Proceedings of the 2018 Winter Simulation Conference
M. Rabe, A. A. Juan, N. Mustafee, A. Skoogh, S. Jain, and B. Johansson, eds.

A SIMULATION-BASED PREDICTION FRAMEWORK FOR STOCHASTIC SYSTEM
DYNAMIC RISK MANAGEMENT

Wei Xie, Pu Zhang Ilya O. Ryzhov

Department of Industrial and Systems Engineering Decision, Operations and Information Technologies

Rensselaer Polytechnic Institute Robert H. Smith School of Business
110 8th St. 4322 Van Munching Hall
Troy, NY 12180, USA University of Maryland

College Park, MD 20742-1815

ABSTRACT

We propose a simulation-based prediction framework which can quantify the prediction uncertainty of system
future response and further guide operational decisions for complex stochastic systems. Specifically, by
exploring the underlying generative process of real-world data streams, we first develop a nonparametric
input model which can capture the important properties, including non-stationarity, skewness, component-
wise and time dependence. It can improve the prediction accuracy, and the posterior predictive distribution
can quantify the prediction uncertainty accounting for both input and stochastic uncertainties. Then, we
propose the simulation-based prediction framework which can efficiently search for the optimal operational
decisions hedging against the prediction uncertainty and minimizing the expected cost occurring in the
planning horizon. The empirical study demonstrates that our approach has promising performance.

1 INTRODUCTION

The proposed simulation-based prediction framework can be applied to many application domains, such
as manufacturing, health care and service. In this paper, we use the bio-pharmaceutical supply chain
management as an illustration example. There are various challenges for biopharma supply chain management
(Ma 2011). First, there exists high uncertainty in supply, production, testing and demand. The quality and
ordering lead time of some key raw materials often have large variation. The production yield and cycle
time have high fluctuation due to contamination and cross-contamination. The demand of clinical products
is hard to predict. Second, the bio-pharmaceutical supply chains tend to be complex since many clinical
and commercial products with totally different demand patterns share the same inventory, production and
testing resources. Third, there is rapid change in the technology and market. The product lifetime is
usually short and new products are frequently launched. At the same time, the internet-connected data
collection devices can result in the availability of rich real-world data streams, such as sensor and barcode
data, which have the potential to provide the current status of supply chains and production processes.

Since the bio-pharmaceutical manufacturing is a life saving industry, it requires a close to 100% service
level. For the complex and dynamic biopharma supply chains with huge uncertainty in supply, testing,
production and demand, coherent and fast decision making in inventory control, testing and production
scheduling are extremely important in order to hedge against the impact of the uncertainties and guarantee
the on-time product delivery. Since it is challenging to analytically assess the random behaviors of complex
stochastic systems, the simulation has become an important tool for the design of supply chains and
production processes. However, the simulation methodologies developed to guide the dynamic operational
decisions are still open.

To support the dynamic decision making, the simulation can be used to predict the system future
response. To provide the reliable and cost-efficient decisions, it is important to improve the prediction
accuracy of system performance in the planning horizon and correctly quantify the prediction uncertainty.



Xie, Zhang, and Ryzhov

The stochastic behaviors of outputs depend on the choice of input models, defined as stochastic processes
used to drive simulation experiments. In the many real applications, we often have input processes with
component-wise and time dependence. For example, in the bio-pharmaceutical supply chains, the demands
of different drugs often depend on each other. Also, there exists the time dependence in the demand process
since patients usually take the drug for several cycles. To improve the prediction of system performance,
we need to faithfully capture the important properties of real-world data streams.

Several approaches have been proposed in the simulation literature to capture the dependence. For
example, Cario and Nelson (1998) proposed an Autoregressive-to-Anything (ARTA) Processes to model the
stationary time dependence. Biller and Nelson (2005) fitted ARTA processes with the Johnson translation
system (JST) marginal distributions to the moments of real-world data. Biller and Nelson (2008) extended
ARTA to Vector Autoregressive-to-Anything (VARTA), which can model both the component-wise and
time series dependence. However, the stationary VARTA process can not capture the non-stationarity in
the real-world data streams. In many situations, ignoring the non-stationarity could lead to unfounded
estimation of the system response (Harrod and Kelton 2006).

