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ABSTRACT

A simplified simulation model is often used to guide the decision-making for a real complex stochastic
system. To faithfully assess the mean performance of the real system, it is necessary to calibrate the simulation
model. Existing calibration approaches are typically built on the summary statistics of simulation outputs
and ignore the dynamic information carried by the detailed sample paths. In this paper, we develop a
calibration approach incorporating the detailed output sample paths in a sequential manner. Our theoretical
development and empirical study demonstrate that we can efficiently use the simulation resources and
achieve better calibration accuracy by exploring the system dynamic behaviors.

1 INTRODUCTION

There is relatively limited literature on calibration in the simulation literature because we tend to believe
that the simulation model error has less impact on the optimization decision (Nelson 2016). However,
when the simulation is required to make accurate predictions of system behaviors, calibration is necessary.
For example, to support the production scheduling for semiconductor manufacturing, faced the orders of
new products, the decision maker needs to accurately predict the production and delivery time to sign the
contract. For the complex production system, simulation could be used to guide the decision making so that
we can maximize the overall profit and still guarantee on-time delivery. Thus, it is necessary to calibrate
the simulation system so that its output matches well with the real system. In this paper, we focus on the
stochastic simulation calibration for the system steady-state mean performance.

Kennedy and O’Hagan (2001) introduce a Bayesian calibration framework for the deterministic computer
model. They model the unknown response surface of the computer model and the model inadequacy with
Gaussian processes. Given the data collected from the real and simulation systems, the posterior distribution
of calibration parameters is developed to characterize the belief of the optimal calibration setting, and the
posterior predictive distribution is used to quantify the overall prediction uncertainty of the real system
response. Built on Kennedy and O’Hagan (2001), various approaches, e.g., Gramacy et al. (2015), Plumlee
et al. (2016), Plumlee (2016), Tuo and Wu (2016), and Wong et al. (2016), have been developed for
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calibrating deterministic simulation models, and the studies, e.g., Yuan et al. (2013), Yuan and Ng (2013b)
and Yuan and Ng (2013a), focus on the stochastic simulation calibration for the mean response.

In the current interconnected world, the decision makers are often faced stochastic systems in large
scale. Each simulation run could be computationally expensive. In addition, real-world systems have to
evolve rapidly to be competitive. To make sure that the simulation system correctly represents the updated
real system, we need to calibrate the simulation model frequently. Thus, we need to efficiently use the
data from each simulation run to speed up the calibration process.

It is desired to sequentially allocate the simulation budget so that we can gradually find the promising
calibration setting and allocate more simulation runs there. Various EI-type (Expected Improvement)
sequential experimental design procedures are introduced in the simulation literature, e.g., Frazier et al.
(2009) and Ryzhov (2017).

However, existing stochastic simulation calibration approaches are typically developed based on the
summary statistics of the simulation outputs, e.g., the sample mean of customer waiting times in an M/M/1
queue, and ignore the dynamic information carried by the detailed sample paths. The recent advances
in data storage and computing makes it easy to generate and save the comprehensive data of the output
(Nelson 2016). The retained simulation output sample paths can be fully exploited to support the decision
making and system diagnostics, such as the simulation analytics, e.g., Plumlee and Lam (2016), Jiang et al.
(2016), and Lin and Nelson (2016).

Motivated by recent researches in simulation analytics, we introduce a new calibration approach that
fully adopts the detailed sample paths and runs simulations in a sequential manner. Different from existing
calibration approaches built on the summary statistics of simulation outputs, our approach can make efficient
use of each simulation run. Both theoretical and empirical studies indicate given a finite simulation budget,
our approach has better performance than the calibration approach based on the summary statistics.

In sum, the main contributions of our study are as follows.

• We propose a new calibration approach exploring the detailed output sample paths. Gaussian
process (GP) is used to capture the dynamic behaviors carried in sample paths.

• Based on the proposed calibration model, we further develop a sequential design of experiments.
It could efficiently allocate the simulation resources to important settings of calibration parameters
delivering mean response close to that of the real system.

