability m,B→∞. 2

Appendix C: Variance Decomposition of System Performance Estimation

Proof of Theorem 3: Given the real-world data Xm and the simulation outputs Yn, the variance

of compound random variable U = µ̃(F̃ (b)) with F̃ (b) ∼ p(F |Xm) quantifies the overall uncertainty

of our belief on the system performance µc = µ(F c). Here, we decompose this variance to measure

the relative contributions from the input and simulation uncertainty. For notational simplification,

we drop the conditional on Xm .

At any F̃ (b) ∼ p(F |Xm), let µb = µ(F̃ (b)), σ2
b = σ2

ε (F̃
(b)), µ̃b = µ̃(F̃ (b)), Ȳb =

∑nb
j=1 Yj(F̃

(b))/nb and

Yb = {Y1(F̃ (b)), Y2(F̃ (b)), . . . , Ynb(F̃
(b))}. The variance of U can be written as

Var
[
µ̃
(
F̃ (b)

)]
= E

[
(µ̃b−E[µ̃b])

2
]

= E
{[(

µ̃b− Ȳb
)

+
(
Ȳb−µb

)
+ (µb−E[µ̃b])

]2}
= E

[(
µ̃b− Ȳb

)2
]

+ E
[(
Ȳb−µb

)2
]

+ E
[
(µb−E[µ̃b])

2
]

+ 2E
[(
µ̃b− Ȳb

) (
Ȳb−µb

)]
+2E

[(
µ̃b− Ȳb

)
(µb−E[µ̃b])

]
+ 2E

[(
Ȳb−µb

)
(µb−E[µ̃b])

]
. (39)
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Since

µ̃b|F̃ (b),Yb ∼N
(
Ȳb,

S2
b

nb

)
and Yj(F̃

(b))|F̃ (b) ∼N (µb, σ
2
b ) for j = 1, . . . , nb,

we calculate the cross terms on the right-side of Equation (39) respectively

E
[(
µ̃b− Ȳb

) (
Ȳb−µb

)]
= E

{(
Ȳb−µb

)
E
[(
µ̃b− Ȳb

)∣∣ F̃ (b),Yb

]}
= 0,

E
[(
µ̃b− Ȳb

)
(µb−E[µ̃b])

]
= E

{
(µb−E[µ̃b])E

[(
µ̃b− Ȳb

)∣∣ F̃ (b),Yb

]}
= 0,

E
[(
Ȳb−µb

)
(µb−E[µ̃b])

]
= E

{
(µb−E[µ̃b])E

[(
Ȳb−µb

)∣∣ F̃ (b))
]}

= 0.

Thus, we can simplify Equation (39) to

Var
[
µ̃(F̃ (b))

]
= E

[(
µ̃b− Ȳb

)2
]

+ E
[(
Ȳb−µb

)2
]

+ E
[
(µb−E[µ̃b])

2
]
. (40)

Next we calculate each term on the right side of Equation (40) respectively. We can simplify the

first term

E
[(
µ̃b− Ȳb

)2
]

= E
{

E
[(
µ̃b− Ȳb

)2
∣∣∣ F̃ (b),Yb

]}
= E

[
S2
b

nb

]
=

1

nb
E

{
E

[
1

nb− 1

nb∑
j=1

(
Yj(F̃

(b))− Ȳb
)2

∣∣∣∣∣ F̃ (b)

]}

=
1

nb
E

{
E

[
1

nb− 1

nb∑
j=1

(
Yj(F̃

(b))−µb +µb− Ȳb
)2

∣∣∣∣∣ F̃ (b)

]}

=
1

nb(nb− 1)
E

{
E

[
nb∑
j=1

(
Yj(F̃

(b))−µb
)2

+nb
(
µb− Ȳb

)2

∣∣∣∣∣ F̃ (b)

]}

+
2

nb(nb− 1)
E

{
E

[
nb∑
j=1

(
Yj(F̃

(b))−µb
)(
µb− Ȳb

)∣∣∣∣∣ F̃ (b)

]}
. (41)

Since Yj(F̃
(b))|F̃ (b) ∼N (µb, σ

2
b ), the second term on the right side of Equation (41) becomes

E
[
nb
(
µb− Ȳb

)2
]

= nbE
{[(

µb− Ȳb
)2
∣∣∣ F̃ (b)

]}
= E

[
σ2
b

]
,

and the third term can be simplified

E

{
E

[
nb∑
j=1

(
Yj(F̃

(b))−µb
)(
µb− Ȳb

)∣∣∣∣∣ F̃ (b)

]}

= E

{
E

[
nb∑
j=1

(
Yj(F̃

(b))µb + Ȳbµb−Yj(F̃ (b))Ȳb−µ2
b

)∣∣∣∣∣ F̃ (b)

]}
= E

[
E
(
nbȲbµb +nbȲbµb−nbȲ 2

b −nbµ2
b |F̃ (b)

)]
= E

{
E
[
−nb

(
µb− Ȳb

)2
∣∣∣ F̃ (b)

]}
= E

[
−σ2

b

]
.
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By submitting these results into Equation (41), we have

E
[(
µ̃b− Ȳb

)2
]

=
1

nb(nb− 1)
E
[
nbσ

2
b +σ2

b − 2σ2
b

]
= E

[
σ2
b

nb

]
.