Various approaches have been proposed to model non-stationary input models with time dependence.
For example, Kuhl and Wilson (2001) introduced a non-homogeneous Poisson Process (NHPP) to model
the non-stationary arrival process. The long-term trend and nested cyclic behavior within small cycle length
are modeled. Gerhardt and Nelson (2009) proposed the non-stationary and non-Poisson (NSNP) arrival
process, and they modeled the non-stationarity by a rate function with pre-specified forms. They further
proposed the non-stationary and nonrenewal (NSNR) arrival process in Nelson and Gerhardt (2011). While
the non-stationarity is captured by these approaches, they mainly focus on arrival processes.

The non-stationary dynamic behaviors of input data are often induced by some latent states or factors.
For example, in bio-pharma supply chain, different drugs could have similar effects on the treatment for
certain diseases, such as flu, which could occur periodically and seasonally. Under different spread status
of diseases, the demands for these drugs have different statistical behaviors. There exist both time and
component-wise dependence among the drug demands. First, the course of treatment usually lasts a certain
period, which introduces the time series dependence of the demands. Second, since the drugs could have
similar effects on the treatment, their demands could be highly correlated with each other.

In addition, the input models are often estimated by finite real-world data. For example, since the
product life time in the bio-pharmaceutical industry is usually short and there are limited demand data,
the estimation uncertainty of input models, called the input uncertainty, could be large. Ignoring the input
uncertainty could lead to unsound prediction of system future response. Thus, it is necessary to correctly
quantify the impact from both input and stochastic uncertainties.

In this paper, to improve the prediction accuracy and correctly quantify the prediction uncertainty,
we first propose a nonparametric input model, called the Infinite Markov Switching Vector Autoregressive
(IMS-VAR). A Markov process is used to model the state evolution, which can be interpreted as “global”
time dependence. Under each state, Vector Autoregressive (VAR) is used to model the “local” dependence.
IMS-VAR can capture the rich dynamic behaviors of real-world input data streams, including skewness,
multimodality and dependence, and it can improve the prediction accuracy. Further, the posterior distributions
of the flexible input models can correctly quantify the input uncertainty. The posterior predictive distribution
can quantify the prediction uncertainty induced by both input and stochastic uncertainties.

Then, to quickly find the optimal operational decisions hedging against the prediction uncertainty, we
propose a simulation-based prediction framework to guide the real-time operational decisions for complex
stochastic systems. Since each simulation run could be computationally expensive, motivated by Fu (2006),
we propose a mini-batch gradient descent (GD) method that can efficiently employ the simulation resource
to search for the optimal operational decisions. The simultaneous perturbation stochastic approximation
(SPSA) proposed by Spall (1998) is used to efficiently estimate the gradient.
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The contributions of this paper are summarized as follow.

e The nonparametric IMS-VAR input model can capture the important properties in the real-world
data streams, including non-stationarity, skewness, component-wise and time series dependency. It
can improve the prediction accuracy.

e The posterior distribution of flexible input models is used to quantify the input uncertainty, and
then the posterior predictive distribution can correctly quantify the prediction risk induced by both
input and simulation uncertainties.

e We propose the simulation-based prediction framework that can efficiently employ the simulation
resource to search for the optimal operational decisions. The simulation experiments are driven
by the posterior predictive distribution. Then, the mini-batch gradient descent method is used to
quickly search for the optimal operational decision hedging against the prediction uncertainty.

In the next section, we provide the problem description and briefly introduce the simulation-based
prediction framework. In Section 3, we first present the nonparametric Bayesian IMS-VAR model, and
provide the inference and sampling procedure to generate scenarios of future inputs. Then, built on the
simulation-based probabilistic prediction, a mini-batch stochastic gradient descent approach is introduced
to efficiently and quickly find the optimal decisions. We study the finite sample performance of our
input forecast model and simulation-based prediction framework in Section 4, and conclude this paper in
Section 5.

2 PROBLEM DESCRIPTION AND PROPOSED APPROACH

We use the bio-pharmaceutical supply chain risk management as an illustrative example to describe the
problem of interest. It is challenging to manage the biopharma supply chains because there exists high
uncertainty in supply, testing, production and demand, and the systems need to evolve fast to be competitive.
Thus, to construct a cost-efficient and reliable supply chain, it is critically important to find the real-time
operational decisions hedging against various sources of uncertainty. Here, we want to find the optimal
decisions minimizing the expected overall cost occurring during the planning horizon, including the inventory
holding cost, the backorder cost for unsatisfied demands, and the production cost. Suppose that the current
time period is 7', and the planning horizon length is 7. Denote the overall cost occurring in the planning
horizon as Yj_; Crin(X74n, 1), where X, represents the demands of d drugs realized in the (T + h)-
th time period, Crin(Xr4n,1) is the cost and g = {u,..., .} denotes the operational decision. For
simplification, suppose that the decision g is fixed during the planning horizon.