• We provide both theoretical and empirical study to demonstrate that our approach could achieve
better calibration accuracy compared to the existing calibration approach built on the summary
statistics. The empirical study indicates that our approach is also robust to the GP assumption on
the output sample paths.

The remaining of this article is organized as follows. Section 2 provides the problem description and
background. Section 3 introduces the calibration approach exploring detailed sample paths. Under the
assumption that output sample paths follow GP, we compare our approach with the calibration approach
built on the summary statistics. An AR process and an M/M/1 queue are used to study the finite sample
performance and the robustness of our approach in Section 4. We conclude this paper in Section 5.

2 PROBLEM DESCRIPTION AND BACKGROUND

We consider a complex real system with unknown mean response µ p(x), where x is the decision variable.
Since each simulation run of the detailed simulation model is computationally prohibitive, a simplified
simulation model is often used to guide the decision making. The mean response of the simulation model
µ(x,θθθ) often depends on the calibration parameters θθθ . Thus, it is critical to find the optimal calibration
setting θθθ ? minimizing the distance between µ p(x) and µ(x,θθθ) over the entire decision space of x; see more
details in Tuo and Wu (2015) and Wong, Storlie, and Lee (2016).
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For example, for a complex semiconductor production process involving thousands of steps, given a
scheduling policy x, we consider the expected cycle times of different types of products. To guide the
decision making, we construct a simplified queueing network as the simulation model. Due to changing
product mixes and unexpected break down of tools in the stations, near-bottlenecks may become a bottleneck.
Since queue times at bottlenecks and near-bottlenecks dominate the cycle times, we model each bottleneck
or near-bottleneck as one queue and aggregate the remaining stations to be a single queue. To correctly
guide the decision making for the real system, we first calibrate θθθ , i.e., parameters specifying the service
distributions of queues in the simulation model, so that the expected cycle time estimated from the simulation
system matches well with that of the real system. Then, the calibrated simulation system could be used
to search for the optimal scheduling decision if the product mixes change.

In this paper, we focus on calibrating the simulation model under a fixed decision policy x0. Thus,
the mean performances of the real system and the simulation model can be reduced to µ p and µ(θθθ),
respectively. As noted earlier, the goal of calibration is to find the optimal calibration setting θθθ ?, which
minimizes the distance between µ p and µ(θθθ):

θθθ
? ∈ argmin

θθθ∈Θ

[µ p−µ(θθθ)]2 , (1)

where Θ denotes the space of the calibration parameters. In this paper, Θ contains a finite number of
candidates, i.e., Θ = {θθθ 1, . . . ,θθθ M}. Since both µ p and µ(θθθ) are unknown, the optimization problem in (1)
can not be solved directly. Alternatively, the optimal calibration setting can be attained by minimizing the
expected value of the objective in (1) with regard to our beliefs about µ(θθθ) and µ p:

θ̂θθ
? ∈ argmin

θθθ∈Θ

E [µ p−µ(θθθ)]2 . (2)

According to Proposition 2.1 in Ryzhov (2017), we can equivalently assume that µ p is a fixed constant.
Thus, the expectation in (2) is only taken with regard to the uncertainty of µ(θθθ). Under this calibration
framework, it is critical to accurately assess our belief about µ(θθθ) using data collected from the simulation
system. Given a tight simulation budget, it is more efficient to collect data in a sequential manner. In each
step of the sequential procedure, we choose a calibration setting to obtain simulation outputs, and update
our belief about µ(θθθ), which guides us to further run simulations at the “promising” candidate calibration
settings. There are two key components in this procedure, (1) a surrogate model for our belief about µ(θθθ),
and an updating scheme to update this surrogate model by incorporating new data, and (2) a criterion to
determine the calibration setting for new simulation replications. Classical simulation approaches tend to
focus on summary statistics of simulation outputs. Based on the development in Ryzhov (2017), we first
introduce these two components using summary statistics of simulation outputs.

2.1 Summary Statistics Approach: Surrogate Model for Mean Performance

Under the calibration setting θθθ , a single run of the simulation model generates a sample path

Y(θθθ) = (Y1(θθθ), . . . ,YL(θθθ))
> . (3)

In the semiconductor production example mentioned above, Y`(θθθ) could be the cycle time of the `th order.
For simplification, we fix the run-length as L, and sequentially allocate simulation runs to the M different
calibration settings in Θ.