Thus, the sum of the first two terms on the right side of Equation (40) becomes

E
[(
µ̃b− Ȳb

)2
]

+ E
[(
Ȳb−µb

)2
]

= E

[
2

nb
σ2
b

]
,

and the third term can be rewrote as

E
[
(µb−E[µ̃b])

2
]

= E
[
(µb−E[µb] + E [µb]−E[µ̃b])

2
]

= E
[
(µb−E[µb])

2
]

+ (E [µb]−E[µ̃b])
2

+ 2(E [µb]−E[µ̃b])E [µb−E[µb]]

= Var(µb) + (E [µb]−E[µ̃b])
2

= Var(µb). (42)

Step (42) holds because E[µ̃b] = E[E(µ̃b|F̃ (b), Ȳb)] = E[E(Ȳb|F̃ (b))] = E[µb]. Submitting these results

into Equation (40), the total variance of the estimated system response is

Var
[
µ̃(F̃ (b))

∣∣∣Xm

]
= Var(µb|Xm) + E

[
2

nb
σ2
b

∣∣∣∣Xm

]
. (43)

The first term on the right side of Equation (43) measures the impact of input uncertainty. The sec-

ond term which is the expected simulation estimation uncertainty weighted by p(F |Xm) measures

the impact from the simulation uncertainty. 2

Appendix D: Sensitivity Analysis of Hyper-parameters for θθθα

We use examples listed in Table 1 with sample size m= 50 to study the sensitivity to the values

of hyper-parameters θθθα. DPM with appropriate kernel densities are used for different examples.

That means DPM with Gamma kernel used for Example 1 and 2, DPM with Gaussian kernel used

for Examples 3, and DPM with Beta kernel used for Example 4. Table 4 records 95% symmetric

CIs of KS and AD distances obtained from 1000 macro-replications. The results indicate that the

values of hyper-parameters θθθα have an insignificant impact on the input model estimation, where

Gamma(2,4) prior was used in Escobar and West (1995) and the discrete Gamma(1,1) prior was

used in Wang and Dunson (2011). The choice of hyper-parameters does not have significant impact

on the density estimation accuracy.
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Table 4 KS and AD distances for Examples 1–4 with different hyper-parameters θθθα

m= 50 Example 1 Example 2 Example 3 Example 4

Gamma(0.5,0.5)
Dm 0.106±0.002 0.073±0.001 0.075±0.001 0.070±0.001

Am 11.870±0.175 7.594±0.097 6.365±0.096 8.808±0.097

Gamma(1,1)
Dm 0.102±0.002 0.071±0.001 0.072±0.001 0.068±0.001

Am 11.278±0.158 7.203±0.088 6.083±0.093 8.253±0.092

Gamma(4,4)
Dm 0.104±0.002 0.074±0.001 0.075±0.001 0.069±0.001

Am 11.495±0.166 7.787±0.104 6.484±0.098 8.490±0.095

Gamma(2,4)
Dm 0.105±0.002 0.072±0.001 0.073±0.001 0.068±0.001

Am 11.762±0.174 7.419±0.092 6.207±0.094 8.337±0.094

Table 5 Results of cross validation for the density selection

DPM Gamma Empirical Distribution KDE Parametric

RM1 -218.731 NA -226.928 -393.239

RM2 -233.971 NA -270.577 -605.704

Appendix E: Studying Input Model Performance by Using Real Demand Data

Except the simulated data used in Section 4.1, we also test the performance of our nonparametric

input models by using the demand data of two representative raw materials collected from a real

bio-pharmaceutical inventory system. The sample sizes are 101 and 142 respectively. Since the

underlying true distributions are unknown, the cross validation is applied for the density selection;

See more detailed description in Lian (2009). We perform a 5-folds cross validation. Table 5 records

the average log-likelihoods obtained by using different approaches. Specifically, we randomly divide

all the data into 5 sets, select one set for validation and use the remaining sets as training data.

For each combination of training and validation data sets, we first fit the input model by using the

training data, apply it to the validation data and calculate the log-likelihood. After that, we record

the average log-likelihood obtained from all combinations of training and validation data sets.

Since the demand data have support on <+, we use DPM with Gamma kernel density. The

distribution family for the parametric approach is selected based on the KS test statistics by using

@Risk since both this criteria and the likelihood are related to the overall fitting performance of

input model. In addition, since the empirical distribution only has the information at the data

points and it does not return a density estimate, we skip it.

