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ABSTRACT

Bio-drugs grow rapidly and become one of the key drivers of personalized medicine and advancement of life
sciences. Driven by the unique challenges in biopharmaceutical supply chain management and also built on
two-layer QuarkChain, we introduce a blockchain enabled interoperability framework and it has the reputation
based Proof-of-Authority (PoA) smart contract. Given the real-time monitoring data streams of distributed systems,
blockchain can improve the transparency and integrity of delivery processes. We introduce stochastic simulation
to guide the blockchain design so that we can protect drug products from theft, temperature diversion, and
counterfeiting, while improving the supply chain reliability, efficiency, and responsiveness. The preliminary
empirical study demonstrates that our approach has promising performance.

1 INTRODUCTION

The biopharmaceutical industry is growing rapidly and becoming one of key drivers of personalized medicine for
the treatment of many sever illnesses, including cancer cells and adult blindness. The number of biomolecules
increases threefold in the last decade. They account for over 40 percent of new launched pharma products (Otto,
Santagostino, and Schrader 2014) and this percentage is expected to continuously increase. Biopharmaceutical
industry also grows in double digits annually in both sales and profits. However, the drug safety and shortage
become the main concerns of Food and Drug Administration (FDA). A majority of drug shortage is due to the
lengthy lead time and quality issues. In this paper, we focus on simulation-based blockchain development for
complex global biopharmaceutical supply chain to improve drug safety, as well as delivery process reliability,
responsiveness and integrity. Compared to classical supply chain, biopharma supply chain has key challenges as
follows.

• Complexity: The biomanufacturing becomes more and more globalization. Roughly 80% of active
pharmaceutical ingredients (API) and 40% of finished drug products are imported into the U.S. from
overseas. Manufacturers in China and India are the key sources. Thus, the number of transactions of
API and bio-drugs from manufacturers to patients increase dramatically. In addition, new drugs (e.g.,
advanced cell and gene therapies) tend to become more and more personalized. For example, the CAR
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T-Cell therapy, KymriahTM (Novartis), approved in 2018 by the US FDA (FDA 2017), requires that each
therapy to be manufactured in each individual patients own cells, on demand. For personalized bio-drugs,
supply chain needs to be integrated with some tracking mechanism that can maintain detailed chain of
identity and chain of custody.

• Cold chain: Since bio-drugs are based on living organisms, they are vulnerable to Protein Post-Translational
Modifications (PTM) and degradation. For example, the CAR-T-Cell therapy manufactured from a patient’s
own immune cells needs to be kept frozen in order for the cells to remain viable. In the pharma industry,
there is 95 percent of global cold-chain costs linked to biopharma products (Otto, Santagostino, and
Schrader 2014). Cold-chain, required for the storage, handling, and transportation of many bio-drugs, are
very complex, and there are risks of temperature deviations during delivery. New law requires building an
electronic, interoperable system to identify and trace bio-drugs as they are distributed in the U.S., which
enhances FDAs ability to help protect patients from exposure to drugs that may be counterfeit, stolen,
contaminated, or otherwise harmful; see (FDA 2013).

• Long lead time, high marginal value and vulnerable to counterfeiting: Biopharmaceuticals are expensive
to manufacture and the lead time for production process is lengthy, e.g., 15–20 weeks (Otto, Santagostino,
and Schrader 2014). Bio-drugs tend to have the short expected product life cycle (i.e., 1.5–3 years) with
high marginal value (i.e., the sale prices for one gram of bio-drug substance reach to $500 to $2,000).
How to protect the products from theft, counterfeiting and diversion becomes critically important.

Blockchain technology exhibits various strengths (Babich and Hilary 2019), including (1) visibility; (2) re-
silience; and (3) integrity and automation. Through developing appropriate blockchain for global biopharmaceutical
supply chain, we can overcome the challenges above. First, through combining with smart sensors tracking the
delivery process, we can record whom, when, where, and how a particular drug was stored and handed during
the shipment from manufacturer to patient. Second, instead of relying on a centralized trust system, blockchain
network is decentralized and it can automatically verify and execute transactions. With appropriate design of smart
contracts, blockchain could hedge against various sources of attacks (e.g., counterfeiting, theft and deviation).
Third, through real-time information sharing, blockchain network can fully integrate participants and support the
interoperation to secure the drug delivery and ensure fast reactions to any issues.