Classical simulation approaches use the sample mean Ȳ (θθθ) = ∑
L
`=1Y`(θθθ)/L, and ignore the detailed

sample paths. The simulation summary output Ȳ (θθθ) is often assumed to be a sample from a normal
distribution with mean µ(θθθ) and variance σ2(θθθ). Under the finite calibration space Θ = {θθθ 1,θθθ 2, · · · ,θθθ M},
we denote µi ≡ µ(θθθ i) and λ 2

i ≡ σ2(θθθ i). We assume that µi and λ 2
i are unknown, and independent across



Wang, Zhang, and Xie

different calibration settings. For each i = 1, . . . ,M, we use the normal-inverse-gamma distribution to
surrogate our beliefs about µi and λ 2

i :

µi|λ 2
i ∼N

(
µ
(0)
i ,

λ 2
i

τ
(0)
i

)
, λ

2
i ∼ InvΓ

(
a(0)i ,b(0)i

)
. (4)

Let Ȳ (n) = Ȳ (θθθ i(n)) be the summary statistic obtained at the n-th step, where i(n) is the calibration setting
chosen to run simulation in the n-th step. Assume i(n) = i. According to the conjugacy property of the
normal-inverse-gamma model (Gelman et al. 2014), the parameters of the i-th calibration setting in (4) can
be simply updated as follows

µ
(n)
i = µ

(n−1)
i +

Ȳ (n)−µ
(n−1)
i

τ
(n−1)
i +1

, b(n)i = b(n−1)
i +

τ
(n−1)
i (Ȳ (n)−µ

(n−1)
i )2

2(τ(n−1)
i +1)

, (5)

τ
(n)
i = τ

(n−1)
i +1, a(n)i = a(n−1)

i +
1
2
.

Due to the independence assumption across different calibration settings, the parameters of the i-th calibration
setting maintain the same as the previous step for i 6= i(n).

After the n-th step, the posterior mean of µi is µ
(n)
i as in (5), and the posterior variance of µi is

σ
2,(n)
i =

b(n)i

τ
(n)
i

(
a(n)i −1

) . (6)

Therefore, based on our beliefs about the mean performance at the n-th step, the estimated optimal calibration
setting in (2) can be expressed by

θ̂θθ
?
s (n) = argmin

θθθ i∈Θ

{(
µ
(n)
i −µ

p
)2

+σ
2,(n)
i

}
. (7)

2.2 The Local Time Method for Sequential Design

Ryzhov (2017) introduced the local time method to select calibration setting based on our belief about the
mean performances. Given µ

(n−1)
i and σ

2,(n−1)
i as the posterior mean and variance of µi at the (n−1)-th

step, the local time method selects the calibration setting to allocate simulation at the n-th step,

i(n) = argmax
θθθ i∈Θ

`(i) with `(i) = σ
(n−1)
i f

(
−
|µ(n−1)

i −µ p|
σ
(n−1)
i

)
, (8)

where the function f (z) = zΦ(z)+φ(z) with φ and Φ being the density and the cumulative distribution
of the standard normal distribution. The local time criterion measures how frequently µi (as a stochastic
process based on our belief) visit the target value µ p over an infinite time horizon. The calibration setting
selected by the local time method is potentially closer to the target mean performance µ p. Ryzhov (2017)
demonstrates that the local time method is statistically consistent, and yields asymptotic rates equal to
those obtained by the optimal computing budget allocation; see Chen and Lee (2011).

By combining the surrogate model for the mean performance and the local time criterion in (8), the
calibration can be done in a sequential manner. However, the summary statistics approach ignores the
inherent dependences between the elements in the sample path of the simulation output. To fully explore
the sample path information, we propose a new sequential calibration approach in Section 3.
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3 DETAILED SAMPLE PATH APPROACH FOR CALIBRATION

We propose a sequential calibration approach using the detailed sample paths of stochastic simulation outputs.
Section 3.1 provides the surrogate model, and the model updating formulas for the mean performance, and
Section 3.2 gives theoretical comparison of the detailed sample path approach and the summary statistic
approach introduced in Section 2.1.