Since the posterior predictive distribution is recommended for the model selection (Gelman

et al. 2004), for DPM, the likelihood is calculated based on the posterior predictive distribu-

tion: f
(
X

(i)
V |X

(i)
T

)
=
∫
f
(
X

(i)
V |F

)
dP
(
F |X(i)

T

)
, where X

(i)
T and X

(i)
V denote the ith combination
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of training and validation data with i = 1,2, . . . ,5. Then, we record the average log-likelihood∑5

i=1 log
[
f
(
X

(i)
V |X

(i)
T

)]
/5. For the frequentist KDE and parametric approaches, we first find the

fitted input density based on the training set, denoted by f̂(·|X(i)
T ), apply it to the validation data

and calculate the average log-likelihood
∑5

i=1 log
[
f̂
(
X

(i)
V |X

(i)
T

)]
/5. Table 5 demonstrates that DPM

with Gamma kernel maximizes the average log-likelihood and provides the best fit to the real RM

demand data.

Appendix F: Empirical Study for an Inventory Example

In this section, we use a RM inventory example to study the performance of our Bayesian frame-

work. A daily review (R,Q) ordering policy is applied for the inventory control. At the beginning

of each day, if the inventory position drops to and below the reorder point R= 150, we place an

order with size Q = 300 that arrives in a fixed lead time with L = 1. In each day, the arrivals

of move orders follow a Poisson process with rate 3 and the size of each move order follows the

Log-normal mixture distribution 0.3L(−0.005,0.1) + 0.4L(0.378,0.2) + 0.3L(0.654,0.3) to mimic

the situations that we could have various latent sources of uncertainty from production lines. Thus,

the accumulated move orders in each day follow the compound Poisson distribution. Notice that

compared to the M/M/1 queue used in Section 4.2, this input model is more complex. Without

any prior information of F c, it is challenging for existing input modeling approaches to capture

the important properties in the real-world data. We are interested in the steady-state expected

inventory level and two most commonly used service levels in the inventory control: the type-I

service level defined as the probability of no stockout per order cycle and the type-II service level

defined as the fraction of move orders that can be satisfied immediately from stock on hand. Since

the performance of our approach for type-I and type-II service levels are similar, we only present

the results for type-II service level.

A side experiment driven by the underlying input model F c is used to estimate the true system

performance µc. We start with the empty system with the warmup length equal to 100 days, the

run length equal to 500 days and the number of replications equal to 106. We record 95% symmetric

CIs of the expected inventory level 90.261± 0.006 and the type-II service level 0.82025± 0.00009.

When we evaluate the performance of our framework, the simulation is used to estimate the

steady-state system response for the inventory system. In each simulation run, we start with an

empty system, set the warmup length equal to 100 days and the runlength equal to 50 days. To

create the situation where each simulation run could be computationally expensive, we choose a

short runlength on purpose.

We systematically examine the effects of m and n. The results of the expected inventory level

and the type-II service level with m = 50,100,1000 and n = 10,50,500 are shown in Tables 6–7.
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All results in Tables 6-7 are based on 1000 macro-replications. In each macro-replication, we first

draw m samples from F c to mimic the procedure collecting m “real-world” data. As m and n

increase, the width of CrI quantifying the overall uncertainty of the system performance estimation

decreases and the deviation |E[U |Xm,Yn]−µc| also decreases. These behaviors match well with the

asymptotic properties described in Section 3.5.2. Thus, the performance of our approach is robust

to complex input model. Since there is no closed form of the system response as a function of the

input model and it is also computationally expensive to precisely estimate the true mean response

at each posterior sample of input model, we do not provide the results of the PC for this example.

Table 6 Results of the expected inventory level when m= 50,100,1000 and n= 10,50,500.

Mean of |CrI|/2 SD of |CrI|/2 Mean of |err| SD of |err| {σ̂I/σ̂S}

m= 50, n= 10 22.643 1.929 12.045 7.912 1.498

m= 50, n= 50 19.815 1.523 9.744 7.793 3.019

m= 50, n= 500 18.162 1.555 9.397 8.296 9.334

m= 100, n= 10 18.672 1.193 7.627 5.883 1.162

m= 100, n= 50 14.026 0.886 7.148 5.852 2.184

m= 100, n= 500 12.574 0.818 7.407 5.297 6.508

m= 1000, n= 10 14.082 0.492 2.229 1.65 0.745

m= 1000, n= 50 6.86 0.261 2.462 1.74 0.859

m= 1000, n= 500 3.571 0.143 2.375 1.774 1.691

Table 7 Results of the type-II service level when m= 50,100,1000 and n= 10,50,500.

Mean of |CrI|/2 SD of |CrI|/2 Mean of |err| SD of |err| {σ̂I/σ̂S}

m= 50, n= 10 0.171 0.018 0.041 0.026 1.466

m= 50, n= 50 0.143 0.014 0.033 0.024 2.937

m= 50, n= 500 0.135 0.015 0.029 0.03 9.084

m= 100, n= 10 0.145 0.012 0.028 0.02 1.159

m= 100, n= 50 0.117 0.01 0.027 0.021 2.161

m= 100, n= 500 0.099 0.008 0.025 0.02 6.476

m= 1000, n= 10 0.092 0.004 0.009 0.006 0.745

m= 1000, n= 50 0.054 0.002 0.008 0.006 0.868

m= 1000, n= 500 0.028 0.001 0.006 0.006 1.717
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