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ABSTRACT

In many situations, e.g., simulation optimization and input uncertainty quantification, we need to assess
the system performance at a large number of alternative inputs. Since each simulation run could be
computationally expensive, statistical emulator could efficiently use the simulation budget to estimate the
system performance. This paper proposes a new emulator for stochastic simulation, called asymmetric
kriging (AK), which can be used to emulate the distribution of simulation outputs at each input point.
Different from existing methods in the simulation literature, our approach does not require strong assumptions
on either the functional form of the response surface or the normal distribution of the simulation estimation
error. Numerical studies indicate the efficacy of our approach compared to alternative methods in the
literature.

1 INTRODUCTION

Simulation is often used to assess the performance of stochastic systems characterized by various measures,
e.g., mean, variance, probabilities, value-at-risk (VaR) and conditional value-at-risk (CVaR). Under many
situations, we need to precisely estimate the system performance at a large number of alternative inputs.
For example, given a pre-determined performance measure, simulation could be used to search for the
optimal decision and the best system, e.g., finding the optimal ordering decision for an inventory system
and selecting the best production system from hundreds candidates. Since each simulation run could
be computationally expensive, given a potentially tight simulation resource, it is important to construct
an emulator to quantify the input-output relationship. Compared to the direct simulation that runs the
simulation at each candidate input to assess the system performance, the emulator constructed based on
the simulation outputs at a few well-selected design points can aggregate the information on the response
surface and further reduce the impact of simulation estimation uncertainty (Sun, Hong, and Hu 2014, Xie,
Nelson, and Barton 2014). Thus, the emulator could efficiently employ the simulation resource to support
optimization and input uncertainty quantification.

Parametric emulators can be used when we have strong prior information on the parametric form of
system response surface or it is built as a local metamodel based on the Taylor series approximation; see
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the review in Henderson and Nelson (2006). However, in many situations, we do not have strong prior
information on the response surface. Stochastic kriging (SK) introduced in Ankenman, Nelson, and Staum
(2010) can overcome the limitations of parametric emulators, and it does not require any strong prior
information of the system response surface. However, SK relies on the assumption that the simulation
estimation error follows the normal distribution, which does not hold in many situations. For example, when
we study the expected number of customers in the system for an M/M/1 queue, this normal assumption
is not appropriate when the utilization is high and the runlength is short. For a risk measure, e.g., the
99%th percentile of first 100 customers’ times staying in the queue, it could be hard to meet the normal
assumption.

The important properties in the simulation estimation uncertainty, such as skewness and tails, could
impact on the sampling distribution when the emulator of system performance is used to guide the search
for the optimal decision (Sun, Hong, and Hu 2014). They could also impact the percentile credible interval
quantifying both input and simulation estimation uncertainty (Xie, Nelson, and Barton 2014). Thus, it
is necessary to construct a distributional emulator for the simulation outputs to capture these important
properties in simulation estimation uncertainty.

Without assuming any parametric form on the distribution of simulation estimation error, Plumlee
and Tuo (2014) developed quantile Kriging (QK) to construct a distributional emulator for the simulation
output. At each input point, QK provides an empirical distribution of stochastic simulation outputs based
on the fitted quantile curves over the input space. These quantile curves are obtained by interpolating
corresponding empirical quantiles at all design points. Therefore, the performance of QK greatly depends
on the accuracy of the empirical quantile estimation, which typically requires a large number of replications
at each design point.

In this paper, we develop a new method, called Asymmetric Kriging (AK), to construct the distributional
emulator. It does not require any strong prior information on the response surface and also the normal
assumption on the simulation estimation error. Our study indicates that AK provides a good performance
even when a large number of replications is not affordable. Specifically, similar to QK, the distributional
emulator of AK is built on multiple quantile curves over the entire design space. The quantile curves
are obtained by solving the functional based asymmetric least squares under different asymmetric weights
(Newey and Powell 1987). Each quantile curve is fitted by coupling all simulation outputs together. Different
from QK, AK does not rely on the empirical quantiles at each design point. Thus, we do not require a
large number of replications at each design point to guarentee the accuracy of the AK based distributional
emulator. The empirical study in Section 5 demonstrates that AK has promising finite-sample performance.

The next section provides a formal problem description. We use an M/M/1 queue as a motivating
example to illustrate the limitation of the normal assumption on the simulation estimation error. Section 3
reviews QK, and Section 4 introduces our distributional emulator. The same M/M/1 queue system is used
to study the finite-sample performance of SK, QK and our approach in Section 5. We give concluding
remarks in Section 6. Proof for our theoretical result is deferred to the Appendix.