3.1 Surrogate Model for Mean Performance with Detailed Sample Paths

We consider the detailed sample paths generated from a steady-state simulation system. For any θθθ ∈ Θ,
we assume that the sample path output Y(θθθ) in (3) follows a stationary GP with mean E[Y`(θθθ)] = µ(θθθ) for
` = 1, · · · ,L, and covariance Cov[Y`(θθθ),Y`+h(θθθ)] = σ2(θθθ)R(h;θθθ) for ` = 1, · · · ,L− h, where σ2 denotes
the variance, and R(·;θθθ) denotes the correlation function the under the calibration setting θθθ . Throughout
this paper, we assume that correlation function R(·;θθθ i) for i = 1, . . . ,M is known. Developing an efficient
estimation procedure for the correlation structure is included in the future research. We further denote
the correlation matrix for sample path outputs under calibration setting θθθ i to be Ri. Let µi ≡ µ(θθθ i) and
σ2

i ≡ σ2(θθθ i). Then the detailed simulation output Y(θθθ i) is a sample from a multivariate normal distribution
with a mean vector µi1L and covariance matrix σ2

i Ri, where 1L is L-dimension vector with all entries to be
1. For i = 1, . . . ,M, we model our beliefs about the µi and σ2

i by a normal-inverse-gamma conjugate prior

µi|σ2
i ∼N

(
µ
(0)
i ,

σ2
i

q(0)i

)
, σ

2
i ∼ InvΓ

(
α
(0)
i ,β

(0)
i

)
. (9)

Let Y(n) = Y(θθθ i(n)) be the sample path collected at the n-th step, where i(n) is the calibration setting chosen
to run simulation in n-th step through the local time method. Based on the conjugacy property of this
normal-inverse-gamma model, the updating formulas are provided by Proposition 1; see the derivation in
Appendix A.
Proposition 1 Let i = i(n) be the calibration setting selected at the n-th step, the parameters for the i-th
calibration setting in (9) can be updated by

µ
(n)
i =µ

(n−1)
i +

1>L R−1
i (Y(n)−µ

(n−1)
i 1L)

q(n−1)
i +1>L R−1

i 1L

, q(n)i = q(n−1)
i +1>L R−1

i 1L, α
(n)
i = α

(n−1)
i +

L
2
, (10)

β
(n)
i =β

(n−1)
i +

q(n−1)
i (Y(n)−µ

(n−1)
i 1L)

>R−1
i (Y(n)−µ

(n−1)
i 1L)+1>L R−1

i (1L(Y(n))>−Y(n)1>L )R
−1
i Y(n)

2(q(n−1)
i +1>L R−1

i 1L)
.

The parameters of the i-th calibration setting maintain the same as the previous step for i 6= i(n). After the
n-th step, the posterior mean of µi is µ

(n)
i as in (10) and the posterior variance of µi is

σ
2,(n)
i =

β
(n)
i

q(n)i (α
(n)
i −1)

. (11)

Therefore, based on our beliefs about the mean performance at the n-th step, the estimated optimal
calibration setting in (2) can be expressed by

θ̂θθ
?
d(n) = argmin

θθθ i∈Θ

{(
µ
(n)
i −µ

p
)2

+σ
2,(n)
i

}
. (12)

Also, according to the local time method in Ryzhov (2017), we allocate new experiments by choosing
the calibration setting that maximizes the local time criterion in (8). Given the simulation budget to be N
replications, our sequential mean performance calibration procedure with detailed sample path output is
summarized in Algorithm 1.
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Algorithm 1: Sequential calibration with detailed sample path

Input: Initial parameters µ
(0)
i , q(0)i , α

(0)
i , and β

(0)
i for i = 1, . . . ,M in (9).