The future demand X7, , can be predicted by using the historical data, denoted by X{;.7) = (X, ..., Xr).
Specifically, the unknown “correct” input model, denoted by F¢, can be estimated by using the historical data
with the posterior distribution p(F[X{;.7)) quantifying the input uncertainty. Then, given any input model
estimate F', the prediction distribution p(X[T+1:T+T] |F') quantifies the prediction risk induced by stochastic
uncertainty. Thus, the prediction uncertainty characterized by the posterior predictive distribution,

PXrs1r49X (1)) = /p(X[T-H:T—H]|F)p(F|X[1:T])dF>

can account for both input and stochastic uncertainties. Notice that we do not separately handle input and
stochastic uncertainties because the estimation over underlying input models is mainly for predicting the
future demands based on the information extracted from the historical data.

To hedge against both stochastic and input uncertainties, we present a data-driven stochastic optimization.
Given any decision U, a predictive distribution of the overall cost is

T
X[l:T]) = /P <ZCT+h(XT+h7u)
=1

T
P < Y Cron(Xrin 1) F) p(F|X{1.7))dF.

h=1
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Then, the objective is to find the optimal operational decision minimizing the expected cost occurring in
the planning horizon,
X[1;r]>

where Q is a continuous and convex feasible region. Notice that differing with existing empirical stochastic
optimization (which takes the input model estimate as the true one), robust optimization, and distributionally
robust optimization, our approach can lead to decisions equally hedging against both input and stochastic
uncertainties.

Since the bio-pharma supply chains could be complex with numerous uncertainty and there is no closed
form expected future cost, simulation is used to predict the future system response. In this paper, we
propose a simulation-based prediction framework which can quantify the overall prediction uncertainty
for the future system response, and further provide the stochastic gradient based optimization approach
that can efficiently employ the simulation resource to search for the optimal decisions hedging against
the prediction uncertainty induced by both stochastic and input uncertainties. Specifically, we propose a
non-parametric Bayesian approach that can capture the important properties of the real-world data streams.
The posterior distribution of flexible input models, p(F |X[1:T] ), can correctly quantify the input uncertainty.
The scenarios of X7 .7 generated from the posterior predictive distribution p(X[T+1:T+‘L']|X[1:T]) can
quantify the prediction risk induced by both input and stochastic uncertainties, and they are used to drive
the simulation experiments in the prediction framework. Then, the mini-batch stochastic gradient descent
approach is used to efficiently and quickly search for the optimal real-time operational decision, denoted
by p*, minimizing the expected future cost.

T
minimize E C X71n,
o (}; T-+h (X710, 1)

3 A SIMULATION-BASED PREDICTION FRAMEWORK

In order to provide the cost-efficient and reliable operational decisions, we need to improve the future input
forecasting and correctly quantify the prediction uncertainty. In many situations, the dynamic behaviors
of input models are induced by some latent factors or states. For example, in bio-pharmaceutical supply
chains, the product demands depend on states, such as the spread level of diseases. The demands under
different states could have different dynamic behaviors, and the spread level also evolves with time. Thus,
to improve the prediction accuracy, it is necessary to model the stochastic processes of latent states and
also the dynamic behaviors of input data under each state.

Building on the univariate wind energy forecasting model in Xie et al. (2018), in Section 3.1, we first
present a nonparametric Infinite Markov Switching Vector Autoregressive (IMS-VAR) model to capture
the important properties in the real-world data streams, including non-stationarity, dependence, skewness
and multi-modality. Given the historical data X{;.7, we provide the Bayesian inference and a sampling
procedure to generate the posterior samples of input model. Then, in Section 3.2, we introduce the
simulation-based prediction framework. We generate the future scenarios for X7 1.7 from the posterior
predictive distribution p(X(71.74.¢|X[1.7]) to drive the simulation experiments. After that, we develop the
mini-batch gradient descent method that can efficiently employ the tight computational resource to search
for the optimal operational decision p*.