2 PROBLEM DESCRIPTION AND A MOTIVATING EXAMPLE

We consider stochastic simulation models with a continuous scalar output. At each input point x in the
input space X , the simulation output can be modeled by

Y (x) = µ(x)+ ε(x), (1)

where the input point x is a vector, including the decision variables and the estimates of input models,
e.g., the rates of the inter-arrival and service time distributions in an M/M/1 queue, µ(x) represents the
unknown system performance measure of interest, and ε(x) is a zero-mean random variable representing
the simulation estimation error. Our goal is to emulate the distribution of Y (x) at each input point x ∈X
so that we can eventually capture important properties in the estimation uncertainty of the response µ(x).
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SK can be used to emulate the unknown response surface µ(x). Under this framework, µ(x) has
a Gaussian process (GP) prior with mean µ0 and covariance structure σ2c(x,x′), where σ2 denotes the
variance and c(·, ·) denotes a correlation function. Given the design points D ≡ {x1,x2, . . . ,xk} ⊂X , we
obtain simulation data

T = {xi, [Y1(xi),Y2(xi), . . . ,Yni(xi)]}k
i=1, (2)

where ni denotes the number of replications at design point xi. Let ȲD = [Ȳ (x1),Ȳ (x2), . . . ,Ȳ (xk)]
> with

Ȳ (xi) = ∑
ni
j=1Yj(xi)/ni. Denote the variance of ȲD as a k× k diagonal matrix C with i-th diagonal entry

σ2
ε (xi)/ni. Then, the uncertainty of the response surface µ(x) can be quantified by the posterior normal

distribution of µ(x) with mean

mp(x) = µ̂0 + r>k (x)(Σk +σ
−2C)−1(ȲD − β̂01k), (3)

and variance

σ
2
p(x) = σ

2−σ
2r>k (x)(Σk +σ

−2C)−1rk(x)+η
>[1>k×1(σ

2
Σk +C)−11k]

−1
η ,

where Σk is the k× k correlation matrix of the design points, rk(x) is the k×1 correlation vector between
each design point and a fixed prediction point x, µ̂0 = [1>k (Σk +σ−2C)−11k]

−11>k (Σk +σ−2C)−1ȲD and
η = 1−1>k (Σk +σ−2C)−1rk(x).

In the SK metamodel, the normal assumption of the stochastic simulation errors is often required,
ε(x) ∼ N(0,σ2

ε (x)), which does not hold in general. Here, we use an M/M/1 example to illustrate that
there often exist skewness and tails in the simulation estimation error.

Example: We study the performance of the first M = 300 customers’ times staying in an M/M/1 queue
system. The system starts with empty. We fix the arrival rate µA = 1, and vary the service rate from
1.1 to 3.5. The input x is the mean service time. Let Q1,Q2, . . . ,QM denote the times of the first M
customers staying in the system. From each replication, the sample mean and the 99%-th sample quantile
of Q1,Q2, . . . ,QM are used to estimate the mean and the 99% VaR. In Figure 1, we show the qqnorm plots
obtained from 400 replications of simulation outputs at x = 0.5. Based on our empirical study, we observe
stronger skewness and tails as the utilization becomes closer to one.

Given a tight simulation budget, these important properties, including skewness and tails, could impact
the estimation of the response µ(x). Thus, in this paper, we introduce a new distributional emulator that
does not require strong prior information on the response surface µ(x) and also the distribution family of
simulation estimation uncertainty.

3 QUANTILE KRIGING BASED DISTRIBUTIONAL EMULATOR

Quantile Kriging (Plumlee and Tuo 2014) provides a convenient way to construct distributional emulator
for a stochastic simulation system. The basic idea is to build a distributional emulator using the sample
quantiles at each design point. This section will review the methodology and some computational details
of QK. We refer to Plumlee and Tuo (2014) for the theoretical justification of QK.

For notational convenience, Plumlee and Tuo (2014) assume that the number of replications at each
design point are all equal, say, n = n1 = . . . = nk in T defined by (2). At each design point xi in D ,
let Y( j)(xi) be the jth order statistic of the n replications. Also, Y( j)(xi) is the α-th sample quantile with
α ∈ [( j−1)/n, j/n). Denote Y( j) as a vector containing the j-th order statistics at all k design points:

Y( j) =
[
Y( j)(x1), . . . ,Y( j)(xk)

]>
.