Blockchain development for supply chain management is still in its infancy. Tian (2016) proposed a supply
chain tractability system based on blockchain technology, which could increase food security level. Hasan and
Salah (2018) proposed a blockchain-based solution and general framework for the proof of delivery for physical
items involving single and multiple transporters. Alzahrani and Bulusu (2018) proposed a new anti-counterfeiting
supply chain using new field communication and blockchain. It considers the decentralized supply chain that
exploits the block chain technology (block-supply chain), and a new consensus protocol that deals with the problem
of selecting validators. This design guarantees authenticity, integrity and transparency.

As far as we know, there is no existing literature paper introducing blockchain network to facilitate complex
global biopharmaceutical supply chain risk management. Built on two-layer commercial blockchain (called
QuarkChain, see htt ps : //github.com/QuarkChain/pyquarkchain/wiki), we introduce a blockchain enabled
interoperability framework for biopharma supply chain management, which accounts for the unique challenges
mentioned above. With more and more personalized bio-drug discovery and the expansion of globalization, the
number of transactions will increase dramatically. In addition, the sensors that real-time monitor the drug delivery
lead to a large amount of data records. Thus, we explore the two-layer blockchain, propose smart contracts and
introduce new blockchain platform for global biopharma supply chain, which can provide reliable and efficient
bio-drug delivery to hedge against the theft, counterfeiting and deviation risk.

Two-layer blockchain utilizes the state partition and parallel computing mechanism to effectively solve the
scalability issue. Unlike the classical blockchain composed of single chain that is in charge of all the transactions,
two-layer blockchain includes: (1) one root chain layer securing the blockchain network; and (2) one extensible
sharding layer consisted multiple shard chains processing transactions. To deal with increasing supply chain
complexity, we divide all transactions occurring in global biopharma supply chain into different shard chains,
which could be based on geographical locations. Thus, the detailed transaction information is saved and verified
locally by shard chains in parallel. The verification process is based on the smart contract with reputation based
Proof-of-Authority (PoA), which is proposed to hedge against cyberattacks, including counterfeiting on either
drug source information and monitoring sensor data. Then, each verified transaction is hashed, uploaded and
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further confirmed by root chain before broadcasting it to the whole blockchain network. For each transaction, we
record time, location, responsible personnel, and sensor monitoring data, which can facilitate reputation learning,
interoperation and fast response to any issue occurring in the supply chain. We further introduce a simulation
model and algorithm to guide the development of blockchain enabled interoperability platform for biopharma
supply chain risk management. The empirical study indicates that the proposed framework can improve: (1)
the detection of malicious modification cyberattacks, drug counterfeiting and temperature deviation; and (2) the
blockchain efficiency.

Therefore, the main contributions of this paper are summarized as follows. First, built on two-layer blockchain
structure in Quarkchain, we introduce the blockchain enabled interoperability framework accounting for the
unique challenges in the biopharamaceutical supply chain risk management to hedge the cyberattacks and drug
counterfeits. Second, we propose the reputation based Proof-of-Authority as preliminary smart contract design.
Third, we introduce a simulation model and algorithm to guide the framework development for biopharma supply
chain risk management.

This paper is organized as follows. In Section 2, we present the basic mechanism of blockchain. Then, built
on QuarkChain’s two-layer design, we introduce a reliable and efficient blockchain platform for biopharma supply
chain risk management in Section 3. A simulation model and algorithm is developed to guide the blockchain
design. We conduct the empirical study in Section 4 and conclude this paper in Section 5.

2 INTRODUCTION OF BLOCKCHAIN MECHANISM

In this section, we introduce the blockchain mechanism. Since the biopharmaceutical industry is highly regulated
in order to protect the public health, we consider the permissioned network design with smart contract (SC). A
blockchain is a distributed database and also a global hedger which records all transactions in the network as
a timestamp chain of blocks. Figure 1(a) shows the structure of blockchain design. Each block contains three
parts: header, transaction data body and validation. In header, “Time” reflects when the transactions happen and
“Height” specifies the number of blocks in the chain. “Nonce” is a number added to a hashed block and it is used
to encipher the block. A block could be made of validation records and several transactions which are saved in
merkle root after hashed. Each i-th block, denoted by Bi, is identified by its cryptographic hash,

Hi ≡ Hash(Bi).