3.1 A Nonparametric IMS-VAR Input Model and Input Uncertainty Quantification

Let s, be the latent state at time period . Since there could be infinite potential state values and the current
state typically depends on the previous one, we use an infinite hidden Markov model (IHMM) to model
the state transition process. At each state, the dynamic behaviors of {X,} is modeled by VAR time series
with order p. Thus, given the historical data X{;,,; and input model F, the probabilistic prediction density
function of X, is

o0

St X, F) = Y plsier = ilXu)h(Xi 1165, X1, 841 = 1)
i=1
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—+oo oo

= Z ZP i1 = i|s; = j)p(s; :j’X[lzt]) (Xt+1|9st+1a (1] St+1 = i)
i=1j=

+o00 400
= Z ZPUP st = JIX ) h(Xe 11051, X121, St41 = 0)
i=1j=

where the VAR time series, denoted by A(-), is specified by parameters 6; at state i and p;; is the transition
probability from state i to j. The flexible nonparametric IMS-VAR input model can capture the rich properties
in the real-world data streams, including non-stationarity, multi-modality, skewness, component-wise and
time series dependence.

Following Xie et al. (2018), in order to support the inference and implementation, a hierarchical Dirichlet
process (HDP) is used to represent IHMM; see the introduction on HDP in Teh et al. (2006). A global
Dirichlet Process (DP) is used to model the prior distribution of latent state, denoted by G ~ DP(ot,Gyg),
where o is the concentration parameter and Gy represents the prior distribution for parameters 0. Let
Gy = Zj;“i m0g,, where 7 is the probability staying in state ¢ which has the dynamic behaviors of {X;}
characterized by VAR with parameters 6, and Jg, denotes a Dirac function at 8,. Thus, our prior belief
on T has a stick-breaking representation, & ~ Stick(a). Then, since the possible state values are shared
by variables s, with r = 1,2,..., a set of state-conditional DP, G;|Gy,n ~ DP(n,Gy), is used to model
the prior transition probabilities from current state i to the next state, denoted by p;, where 17 denotes the
concentration parameter. Thus, the IMS-VAR model can be represented as

X, = ¢(Sz)Xt + &

&~ N(0,X(s))

0, ={0(s:).Z(s:)} ~ Ge
S;!S;q,{p,‘}?ﬁ ~ Ps,_,
pilm ~DP(n,x)

z ~ Stick(a)

6]

where X, = [1,X ,..., X" p}T is a vector with length k = 1+dp, and 0, is the VAR parameters under
the state s, with ¢ (s;) denoting a d x k coefficient matrix and X(s;) denoting a d x d covariance matrix.
The Bayesian posterior inference for IMS-VAR input model in (1) is similar to that of IMS-AR proposed

in Xie et al. (2018). Specifically, given the historical data X{.7}, there are M active states, defined as those

states visited by X[;.71. Let T; = { : s, = i} be all the time periods when the state is i, let ¢ = (c1,...,cum)
denote the counter vector with ¢; recording the number of visits to state i, and let N denote the tran31tion
matrix with ;; recording the number of transitions from state i to state j for i, j =1,...,M.

The conditional posterior for s; is

p(st = i|X[1;T],n,S171,St+1,ei)
=Co X p(se = i|®,5,-1)p(sr41|7, 5 =) p(Xs|s; = i76i7X[l:t71})

N+N;,_ i M7, +Nis, ., (2)
_[eox et ki), 1<1<T
C() X ﬁﬁ(xtlel), t: T

and p(s; =1) =1, where f;(X;|0;) = Wexp [—l (X —¢(')X,)TZ(1')*1 (X —¢(i)f(t)} and Cy is

a normalizing constant shared by all s, =i to guarantee that ZM +1 p(si =i X7, T, 50-1,5041,0;) = 1.

Given the prior & ~ Stick(a), the conditional posterior for 7 is derived by following (Teh, Jordan,
Beal, and Blei 2006),
7C|S[1:T] ~ Dirichlet(q ooy CM, OC), 3)



Xie, Zhang, and Ryzhov

where s(;.7] = (s1,-..,57).
Let X i1;) denote a ¢; X d matrix of X; with r € T;, and X (i) denote the corresponding c; X k regressors

matrix having each row to be X, with t € 7;. For the parameters 8; of the VAR model i, suppose the prior
has the form of a normal inverted Wishart,

vec(@(i)|Z(i) ~ AN (vec(la), Ve RX(i))
Sigma(i) ~ Inv-Wishart(v,¥).