Output: The estimated optimal calibration setting θ̂θθ
?
d(N).

for n← 1 to N do
Choose i(n) that maximizes `(i) in (8);
Generate the simulation sample path Y(n) under the i(n)-th calibration setting;
for i← 1 to M do

if i = i(n) then
Update µ

(n)
i , q(n)i , α

(n)
i , and β

(n)
i as in Proposition 1.

end
else

Set µ
(n)
i = µ

(n−1)
i , q(n)i = q(n−1)

i , α
(n)
i = α

(n−1)
i , and β

(n)
i = β

(n−1)
i , respectively.

end
end
Compute θ̂θθ

?
d(n) as in (12).

end

3.2 Theoretical Comparison

This section provides theoretical comparison between the summary statistics approach and the detailed
sample path approach. The performances of these two methods are evaluated by the Probability of Correct
Selection (PCS):

PCS(θ̂θθ
?
) = Pr(θ̂θθ

?
= θθθ

?), (13)

where θ̂θθ
?

is the estimated optimal calibration setting in (2), θθθ ? is the optimal calibration setting defined in
(1), and the probability is taken with regard to the posteriors of mean responses µi for i = 1, . . . ,M. The
larger PCS indicates that the calibration procedure is more likely to select the true best calibration setting
θθθ ?.

The comparison of PCS between the two approaches are provided in Theorem 2. This theorem is
developed under the following conditions:

(C1) The variances, λ 2
i in summary approach, and σ2

i in detailed approach are known as a prior.
(C2) The optimization problem in (1) has a unique true optimal point.
(C3) The prior parameters in (4) and (9) are non-informative, with mean equal to 0, and variance equal

to ∞.

Theorem 2 Under the conditions (C1)–(C3), for θ̂θθ
?
d(n) in (12), and θ̂θθ

?
s (n) in (7), we have that

PCS
(

θ̂θθ
?
d(n)

)
≥ PCS

(
θ̂θθ
?
s (n)

)
,

if n is large enough.
This theorem indicates that the mean calibration procedure with detailed sample path outputs outperform

the one with summary outputs in terms of asymptotic probability of correct selection. We provide the proof
of Theorem 2 in Appendix B. Notice that the posterior development of the proposed method is based on
the multivariate normal model assumption of Y(θθθ i). Although this normality assumption may not hold in
general, our empirical study in Section 4 indicates that the proposed approach is robust for non-normal
cases.
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4 EMPIRICAL STUDY

In this section, we compare the finite sample performances of the detailed sample path approach and the
summary statistic approach. The opportunity cost (OC) of the optimization problem in (1) is used to evaluate
the performances of these two approaches in additional to PCS. For an estimated optimal calibration setting
θ̂θθ
?
, OC can be calculated by

OC(θ̂θθ
?
) =

(
µ(θ̂θθ

?
)−µ

p
)2
− (µ(θθθ ?)−µ

p)2 . (14)

Since θθθ ? attains the optimal value of (µ(θθθ)−µ p)2, OC(θ̂θθ
?
) is always non-negative. A smaller OC(θ̂θθ

?
)

indicates that θ̂θθ
?

is a better estimator of θθθ ?.
For each sequential calibration approach, the prior parameters in (4) and (9) are specified as µ

(0)
i = 0,

τ
(0)
i = q(0)i = 3, a(0)i = α

(0)
i = 1.5 and b(0)i = β

(0)
i = 500, which ensures that we start from the same non-

informative beliefs on the mean performances. The conditional OC and PCS are estimated by using 200
micro-replications. The first order autoregressive model AR(1) and the M/M/1 system are used to generate
simulation outputs, respectively. The normal assumption of simulation output holds for the AR(1) example,
whereas it does not hold for the M/M/1 example.

4.1 Example 1: AR(1) Model

We first consider using the AR(1) model to generate the simulation outputs. Assume that the calibration
settings in Θ have different mean performances µi for i = 1, . . . ,M with the same variance. For the i-th
calibration setting in Θ, a realization of the sample path Y(θθθ i) in (3) is generated from

Y`(θθθ i)−µi = ϕ (Y`−1(θθθ i)−µi)+ e`(θθθ i), (15)

where ϕ is the correlation parameter, and {e`(θθθ i)}L
`=1 are white noise from a normal distribution with mean

zero and variance σ2
e . Under this model, the marginal variance σ2 = σ2

e /(1−ϕ2), and ϕ is associated
with the correlation function Corr[Y`(θθθ),Y`+h(θθθ)] = ϕh for ` = 1, · · · ,L−h. Larger |ϕ| leads to stronger
serial correlation within a sample path.