The estimated α-th percentile curve would be the simple Kriging predictor (Cressie 2015) fitted using Y( j)

Ŷj(x) = µ0 + rk(x)>(Σk +ρIk)
−1(Y( j)−µ0) for x ∈X . (4)
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Figure 1: The qqnorm plots of the mean performance and 99%-th VaR performance outputs at x = 0.5 for
the M/M/1 queue.

As noted earlier, µ0 is the constant mean of the simulation system, rk(x) is a k×1 correlation vector and
Σk is a k× k correlation matrix. Given a correlation function c(·, ·), the j-th entry in rk(x) is c(x,xi), and
the (i, i′)-th entry in Σk is c(xi,xi′). The unknown parameter ρ(> 0) is the nugget parameter, and Ik is the
k× k identity matrix.

After fitting the quantile curves for j = 1, . . . ,n, the unknown parameters in (4), such as the nugget
parameter ρ and the parameters in the correlation function c(·, ·), can be estimated using the leave-one-out
cross-validation. In the numerical implementation of Plumlee and Tuo (2014), the unknown parameters are
assumed to be the same for the Kriging predictors of all the quantile curves, and the optimal parameters
are selected as the minimizer of the sum of the leave-one-out cross-validation errors over all the quantile
Kriging predictors; See Section 3.3 of Plumlee and Tuo (2014) for more detail. The Kriging predictor
Ŷj(x) in (4) for j = 1, . . . ,n forms a distributional emulator. Specifically, for any x ∈X , we obtain an
empirical cumulative distribution function

F̂x(t) =
1
n

n

∑
j=1

I
[
t ≤ Ŷj(x)

]
,

where I(·) is the indicator function. We further define

F̂(·) =
{

F̂x(·)|x ∈X
}

(5)

as the distributional emulator based on QK. The estimates for mean or quantiles at each input point would
be derived based on this distribution emulator. For example, the mean response surface can be expressed
by

µ̂(x) =
∫

Y dF̂x =
1
n

n

∑
j=1

Ŷj(x) = µ0 + rk(x)>(Σk +ρIk)
−1 [ȲD −µ0

]
,

and the α ∈ [( j−1)/n, j/n)th quantile estimates is Ŷj(x) as in (4).
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QK is developed based on the order statistics at each design point. If the number of replications is small,
the order statistics do not accurately estimate the quantiles. The estimation can be extremely inaccurate
when we are interested in fitting a large number of quantile curves with a limited number of replications.
To solve this challenge, we propose a new method to the distributional emulator in Section 4.

4 ASYMMETRIC KRIGING BASED DISTRIBUTIONAL EMULATOR

4.1 Quantile and Expectile

Motivated by QK, the key of constructing a distributional emulator is to fit a large number of quantile curves
of simulation output Y over the design space X . In the literature of statistics, both quantile regression
(Koenker 2005) and asymmetric least squares based expectile regression (Newey and Powell 1987) can be
used to obtain quantile curves. The main difference of these two methods is their loss functions used to
quantify the distance between fitted response f and the data Y . The loss function used in quantile regression
is

Qτ(Y, f ) = |Y − f |{τI[Y ≤ f ]+ (1− τ)I[Y > f ]},
and the loss function used in asymmetric least squares is

Qτ(Y, f ) = (Y − f )2{τI[Y ≤ f ]+ (1− τ)I[Y > f ]}, (6)

where 0 < τ < 1 is a weight parameter. According to (6), asymmetric least square modifies the traditional
least squared based regression by adding asymmetric weights. By solving min f EQτ(Y, f ), the fitted model
f can be expressed by

f̂τ =
τE [Y I(Y ≤ f )]+(1+ τ)E [Y I(Y > f )]

τP(Y ≤ f )+(1− τ)P(Y > f )
,

where the expectation and probability are taken with regard to the distribution of Y . Due to the availability
of this explicit form, expectile regression has become a popular approach in risk management (Kuan, Yeh,
and Hsu 2009).

Asymmetric least squares has been used to compute multiple quantile curves in analyzing simple
observational data; see examples in Efron (1991). Although the linear or polynomial model in Efron (1991)
can be used for observation data, these models might be too simple to describe the complex input-output
relationship in simulation analysis. Hence, we propose asymmetric Kriging to address this issue by including
the kernel bases functions into the asymmetric least squares regression.