Hash is a specific algorithm that can transfer letters and numbers into a sequence of string called hash code, or
hash. Each block references to the hash of the block that comes before it, which establishes a chain of the blocks,
called blockchain. Blocks could be added if new valid transaction records need to be written in the global ledger.

Figure 1: The structure of blockchain and blockchain network.
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Any participant with access to this ordered, back-linked list of blocks can get the world view of transaction
data that have been exchanged on the network (Christidis and Devetsikiotis 2016). In the real applications, each
block could include multiple transactions ordered based on certain priority, such as gas fee and reputation score.
To simplify the illustration, suppose every block only records one transaction. Then, each i-th block could be
formulated as a triple, denoted by Bi(hp,Tx,v), where hp is a point to the previous block in chain, Tx represents
the transaction recorded in the i-th block, and v is the validation information, e.g., the validators signatures and
verification records; see Figure 1(a). The validation is based on certain rule that every transaction is required to
follow, e.g., smart contract. Given the incoming transaction Tx and also the current state or all previous transactions
which could be accessed through hp, the validation process returns the verified message and then a block is added
to blockchain.

Thus, blockchain can be formulated as a list, denoted by C[·], which includes several blocks (Garay, Kiayias, and
Leonardos 2015). Typically, C[−1] refers to the last element/block in the blockchain list, e.g., C[−1] =B−1(hp,Tx,v),
and C[i : j] refers to a sub-array including block i to block j. There are some important properties from blockchain:
consistency and tractability. Consistency means that transactions are verified consistently and then we append
blocks to the chain. Tractability means if information in block C[x] is changed, each block in sub-array C[x,−1]
is also automatically changed. Thus, it is easy to trace back and find out which block had been changed.

The blockchain C with the record of all transactions is replicated and shared among the participants of a
network (called blockchain network) with structure shown in Figure 1(b). Suppose that each i-th node, denoted by
Ni, represents a participant, denoted by Ni, with a single computer. All nodes are equally involved in maintaining a
blockchain, but different nodes can have different roles for running the blockchain. In the permissioned blockchain
network, suppose all the participants are identifiable. In this paper, we consider a static setting with a fixed set of
nodes. Let N = (N1,N2, . . . ,NL) denote all participants, where L is the number of participants and nodes in the
network. Since the blockchain is replicated among the nodes, the network can be formulated as

N = {N1(C,SC), N2(C,SC), . . . ,NL(C,SC)}

where N`(C,SC) for `= 1,2, . . . ,L represents Node ` with blockchain copy C and smart contract (SC) as a piece
of code residing on this blockchain.

Participants interact with the blockchain through a pair of their own private and public keys. They use their
private keys to sign their own transactions which are verified on the blockchain network via their public keys
(Christidis and Devetsikiotis 2016). The private key can be used to create a digital signature for displaying
the sender’s authenticity of transaction Tx, signature = hash(hash(private key),hash(Tx)). The public key is
transformed from the private key by a irreversible hash function, public key = hash(private key). Thus, given
public key and Tx, the receiver or other nodes can verify the signature, hash(public key,hash(Tx))

?
= signature.

To facilitate the automatic interactions and help the network reach consensus or a common global view of the
world state, each blockchain network needs to establish rules that each transaction should conform to (Christidis
and Devetsikiotis 2016). This can be achieved by smart contract which can be viewed as a digitized traditional
contract. It is a piece of code residing on a blockchain and the blockchain network assigns unique addresses to the
contract. Therefore, the smart contract residing on replicated and shared ledger allows the automatic verification
for new transaction and further facilitate data-driven interactions between mutually distrustful counterparties.

A smart contract (SC) has the structure shown in Figure 2; see the description in Bahga and Madisetti (2016).
It includes a set of executable functions V (·) and state variables of blockchain network (i.e., the world state of
data that have been recorded in blockchain), denoted by S. Any participant can trigger the functions V (·) in the
contract by sending a new transaction Tx to the contract for the verification, and the verification result is also
based on the current state S. Then, the verified transaction information is broadcast to each node in the blockchain
network as message,

(Message,Snew) = SC(Tx;V (·),S). (1)

Basically, following certain logic, SC first selects a verification panel, denoted by VP. Given the transaction Tx
and the current state accessed through hp, the verification function V (·) returns the validation records v,

v≡ ((Yi,Signaturei)i∈VP,z) =V (hp,Tx;VP). (2)

where (Yi,Signaturei) denotes the accept/reject decision and signature from validator i in VP, and z is the final
decision based on some form of “majority” vote. Thus, the broadcast message in Equation (1) includes the
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transaction and verification results, Message = (Tx,v). A new block containing this message is generated and
it is appended to the chain C. Smart contract triggers the events to update the blockchain network state which
becomes the world view for the next transaction, S = Snew. If the nodes do not verify the suggested transaction,
the proposed block is discarded. Notice that once triggered by an incoming transaction Tx, the smart contract
code executes independently and automatically on each node in the blockchain network. To reach consensus on
its execution result, a smart contract is “deterministic” (Christidis and Devetsikiotis 2016) or consistent across
different nodes in the network.