The true mean performance of the real system is specified as µ p = 0. We generate M = 20 calibration
settings as the candidates in Θ, and the mean performances µi are taken as a equally spaced sequence from
−10 to 10. Table 1 reports the average OC and empirical PCS of the estimated optimal calibration setting
at different steps under different parameter settings of the AR(1) model in (15). To compare performances
of the two approaches at each step of the sequential procedure, the average OC and empirical PCS at each
step under the parameter setting σ2 = 25 and ϕ = 0.9 are depicted in the top panel of Figure 1.

4.2 Example 2: M/M/1 Queue

We then consider the simulation outputs of the steady-state customer waiting times in an M/M/1 queue.
In this example, we fix the arrival rate to be 1, and let the service rate as the calibration parameter. We
generate M = 20 calibration settings with utilization equally spaced on [0.2,0.95]. The sample path under
each calibration setting is generated with run-length L = 50, after 200 warm-up samples.

The mean performances of three target real systems are generated with the M/M/1 queue with utilization
equal to 0.5, 0.7, 0.9. Table 2 reports the average OC and empirical PCS of the estimated optimal calibration
setting at different steps. To compare performances of the detailed and summary approaches at each step
of the sequential procedure, the average OC and empirical PCS with target utilization 0.7 are depicted in
the bottom panel of Figure 1.

We summarize the observations from the empirical study. From Figure 1 and Tables 1–2, as the
simulation budget N increases, the average OC from both detailed and summary approaches converges to
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Table 1: Average OC and empirical PCS of the estimated optimal calibration setting for AR(1).

summary statistics approach detailed sample path approach
σ2 ϕ N=50 N=100 N=500 N=50 N=100 N=500
25 -0.5 OC 0.028 0.027 0.005 0.019 0.013 <0.001

PCS 0.735 0.745 0.955 0.825 0.880 0.995
0.2 OC 0.037 0.035 0.020 0.032 0.022 0.013

PCS 0.650 0.665 0.815 0.695 0.790 0.875
0.9 OC 0.665 0.283 0.039 0.328 0.106 0.037

PCS 0.390 0.475 0.630 0.485 0.585 0.655
100 -0.5 OC 0.040 0.034 0.017 0.035 0.030 0.009

PCS 0.620 0.675 0.840 0.670 0.720 0.920
0.2 OC 0.230 0.122 0.035 0.087 0.049 0.026

PCS 0.505 0.545 0.665 0.485 0.540 0.750
0.9 OC 3.815 2.031 0.126 2.092 0.959 0.099

PCS 0.160 0.295 0.590 0.250 0.360 0.585

Table 2: Average OC of the estimated optimal calibration setting for the M/M/1 queue.

summary statistics approach detailed sample path approach
target utilization N=50 N=100 N=500 N=50 N=100 N=500

0.9 OC 46.141 32.056 2.024 51.829 35.764 0.976
PCS 0.460 0.600 0.960 0.390 0.600 0.990

0.7 OC 0.865 0.470 0.021 0.198 0.108 0.010
PCS 0.275 0.370 0.755 0.400 0.510 0.805

0.5 OC 0.080 0.031 0.002 0.009 0.005 0.001
PCS 0.270 0.405 0.805 0.495 0.555 0.730

zero, and the empirical PCS converges to one. The detailed sample path approach converges faster than
the summary statistics approach. In the M/M/1 example, as the target utilization decreases, the average
OC decreases. Notice that, for the case with target utilization equal to 0.9, the correlation of lag one is
approximate 0.99, and marginal variance is large, which leads inferior performances for both approaches
under limited simulation budget.