4.2 Kernel Correlation Function Based Regression

Consider the dataset T in (2). Let N = ∑
k
i=1 ni. Denote Y = (Y 1, . . . ,Y N) as a vector containing all the

outputs. For i = 1, . . . ,N, we define xi as the input point corresponding to the output Y i. The predictor of
regularized least squares regression is obtained by minimizing

L( f ) =
N

∑
i=1

[
Y i− f (xi)

]2
+ρ〈 f , f 〉 for f ∈F , (7)

where ρ is a tuning parameter, the functional space F is defined by

F =

{
f ∈ RX

∣∣ f (·) = ∞

∑
i=1

βic(·,zi),βi ∈ R,zi ∈X ,〈 f , f 〉< ∞

}
, (8)

with c(xi,x j) be a correlation function defined in (4), and the inner product 〈 f ,g〉 is defined by

〈 f ,g〉 :=
m

∑
i=1

m′

∑
j=1

βiγ jc(zi,z j)



Zhang and Xie

for two arbitrary components f (·) = ∑
m
i=1 βic(·,zi) and g(·) = ∑

m′
j=1 γ jc(·,z j) in F .

According to the representer theorem (e.g., Wahba (1990) and Schölkopf, Herbrich, and Smola (2001)),
the solution of minimizing the objective function in (7) admits a representation

f (x) =
N

∑
i=1

βic(x,xi) = βββ
>rN(x).

where βββ = (β1, . . . ,βN)
>, and rN(x) is an N-dimensional vector with i-th component c(x,xi). Therefore,

L( f ) in (7) can be expressed by

L(βββ ) = (Y−ΣNβββ )>(Y−ΣNβββ )+ρβββ
>

ΣNβββ ,

where ΣN is an N×N matrix with the (i, j)th component c(xi,x j). Minimizing L(βββ ) with regard to βββ , we
obtain

β̂ββ = (ΣN +ρIN)
−1Y,

where IN is the N×N identify matrix. The predictor developed from (7) is

f̂ (x) = β̂ββ
>

rN(x) = rN(x)>(ΣN +ρIN)
−1Y. (9)

Computing f̂ (x) requires solving a linear system of size N. We consider how to reduce this calculation
when there are replications in the data. Let Yi be a vector of size ni collecting all the outputs from input
point xi. We can alternatively express Y = (Y>1 , . . . ,Y>k )

>. Following the notation in Binois, Gramacy,
and Ludkovski (2016), ΣN can be expressed by

ΣN =UΣkU>, (10)

where Σk is a k×k covariance matrix constructed by the k unique input points, and U is an N×k sampling
matrix:

U = diag{1n1 , . . . ,1nk},
with 1ni being a vector of size ni loaded by ones. Similarly, we can represent rN(x) as Urk(x). According
to the Woodbury identity and the development in Binois, Gramacy, and Ludkovski (2016), f̂ (x) in (9) is
reduced to

f̂ (x) = rk(x)> [Σk +ρdiag(1/n1, . . . ,1/nk)]
−1 ȲD , (11)

It is easy to see that f̂ (x) is equivalent to the posterior mean of µ(x) in (3) when µ0 is zero and σ2
ε (x) = ρ

for all x ∈X .
The predictor in (9) only provides the mean estimates of the output at each input point. However, a

distributional emulator is constructed using multiple predictors each representing a quantile curve. The
idea of asymmetric Kriging is to replace the least squares loss in (7) with the asymmetric loss. Multiple
predictors could be fitted by varying the value of τ in (6). We now propose SK based on this idea.

4.3 Our Proposal: Asymmetric Kriging

We generalize (7) using the asymmetric least squares loss function in (6):

Lτ( f ) =
N

∑
i=1

Qτ(Y i, f (xi))+ρ〈 f , f 〉 for f ∈F , (12)

where F is the same functional space in (8). By the representer theorem, the solution of (12) also can be
expressed by

f (x) = βββ
>
τ rN(x).
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Therefore, minimizing (12) with regard to f is equivalent to minimizing

L(βββ τ) = (Y−ΣNβββ τ)
>Wτ(Y−ΣNβββ τ)+βββ

>
τ ΣNβββ τ

with regard to βββ τ . The weight matrix Wτ above is an N by N diagonal matrix with the i-th diagonal entry

wi = τI[Y i ≤ f (xi)]+(1− τ)I[Y i > f (xi)].