The posterior can be derived following by (Banbura, Giannone, and Reichlin 2010),

vee($ (i) X177, 2(0) ~ A (vee(D),A™ @ X(i))

“)
Y (i) ~ Inv-Wishart(v + ¢;,C)

where A=XT ()X () +Vp ', D= X[, X+ aVe A, C=¥+ X X (D) (X1 —X(i)D") + (D~
Ho)Vy (D — o).
With the conditional posterior distributions for input model parameters in (2), (3) and (4), following

by the Gibbs sampling procedure provided in Xie et al. (2018), we can generate B posterior samples of
input models F®) ~ p(F X(1.7)) for b=1,...,B to quantify the input model estimation uncertainty. At

each F®), we can generate scenarios of future inputs X(7 1.7 -

3.2 A Simulation-Based Prediction Framework for Dynamic Risk Management

In this section, we propose a simulation-based prediction framework to guide the operational decision
which can hedge against the prediction risk induced by both input and stochastic uncertainties. Considering
the different computational cost required to generate the posterior samples of input model and draw the
random variates from each input model estimate, the proposed data-driven stochastic optimization approach
combines the sample average approximation (SAA) and the stochastic gradient descent (SGD) method to
efficiently find the optimal operational decision.

Denote the expected cost in the planning horizon with

T
X[l:T]) = /FE (Z Crin(Xr4n, 1)
=1

Following the Bayesian inference and Gibbs sampling procedure in Section 3.1, we can generate the posterior
samples, F(®) for b= 1,...,B, quantifying the input uncertainty. Comparing with drawing a sample path
of X7 1.744 from F (%) it is computationally more expensive to generate each posterior sample of input
model. Thus, according to Jian and Henderson (2015), SAA can be employed to approximate the expected
cost in the planning horizon. Given B posterior samples of input model, the optimization problem is

approximated as
X1 F(b)> .

where E (Y5_ Crin(Xrin, )| Xr) F (b)) is the expected cost at F(*). As B goes to infinity, the objective
g(u) converges to g() under some regularity conditions.

Since the feasible region is continuous, according to Chau and Fu (2015), we consider a stochastic
gradient descent based approach to quickly search for the optimal solution. At any decision i, the gradient

of g(p) is
X[l:T],F(h)> :

g(u)=E ( i Crn(Xr1n, 1)

h=1

X[l:T]aF> p(F[X1.7))dF.

1
B

B T
Z E ( Z Cron(Xr i, 1)

b=1 h=1

ming(p) =

h=1

1 B T
Vi(n) = 3 ) VE (Z Crin(Xr4n, 1)
b=1
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The gradient provides the direction to iteratively search for the optimal solution. Denote the decision
obtained in the n-th iteration as u”. According to Bottou (2010), the gradient descent update is,

pr=p""—n, V') (5)

where 1), is the step size in the n-th update. According to Chee and Toulis (2018), the step size 1, could
be constant or decrease over n. We use a constant step size in the empirical study.

Since there is no closed form expected cost in general and each simulation run could be computationally
expensive, we estimate the gradient by simultaneous perturbation stochastic approximation (SPSA) intro-
duced in Spall (1998). Only two simulation runs are needed to estimate the gradient, which is especially
suitable for complex systems with high-dimensional decision space. Specifically, at the n-th iteration, given
any posterior sample F (), a sample path of the future inputs X(F (”)) = X|741:7+1] can be generated from the

distribution p(X[TH:TH]|F(b),X[1:T}). Two simulation runs at decisions ("' +¢,68,) and (u"*~ ! —¢,8,)
are used to estimate the gradient VE (ZZ:1CT+h(XT+h,I~l"_1)‘X[1;T]7F(b)) with the ¢-th component for
£=1,...,L

§E (ZZ:lCT—Fh(XT-f-h?unil)‘X[I:T]vF(b)) . )’(X(F(b))aﬂn_l +Cn8n) _y(X(F(b))vu'n_] - Cnsn) (6)
8ug N 2Cn8n,f

where the response y(X(F®)),u) = Y7, Cr4(Xr14, 1) is obtained from the simulation output, §, is an
L-dimensional random vector with &, representing the ¢-th element, ¢, decays over n. Following Spall
(1998), in the empirical study, each component &, follows a Bernoulli &1 distribution with probability
of 1/2 and we select ¢, = 1/n'/°. In addition, to reduce the gradient estimation variance, the common
random number is applied at the two simulation runs in the gradient estimate in (6) (Kleinman et al. 1999).