The benefit of our proposed approach is obvious from asymptotic and finite sample behavior: it
converges faster than the corresponding approach using summary statistics. More specifically, the proposed
procedure achieves small OC faster, indicating we need less runs to obtain a well-calibrated simulation
model. In previous M/M/1 queue example with target utilization equal to 0.7, in order to reduce OC to 0.01,
using proposed method we need 440 simulation runs on average, whereas in summary statistics approach
the number of runs increases to 808. Due to the fact that each simulation run could be computationally
expensive, our approach can accelerate the simulation based decision making.

5 CONCLUSION

We propose a new Bayesian sequential calibration approach using the detailed sample paths of stochastic
simulation outputs. Compared to the classical calibration approach with summary statistics, our approach
has been shown to be effective through theoretical comparison and numerical examples. Now we remark
on the directions for future research. First, we will generalize the stationary setting in this paper, and
develop a detailed sample path based calibration framework that can be used for non-stationary system
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Figure 1: Average OC and empirical PCS at each step of two cases from each of the two examples. Top
panel: the AR(1) example with σ2 = 25 and ϕ = 0.9; Bottom panel: the M/M/1 example with target
utilization 0.8.

performance. Second, we will develop efficient estimation or sequential learning procedure for correlation
structure. Third, we will apply our approach to calibrate complex stochastic systems, such as supply chains
and manufacturing systems, for efficient decision making.

A Proof of Proposition 1

Assume the current belief at θθθ i at the beginning of the n-th step:

µi|σ2
i ∼N

(
µ
(n−1)
i ,

σ2
i

q(n−1)
i

)
, σ

2
i ∼ InvΓ

(
α
(n−1)
i ,β

(n−1)
i

)
.

We select calibration setting i at the n-th step, and get sample path output Y(n). Combining the prior
distribution with multivariate normal distribution p(Y(n)|µi,σ

2
i ), the posterior distributions of µi and σ2

i
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are

p(µi|σ2
i ,Y

(n)) ∝(σ2
i )
−

1
2 exp

[
−

q(n−1)
i +1>L R−1

i 1L

2σ2
i

(
µi−

1>L R−1
i (Y(n)−µ

(n−1)
i 1L)

q(n−1)
i +1>L R−1

i 1L

)2
]

p(σ2
i |Y(n)) ∝(σ2

i )
−

L
2
−α

(n−1)
i −1

exp
[
− 1

σ2
i

(
β
(n−1)
i +

q(n−1)
i (Y(n)−µ

(n−1)
i 1L)

>R−1
i (Y(n)−µ

(n−1)
i 1L)

2(q(n−1)
i +1>L R−1

i 1L)

+
1>L R−1

i (1L(Y(n))>−Y(n)1>L )R
−1
i Y(n)

2(q(n−1)
i +1>L R−1

i 1L)

)]
,

which indicates the results in Proposition 1.

B Proof of Theorem 2

Under the conditions (C1)–(C3), the parameter updating formulas of the summary statistics approach and
the detailed summary statistics approach can be reduced to

µ
(N)
i =

1
Ni

N

∑
n=1

Ȳ (n)I{i(n)=i}, σ
2,(N)
i =

λ 2
i

Ni
(16)

and

µ
(N)
i =

1>L Λ
−1
i (∑N

n=1 Y(n)I{i(n)=i})

Ni1>L Λ
−1
i 1L

, σ
2,(N)
i =

1
Ni1>L Λ

−1
i 1L

, (17)

where Λi = σ2
i Ri is the covariance matrix at θθθ i, then the variance of summary output λ 2

i = (1>L Λi1L)/L2.
Let Ni = ∑

N
n=1 I{i(n)=i} be the number of simulations allocated to alternative θθθ i by time N.