Figure 2: Smart contract structure.

3 BLOCKCHAIN DEVELOPMENT FOR BIOPHARMA SUPPLY CHAIN RISK MANAGEMENT

Driven by the key challenges presented in Section 1, we introduce a permissioned blockchain network for complex
global biopharma supply chain to secure the delivery process and improve the drug safety in Section 3.1. Then,
built on two-layer QuarkChain, we present a blockchain platform in Section 3.2, which could improve transaction
processing throughput and deal with the increasing complexity of biopharma supply chain. We further provide the
simulation algorithm procedure in Section 3.3, which could be used to guide the blockchain platform development.

3.1 Blockchain Design for Global Biopharma Supply Chain

For the highly regulated biopharmaceutical supply chain, we study a permissioned blockchain network. In this
paper, we consider the static setting with fixed participants including manufacturers, transporters and patients.

• Bio-drug Manufacturer (M ). A manufacturer produces the product and initializes the transportation. It
creates the first transaction for a delivery.

• Transporter (T ). A transporter delivers the item from the previous participant, e.g., the previous transporter
or the manufacturer, to the next participant, e.g., the next transporter or the patient. Transporters keep
updating the status of the product by submitting transactions to the network.

• Patient (P). A patient purchases the bio-drug product from the manufacturer, and creates the last transaction
to confirm receiving the ordered product.

Thus, all participants in the network can be divided into three disjoint sets: N = Nm∪Nt ∪Np, where Nm,Nt and
Np represent the sets of nodes from manufacturers, transporters and patients.

The bio-drug order arrival and delivery stochastic processes occurring in biopharma supply chain are the
driving forces for the dynamic evolution of blockchain. Each bio-drug product has a unique product ID (PID)
generated by one of manufacturers in Nm. Suppose the random sample ω has one-to-one mapping with PID.
Let t0(ω) be the order arrival time. Suppose the order arrival immediately triggers the product release and the
selection of participants involved in the delivery process, denoted by ND(ω) = (M ,T ,P), where M and P
represent a manufacturer and a patient from sets Nm and Np, and T is a subset of transporters from Nt . Let D(ω)
be the delivery sample path. The transportation time for each shipment is random.

The types of transactions in the delivery process include initialization, transportation and final receiving.
Each delivery typically has one transaction in the initialization and final receiving stages respectively, and it has
multiple transactions in transportation stage. Each transaction includes the transaction data, sender and receiver’s
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signatures,
Tx = (TransactionData,SenderSignature,ReceiverSignature). (3)

In the initialization stage, the manufacturer provides the data records, e.g., PID, the product expire time, the
storage condition requirement, and the production quality. In the transportation and receiving stages, the transaction
data include the real-time sensor data, including time, location and storage condition (i.e., temperature). This
information can help us track the shipment and response to any potential problem quickly.

We consider data modification cyberattacks which could happen during transaction data generation and after
the transactions are included in blocks. During the transaction generation, the cyberattack risk is induced by the
transaction data that have been tampered by the person handling the product. To ensure that the blockchain contains
valid and correct transactions, we propose a Proof-of-Authority (PoA) smart contract which can automatically
execute the verification to reduce the impact of the cyberattacks. This smart contract is designed based on the
reputation-based voting mechanism.