Thus, we can efficiently employ the computational resource and speed up the operational decision
making. Suppose that the total budget is R simulation runs. If the gradient in (5) is estimated by using all
B posterior samples of input models, only N = |R/2B| decision updates can be performed, which could
lead to a large optimality gap. According to Sebastian Ruder (2016), we consider a mini-batch gradient
descent method where each update uses only part of B posterior samples of input models to estimate the
expectation and gradient. Specifically, in each iteration, we randomly select a batch of By < B samples
from F(),... F(B) Denote the index set of selected By samples as S, and use these samples to estimate
the gradient,

~ _ 1 ~ T _
V(') = Bo VE ( Z Cron(Xrin ")
beS h=1

X“:T],F“’)> (7)

where the gradient estimate VE can be obtained by applying (6). In the mini-batch gradient descent method
with batch size By, there are N = | R/2By| updates. There is a trade-off. With large By, the estimate of the
gradient is more accurate in each update and less updates can be perAformed.

Then, by replacing Vg(p) in (5) with the estimated gradient Vg(u) in (7), the update at the n-th
iteration can be performed,

p'=pt o, Va(un . ®)

Notice that the updated decision p” could be outside the feasible set Q. In such situation, according to Calamai

and Moré (1987), the solution can be projected back to Q by u" =I1(u"), where I1(u) = argmin||z — p||.
z2€Q
Algorithm 1 describes the detailed procedure to find the optimal decision based on mini-batch SGD,

where the gradient is estimated by simulation accounting for both input and stochastic uncertainties. The
algorithm starts with initialization of a feasible solution and select the appropriate step sizes. During each
iteration, By posterior samples of input models are randomly drawn from F!) ..., F8) without replacement.
At each F() of selected input models, a sample path of X7 .7 is generated, and use it to drive two

simulation runs at decisions (u"~!+¢,8,) and (u"~' —c,8,). Then, the gradient component can be
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estimated by following (6). By taking average of the gradient at all By selected input model samples
according to (7), we get the estimated gradient to update the decision by applying (8), and project it to
Q if necessary. Repeat this procedure until reaching to the simulation budget R and record the optimal
solution @*.

Algorithm 1: Procedure to Find the Optimal Operational Decision

1 Randomly initialize a feasible solution u°, select the batch size By, a sequence of step sizes
{M,...,ny} and {ci,...,cn}, where the number of iterations N = |R/2By].

2 forn=1,....N do

3 Randomly select a mini-batch with size By from the B posterior samples of input models,
denote the set of indices as Sgp.

4 Randomly generate a permutation vector 8,,.

5 for b € Sg do

6 Generate a sample path of input variates X7, 1.7 by using F (¢), denoted by X(F (b)).

7 Run simulations at decisions (4"~ +¢,8,) and ("' —¢,8,) driven by X(F®)). Record

the outputs y(X(F®), u"' +¢,8,) and y(X(F®),u"' —c,8,).

8 for j=1,...,L do

9 Estimate the gradient component aE(2’5:1CTM(XZZ“;WH)’X“:T] ) according to (6).

10 end

11 end

12 Estimate the gradient %g(u) by applying (7).

13 Update the decision according to (8), get ", and project it to € if necessary.

14 end
15 Let " = p and record it as the final solution.

4 EMPIRICAL STUDY

In this section, we provide the empirical study to evaluate the finite sample performance of the proposed
simulation-based prediction framework. In Section 4.1, we first simulate the clinical demands according to
the physical process described in Chen et al. (2012), and use the simulated data to compare the prediction
performance of IMS-VAR with the commonly used Autogressive (AR) model. Then, in Section 4.2,
we study the performance of the simulation based prediction framework by using a bio-pharmaceutical
production scheduling example.