By taking derivative with regard to βββ τ , the solution of minimizing L(βββ τ) is

β̂ββ τ = (ΣN +ρW−1
τ )−1Y, (13)

which further leads to
f̂τ(x) = rN(x)>(ΣN +ρW−1

τ )−1Y. (14)

Since the predictor f̂τ(x) combines the Kriging and the asymmetric least squares regression, we call it
asymmetric Kriging. The mean estimates at each design point is f̂τ(x) with τ = 0.5, which can be obtained
directly without iterative computing. The percentile of f̂τ(x) can be estimated by

α̂τ =
1
N

N

∑
i=1

I[Y i ≤ f̂τ(xi)].

Therefore, f̂τ(x) is the estimated α̂τ -th quantile curve. By combining multiple quantile curves with different
percentiles, we obtain a distributional emulator as in (5).

Similar as (11), we can reduce the calculation of N×N matrix in (14) for simulation outputs with
replications. The reduced emulator is presented in Proposition 1.

Proposition 1 Let Λτ be a diagonal matrix of size k (number of design points) with the i-th diagonal entry

λi = τ

ni

∑
j=1

I [Yj(xi)≤ fτ(xi)]+(1− τ)
ni

∑
j=1

I [Yj(xi)> fτ(xi)] .

Let Ȳτ be a vector of size k with i-th entry

Ȳi,τ = λ
−1
i

{
τ

ni

∑
j=1

Yj(xi)I [Yj(xi)≤ fτ(xi)]+(1− τ)
ni

∑
j=1

Yj(xi)I [Yj(xi)> fτ(xi)]

}
.

Then the asymmetric kriging predictor in (14) can be reduced to

f̂τ(x) = rk(x)>(Σk +ρΛ
−1
τ )−1Ȳτ . (15)

The proof of Proposition 1 is deferred to the Appendix. Since both Ȳτ and Λτ depend on fτ(x), we can obtain
f̂τ(x) by computing rk(x)>(Σk+ρΛ−1

τ )−1Ȳτ iteratively till convergence. As in Plumlee and Tuo (2014), we
also use the leave-one-out cross-validation method to determine the optimal values of unknown parameters
ρ and correlation parameters in the kernel correlation function c(·, ·). In our numerical implementation,
we assume that these unknown parameters are the same across different percentile curves. Therefore, their
optimal values are obtained by minimizing the sum of leave-one-out cross-validation errors over all the
percentile curves.
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5 EMPIRICAL STUDY

We revisit the M/M/1 queue system example in Section 2, and compare three methods:

• SK: Stochastic Kriging in Section 2,
• QK: Quantile Kriging in Section 3,
• AK: Asymmetric Kriging in Section 4.

For all three methods, we use the Gaussian correlation function to quantify the dependence between input
points. We consider the mean, the 95%-th and the 99%-th VaR as examples of simulation outputs. In all
our numerical experiments, we generate the input design as equally spaced points from 0.3 to 0.9.

We first graphically present the distributional emulators constructed by all three methods. Five design
points each with five replications are generated as the input points. We generate simulation outputs as
the mean performance, the 95%-th VaR performance, and 99%-th VaR performance. The 0.1th, 0.25th,
0.5th, 0.75th and 0.95th quantile curves are obtained based on the fitted distributional emulators as shown
in Figure 2. We see that, the AK fitted quantile curves are more smooth compared to SK and QK. Also,
due to the insufficient number of replications, the quantile curves from QK exhibit crossing or overlapping
many times.

We now investigate the overall performances of the distributional emulator. To compare the fitted
distributions and the actual distributions, we use a large test dataset to empirically estimate the actual
distributions at 100 equally spaced input points. At each of these input points, we create 400 replicates of
the outputs to ensure the accuracy of the empirical distributions. We first quantitatively measure the distance
between the emulated distribution and the true distribution provided by the test data sets. According to
Plumlee and Tuo (2014), integrated quadratic distance (IQD) can be used to measure the distance of two
distributions. Let F(v) and G(v) be the cumulative density functions of two distributions, IQD is given by∫

∞

−∞

{F(v)−G(v)}2dv,

Following Thorarinsdottir, Gneiting, and Gissibl (2013), IQD can be alternatively expressed by

E|R−S|− 1
2

E|R−R′|− 1
2

E|S−S′|,

where R and R′ are independent samples from F(v), and S and S′ are independent samples from G(v).
At each input point in the test dataset, IQD can be estimated using the independent samples generated
from the true distribution and the emulated distribution. We then compute the average IQD (AIQD) by
taking average of the IQD values over all input points in the test dataset. The resulted AIQD measures the
average distance between the emulated distribution and the true distribution over the entire input space.
All numerical experiments are repeated for 100 times. In Table 1, we show the average results of AIQD
for each method under different settings. We see that, the smallest AIQDs consistently come from AK (the
proposed method).