In this PoA smart contract SCPoA, a voting panel, denoted by VP(ω,ωc
N ), is randomly selected from ND(ω)

to validate any transaction Tx(ω). This design is based on two considerations. First, the participants in ND(ω)
are responsible for any potential drug quality and delivery delay related issues. Second, since the manufacturing
and storage “process” determines the quality of bio-drugs, this could facilitate the further research on developing
the big data analysis for the reputation learning by utilizing the bio-drug quality test samples randomly collected
from biopharmaceutical supply chain. The number of validators, denoted by m = |VP(ω,ωc

N )|, influences the
blockchain network security. A common random number, denoted by ωc

N , is used on all nodes in the network
N = (N1,N2, . . . ,NL) to make sure that the same voting panel is selected when different nodes execute the
smart contract following Equation (1), which can ensure the consensus. The verification function in Equation (2)
becomes

v = ((Yi,Signaturei)i∈VP(ω,ωc
N ),z) =V (hp,Tx(ω);VP(ω,ωc

N )) (4)

where Yi ∈ {0,1} represents the reject/accept vote from the i-th validator in VP(ω,ωc
N ) and the final decision z

is based on the majority vote. Thus, triggered by the arrival of transaction Tx(ω), the smart contract will return
the validation results v, including validators signatures and their voting records. Since all the interactions occur
via signed messages and validations in Equations (3) and (4), participants can get a cryptographically verifiable
trace of the biopharma supply chain operations. For simplification, we suppose that each participant has a fixed
reputation score here. In the future research, this score will be learned through analyzing transaction, voting and
bio-drug quality testing data that could be randomly collected from the delivery process.

3.2 Two-Layer BlockChain Platform

The increasing complexity of global biopharma supply chain requires a blockchain platform with high transaction
processing throughput. However, due to the decentralized nature of a blockchain network, scalability has been a
challenging problem faced by most existing solutions because all the nodes in the blockchain network need to reach
consensus on including any new transaction. In the centralized world, sharding is one of the most widely used
technologies to solve the scalability problem, for example, BigTable, Cassandra, etc. The key idea of sharding is
the state partition: divide the global state into a collection of sub-states, so that the transactions can be processed
in different shards in parallel.

An innovative sharded blockchain protocol, called QuarkChain, has been introduced by Zhou (2018b).
QuarkChain has a two-layer architecture: one layer is called sharding layer, which is composed of a number of
shard chains, C1,C2, . . . ,CR, processing transactions simultaneously, where R is the total number of shard chains.
The sharding layer is extensible, meaning that R can be increased to improve the network throughput. The other
layer is the root chain layer, denoted by C0, which ensures the overall security of the network and serves as the
coordinator for cross-shard transactions among shard chains. In QuarkChain network, the network state S (the
full transaction history) is partitioned into subsets of state S1,S2, . . . ,SR, where ∪R

r=1Sr = S. The r-th subset Sr is
recorded by shard chain Cr. Figure 3 illustrates the two-layer design, in which a cluster is the equivalence of a
“full node” defined in Ethereum that keeps the full transaction history of the blockchain network. A QuarkChain
cluster consists of a collection of machines/CPUs, one of which runs the root chain, and others run different shard
chains. Each block in a sharded blockchain has two hash pointers: one links to the previous sharded block and
the other pointer links to a root block; see Figure 3(b). We define the machines in a QuarkChain cluster as N Q

i
for i = 1, . . . ,m, where m is the number of machines in a QuarkChain cluster, which can be different in different
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clusters. Thanks to the sharding technology, one machine N Q
i only runs a subset of the shard chains, thus, only

processes transactions on the corresponding shard chains. In this way, a much larger volume of transactions can
be processed in parallel by different shard chains compared to the number of transactions processed by a single
blockchain like Ethereum. Therefore, a much higher throughput can be achieved. For example, even though
Bitcoin only processes 6 to 7 transactions per second and Ethereum currently processes 15 transactions per second,
QuarkChain testnet has achieved more than 10,000 transactions per second (Zhou 2018a).

Figure 3: QuarkChain Cluster (from quarkchain wiki).

We build the two-layer blockchain platform for bio-pharmaceutical supply chain based on QuarkChain. Each
participant could utilize a cluster with many machines running different shard chains. One essential question in the
design is how to partition the state of the network. Usually, in-shard transactions are processed by shard chains,
and cross-shard transactions require the involvement of root chain, which increases the time to reach consensus
(Zhou 2018b). In the global biopharma supply chain, we partition the system state based on geographical positions
of the transactions with the assumption that local deliveries (i.e., within a country) contribute to the majority
of deliveries. In other words, transactions happen within one country will be processed by one shard. For
simplification, we assume each delivery is included in one shard here. That means all transactions in each delivery
D(ω) are processed in a certain shard chain, say Cr. Suppose each shard chain has its own PoA-based smart
contract following the design in Section 3.1.