4.1 IMS-VAR for Predicting the Future Clinical Demand

Here, we study the prediction performance of IMS-VAR by using the clinical demands in bio-pharmaceutical
supply chains. The demand data are simulated according to the physical process described in Chen et al.
(2012). The patients’ arrivals follow a non-stationary Poisson process, and the arrival rate varies over time.
Suppose that there are three levels of arrival rate, A = 5,10,50. The level switches following a Markov
process with the transition probability

09 01 O
P=101 08 0.1
0 0.1 09

The logic of this simulation is shown in Figure 1(a). Each arrived patient is randomly assigned to
one of d =3 clinical test drugs with probability 0.2,0.3,0.5. The test has a probability p; = 0.9 to be
successful at each time period and the treatment is over. Otherwise, the patient has a probability p, = 0.5
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to drop out the treatment. If the patient continues the treatment, the same clinical drug will be used to
treat the patient in the next time period. The dosage of drugs consumed in each treatment follows the
normal distribution, .4"(1,0.1). The clinical demands can be simulated to obtain the historical data X177
Figure 1.b shows a representative clinical demand data for three drugs in 7 = 100 time periods. There
exist the non-stationarity, component-wise and time series dependence in the demands of different drugs.

Randomly Assign
Test Drug

= _
Corresponding Drug =
Demand Increases
o _
k= o
Treatment is 5
over? E _
No fg
Patient Patient returns =3
Drop Out? inT+1 - | R
P X
T T T T T T
0 20 40 60 80 100
Yes Time
(a) Clinical Demand Simulation Flowchart (b) The Representative Demand Sample Paths for Three

Clinical Products

Figure 1: Clinical Trial Demands Simulation Flowchart and Demand Data.

Given the historical data X{;.7), we compare the prediction performance of Bayesian IMS-VAR with
the commonly used AR model. For the IMS-VAR, we let the order p = 1. We use flat priors with
hyper-parameters @ = 1,1 = 1, Ug is a d X k matrix with all elements as 0, Vp is a k X k diagonal matrix
with diagonal terms as 100, v =1 and W is d x d identity matrix. To evaluate the prediction performance
of Bayesian IMS-VAR, we compare the predictive distribution p(X(r41.74|X[1.7]) With the prediction
distribution p(X[T+1:T+T] |F ",X[l:ﬂ) when the underlying true input model is known or the sample paths
of X[j.7 1) are directly generated from the “physical” simulation system in Figure 1(a). For the commonly
used AR approach, we construct a separate AR model for each drug and the model selection is based on
the AIC criteria, where the input model estimation uncertainty is ignored. Let F' denote the estimated AR
model. Then, the predictive distribution obtained from this approach is P(X[T+1:T+r} |F ,X“:T]). According
to Harrison et al. (2015), to evaluate the performance of the & step-ahead forecasting, we record the average
KS distance over the d components,

d
Dr () = 4 Y swp () )

for each h=1,..., 7, where Fy ;(x) is the c.d.f of the marginal p(Xr4,;|F,X(1.7)), and F,f)j(x) is the c.d.f

of p(Xryn,j|X(1:7)) for Bayesian IMS-VAR or p(XT+h7j|I/7\,X[1:T]) for AR, where X7, ; denotes the j-th
component of Xy, for j=1,....d.

There is no closed form predictive distribution obtained from IMS-VAR. To assess the performance
of predictive distribution, we generate 1000 sample paths of X(7 .74 at each posterior sample of the

input model F(*) and the corresponding state s(Tb ) for b = 1,2,...,B. Here, we let B= 100. The samples
of X7, generated at all B posterior samples of input models are used to calculate the KS distance. The
results of Dr(h) for T = 50,100,500 and h = 1,2,3 are recorded in Table 1, which are based on 100
macro-replications. The Bayesian IMS-VAR gives smaller and more robust prediction than AR, especially
when # = 3. Both IMS-VAR and AR improve their prediction performance as the amount of historical
data T increases.