We also measure the overall accuracy of estimated quantile curves. Based on the test datasets, the
empirical quantiles can be estimated at each design point. For each method, the average mean squared
error (AMSE) over all quantile curves and all design points in the test datasets can be calculated by

AMSE =
1

100×99

100

∑
i=1

99

∑
j=1

(q̂i j− q̃i j)
2,

where q̂i j is the j%-th empirical quantile at the i-th input point in the test data set, and q̃i j is the corresponding
emulated quantile obtained by one of the three methods. AMSE provides the overall performance of the
distributional emulator in estimating quantile curves. In Table 2, we show the average results of AMSE
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(a) Mean Performance
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(b) 95%-th VaR performance
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(c) 99%-th VaR performance
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Figure 2: The 0.1th, 0.25th, 0.5th, 0.75th and 0.95th quantile curves provided by the three methods for
each case (Note: grey dots are the simulation data used to fit these quantile curves).

for each method under different settings over 100 macro-replications. Similar to the AIQD results, AK
achieves the best performance among all three methods. Compared to QK, the advantage of AK is more
significant when the number of replication at each design point is small.
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Table 1: The AIQD results calculated for each method under different settings over 100 macro-replications.

Case #Design # replication=5 # replication=10
AK QK SK AK QK SK

Mean 5 0.494 0.537 0.539 0.485 0.513 0.540
9 0.486 0.516 0.536 0.488 0.506 0.542

95% VaR 5 1.127 1.163 1.188 1.093 1.114 1.168
9 1.103 1.133 1.200 1.076 1.085 1.167

99% VaR 5 1.342 1.385 1.425 1.303 1.332 1.407
9 1.319 1.356 1.434 1.283 1.298 1.404

Table 2: The AMSE results calculated for each method under different settings over 100 macro-replications.

Case #Design # replication=5 # replication=10
AK QK SK AK QK SK

Mean 5 0.517 0.781 0.692 0.368 0.508 0.548
9 0.447 0.645 0.652 0.371 0.461 0.591

95% VaR 5 2.057 2.525 2.659 0.541 1.681 2.341
9 1.844 2.331 2.924 1.209 1.216 2.337

99% VaR 5 2.221 2.804 3.040 1.614 1.868 2.879
9 1.960 2.686 3.407 1.253 1.345 2.862

6 CONCLUDING REMARKS

We propose a new method, asymmetric Kriging (AK), to construct the distributional emulator for simulation
analysis. AK fits multiple quantile curves to the simulation data, and returns a distributional emulator.
It does not require that the simulation estimation error follows a normal distribution. Mean and quantile
curves can be efficiently estimated using this method. Future directions of our proposal are indicated as
follows: 1) develop methods to quantify the uncertainty of the distributional emulator under the Bayesian
framework; 2) investigate the theoretical properties of the proposed method; 3) apply our method to complex
simulation systems, such as supply chains, manufacturing and service systems.

A PROOF OF PROPOSITION 1

Following the notation in Binois, Gramacy, and Ludkovski (2016), let U be the N× k sampling matrix in
(10). The asymmetric kriging predictor in (14) can be expressed by

f̂τ(x) = r>k (x)U
>(UΣkU>+ρW−1

τ )−1Y,

where rk(x) and Σk are defined in (3). By using the Woodbury identity to inverse UΣkU>+ρW−1
τ , we

obtain
f̂τ(x) = r>k (x)U

>
[
ρ
−1Wτ −ρ

−1WτU(ρΣ
−1
k +U>WτU)−1U>Wτ

]
Y,

which can be further expressed as

f̂τ(x) = ρ
−1r>k (x)U

>WτY−ρ
−1r>k (x)U

>WτU(ρΣ
−1
k +U>WτU)−1U>WτY.

According to the definition in Proposition 1, we notice that

U>WτU = Λτ ,

and
Λ
−1
τ U>WτY = Ȳτ .
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Therefore, we obtain

f̂τ(x) = ρ
−1
[
r>k (x)ΛτȲτ − r>k (x)Λτ(ρΣ

−1
k +Λτ)

−1
ΛτȲτ

]
.

By using the Woodbury identity to compute (ρΣ
−1
k +Λτ)

−1, we have

(ρΣ
−1
k +Λτ)

−1 = Λ
−1
τ −Λ

−1
τ (ρ−1

Σk +Λ
−1
τ )−1

Λ
−1
τ ,

which further gives the conclusion in the proposition.
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