Thus, we have µ
(N)
i ∼N (µi,η

2
i /Ni), where η2

i represents λ 2
i under summary approach, 1/(1>L Λ

−1
i 1L)

under detailed approach, respectively. We assume that µi 6= µ p for all i ∈ {1,2, · · · ,M}, without loss of
generality, we further assume that µ p = 0 < µ1 < µ2 < · · · < µM (which implies θθθ ? = θθθ 1). Asymptotic
sampling ratio between optimal and other alternatives can be derived as in Theorem 4.3 of Ryzhov (2017),

lim
N→∞

Ni

N1
=

η2
i (µ1−µ p)2

η2
1 (µi−µ p)2 =

η2
i r2

i

η2
1 r2

1
,

where 0 < ri = µ1/µi < 1 for i 6= 1, and r1 = 1. After simple calculation, we have

Ni =
η2

i r2
i

∑
M
k=1 η2

k r2
k

N, σ
2,(N)
i =

∑
M
k=1 η2

k r2
k

Nr2
i

. (18)

The PCS defined by (13) can be expressed by:

PCS = Pr
{
(µ1 +σ

(N)
1 z1)

2 +σ
2,(N)
1 < min

i 6=1

[
(µi +σ

(N)
i zi)

2 +σ
2,(N)
i

]}
,

where zi’s are independent standard normal random variable

PCS = Pr
{

µ
2
1 +2µ1σ

(N)
1 z1 +O(

1
N
)< min

i 6=1

[
µ

2
i +2µiσ

(N)
i zi +O(

1
N
)

]}
= Pr

{
µ

2
1 +2µ1σ

(N)
1 z1 < µ

2
2 +2µ2σ

(N)
2 z2, · · · ,µ2

1 +2µ1σ
(N)
1 z1 < µ

2
M +2µMσ

(N)
M zM

}
. (as N→ ∞)
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We define W=(W1,W2, · · · ,WM−1)
> asWi = µ2

i+1−µ2
1 +2µi+1σ

(N)
i+1 zi+1−2µ1σ

(N)
1 z1 (for i= 1,2, · · · ,M−1),

then PCS can be written as

PCS = Pr(W > 0) = Pr(ννν>W > 0 f or all ννν ∈ RM−1, ννν > 0).

We assume ννν = (ν1,ν2, · · · ,νM−1)
> > 0, and from the definition of W. Since W follows multivariate

normal distribution, ννν>W would follow univariate normal

ννν
>W∼N

(
M−1

∑
i=1

νi(µ
2
i+1−µ

2
1 ), 4µ

2
1 σ

2,(N)
1 (

M−1

∑
i=1

νi)
2 +4

M−1

∑
i=1

ν
2
i µ

2
i+1σ

2,(N)
i+1

)
.

And then we get

Pr(ννν>W > 0) = Φ

 ∑
M−1
i=1 νi(µ

2
i+1−µ2

1 )

2
√

µ2
1 σ

2,(N)
1 (∑M−1

i=1 νi)2 +∑
M−1
i=1 ν2

i µ2
i+1σ

2,(N)
i+1

 .

So now we only need to prove the posterior variance given by detailed data approach is less than or equal to
posterior variance by summary statistics. Further from (18), we only need to show that 1/(1>L Λ

−1
i 1L)≤ λ 2

i
for all i ∈ {1,2, · · · ,M}.

Since Λi is covariance matrix, let Λi =UDU>, where D= diag(ξ1,ξ2, · · · ,ξL) (ξ` > 0 f or `= 1,2, · · · ,L)
and UU> = IL. We have the inverse Λ

−1
i = UD−1U> and D−1 = diag(1/ξ1,1/ξ2, · · · ,1/ξL). Define

U>1L , u = (u1,u2, · · · ,uL)
>, then

1>L Λ
−1
i 1L = 1>L UD−1U>1L = u>D−1u =

L

∑
`=1

u2
`

ξ`
, 1>L Λi1L = 1>L UDU>1L = u>Du =

L

∑
`=1

u2
`ξ`.

According to Cauchy-Schwarz inequality,

(1>L Λ
−1
i 1L)(1>L Λi1L) = (

L

∑
`=1

u2
`

ξ`
)(

L

∑
`=1

u2
`ξ`)≥ (

L

∑
`=1

u2
`)

2 = (u>u)2 = (1>L UU>1L)
2 = L2.

Recall that λ 2
i = (1>L Λi1L)/L2, consequently, 1/(1>L Λ

−1
i 1L)≤ λ 2

i for all i ∈ {1,2, · · · ,M}, which indicates
the conclusion.
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