Table 1: KS Distance of the Predictive Distribution, Dy (h) (inside the brackets are standard deviations)
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KS Statistics h=1 h=2 h=3
T—50 IMS-VAR | 0.308 (0.032) | 0.327 (0.034) | 0.362 (0.039)
AR 0.345 (0.036) | 0.383 (0.040) | 0.438 (0.045)
T — 100 IMS-VAR | 0.249 (0.027) | 0.268 (0.028) | 0.302 (0.031)
AR 0.288 (0.030) | 0.325 (0.033) | 0.366 (0.038)
T — 500 IMS-VAR | 0.171 (0.018) | 0.196 (0.021) | 0.226 (0.024)
AR 0.230 (0.025) | 0.254 (0.027) | 0.293 (0.031)

4.2 Simulation-based Prediction Framework for Production Scheduling

In this section, we evaluate the performance of the proposed simulation-based prediction framework by using
a production scheduling problem. Suppose that the system produces d = 3 drugs to meet the clinical demands
described in Section 4.1. The decision u = {;, Up, U3} with L =d = 3, denotes the daily production for
the 3 drugs. The inventory for each drug is kept to meet the patients’ demands. The overall cost includes
the backorder, inventory, and production costs. The backorder cost is denoted by ¢;, = 20,15, 10 with ¢, ;
representing the backorder cost for each unit of drug j for j=1,...,d. The inventory cost per unit, denoted
by ¢; =1, is the same for all three drugs. The production cost per unit is ¢, = 1 for all three drugs. We
want to find the optimal production decision ft* to minimize the expected total cost,

mini,{nize B [Xr (o Y91 brynj+ci X Irinj+cp Xy 15)]

bj=Xj—Mj—T—1;)"
Lj= (T 1+1—X ;)"
u>0vj=1,...d

subject to

where X; ; is the random demand for drug j on day ¢, ; ; is the inventory of drug j on day ¢, b; ; is the
amount of backorder drug.

At the current time period, suppose the inventory for each drug Ir ; is 0. Given the historical demands
X1.7) wWith 7' =50, 100, 500, we first generate B = 100 posterior samples of IMS-VAR input models according
to the sampling procedure in Section 3.1. Then, we apply Algorithm 1 to find the optimal solution. The
simulation budget is R = 10000 in term of the number of simulation runs. We use different batch size B.
When By = 100, we use all the B posterior samples of input model to estimate the gradient. When By = 1,
we randomly select one among the B samples. Thus, for By = 1,10, 100, we have N = |R/2By| updates
respectively. The initial solution is set to be u = {1,1,1}. The empirical study indicates that the selection
of the initial solution does not have the significant impact on the performance. In the n-th iteration, if p"
is outside of the feasible region, we project p" to the feasible region, uj = max(0, [,t;’) for j=1,...,L.

Denote the optimal solution obtained by IMS-VAR as ﬁ; For the AR model, the input model estimate F
is used in the stochastic gradient procedure, and we perform N = R updates. In each update, we predict the
future demands by using p(X[T+ 1T +1] |F ,X“:T]). Denote the optimal solution obtained by the AR based

prediction as ﬁ:‘ In the empirical study, the step size for the stochastic gradient is chosen as 7,, = 0.01.

To study the performance of i, and ﬁf\, we compare the difference between the expected costs
E; =E (X} Cran(Xrn 7)) and Ex = E(Y}_, Crin(Xrin, /) with the expectation over F¢. Both
expected costs are estimated by using 10° scenarios from F°. We record the mean and standard error
for the difference AE = E; — E4 in Table 2, which are based on the results from 100 macro-replications.
The Bayesian IMS-VAR based simulation prediction framework can lead to the optimal decision with
significantly smaller expected cost than the AR when By = 1,10. When By = 100, since there are limited
updates in Algorithm 1, the performance of IMS-VAR does not show clear advantage.
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Table 2: Mean £ Standard Error of AE

T =50 T =100 T =500
Bp=1 | —409+£13.4 | -35.6+4.7 | —33.8£6.0
Bp=10 | —49.24+93 | —48.0+7.7 | —43.9+6.2

Bp=100 | —14.7+125 | —109+8.6 | —6.4+7.5

5 CONCLUSION

In this paper, we propose a simulation-based prediction framework to guide operational decision making.
By exploring the underlying generative process, the nonparametric IMS-VAR input model can capture the
important properties in the real-world data streams, including non-stationary, skewness, component-wise
and time series dependence. The posterior distribution of flexible input model can correctly quantify the
input uncertainty. Then, the posterior predictive distribution is used to characterize the prediction uncertainty
accounting for both input and stochastic uncertainties. After that, the mini-batch stochastic gradient descent
method can efficiently employ the simulation resources to search for the optimal operational decision.
The empirical study of the bio-pharmaceutical supply chain management demonstrates that the proposed
framework can improve the prediction accuracy of system future response, and lead to the cost-efficient
and reliable operational decisions hedging against the prediction uncertainty.
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