To ensure the bio-drug quality, each shipment is closely monitored by real-time sensors, which could lead to
large volume of transaction data. To hedge against the modification attacks, we propose a root-chain-first PoA
which has a hierarchical verification structure. Basically, both the root chain and shard chains run PoA with
different set of authorities. The selection of local authorities and the PoA-based smart contract SCPoA

r on shard
chain Cr can follow the idea proposed in Section 3.1. Global authorities can include reliable trusted parties (e.g.,
FDA) who are responsible for the safety of public health. We denote the authority set for root chain as NA and the
smart contract as SCPoA

0 . A transaction is first verified in a shard chain and is included in a shard block based on
the PoA-based smart contract. The shard block containing the transaction is finalized only after it is confirmed by
the root chain. Confirmation refers to the process that the header of the shard block is first checked by an authority
of the root chain. If verified, the authority then produces and broadcasts a root block that contains the header. The
structures of root chain and shard chain are illustrated in Figure 4, where MerkleRootr,i is the hash of Data Body
and Validation in the r-th shard chain and MerkleRooti is the hash of Data Body in the root chain for any block
i. Compared to shard blocks that verify all the details of a transaction, each root block only checks the block
headers of shard blocks, thus, is able to process a large amount of shard blocks efficiently. The state sharding
technology and root-chain-first consensus enable the parallel processing of transactions and achieve resilience to
data modification attack.

3.3 Algorithm Development and Simulation Procedure

In this section, we provide the simulation modeling and algorithm for two-layer blockchain platform that could
facilitate the development of reliable and efficient Biopharma supply chain. Suppose all the participants can be
divided into R different shards, including Manufacturer nodes N(r)

m , transporter nodes N(r)
t , and patient nodes

https://github.com/QuarkChain/pyquarkchain/wiki/Cluster-Design
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Figure 4: The root and shard chains structure.

N(r)
p , with r = 1, . . . ,R. Suppose almost all transactions are processed within shards and the impact of processing

cross-shard transaction is negligible. A fixed global authority panel NA works for root chain confirmation. To
mimic the data modification risk, suppose there exists a certain proportion p0 of participants who could perform
dishonestly. Suppose there is a underlying “reputation score” for each participant from 0 to 1 measuring the
honest level. A bad participant with score level (1−u) has probability u to modify the transaction it involves.
Any selected good validator will reject the modified transaction with probability u in verification process, while
other bad nodes always accept the transactions. Suppose that all bad nodes work in collusion. For simplification,
suppose that we have a fixed set of bad reputation participants, denoted by NB and |NB|/|N|= p0.

3.3.1 Simulation Modeling Development

Let FA denote the distribution of bio-drug order inter-arrival time. For each order ωk with k = 1,2, . . . ,K, we first
specify the participants involved in the delivery process ND(ωk), including one manufacturer M (ωk), one patient
node P(ωk) and Jk transporters T j(ωk) with j = 1, . . . ,Jk. Suppose the delivery happens in region r(ωk) and all
transactions in this delivery are processed in shard chain Cr(ωk). Denote the order arrival time as t0(ωk). Once
receiving the order, the manufacturer M (ωk) immediately releases the product to the first transporter T1(ωk).
They create the first transaction Tx,1(ωk) with their signatures, and then send it to smart contract on Cr(ω) waiting
for verification. If one of M (ωk) and T1(ωk) belongs to NB, the data is modified with probability u.

Once receiving any transaction Tx, j(ωk)with j = 1, . . . ,Jk, the PoA-based smart contract on shard r(ωk), denoted
by SCPoA

r(ωk)
, randomly selects a voting panel from all nodes involved in this delivery, VP j(ωk,ω

c
N ) ⊂ ND(ωk).

Suppose VP j(ωk,ω
c
N ) = {N j,1(ωk), . . . ,N j,m(ωk)}, where the size of voting panel m is determined by design. For

each voting, if transaction Tx, j(ωk) only involves good participants, all nodes in voting panel will vote “Accept.”
If transaction Tx, j(ωk) involves any bad node, the good validator will vote “Reject” with probability u and the bad
validators will vote “Accept”. We record detailed voting result v j(ωk) = ((Yj,`(ωk),Signature`)`∈VP(ω,ωc

N ),z j(ωk)),
and the final decision to accept or reject this transaction is based on majority voting,

z j(ωk) = round

(
1
m

m

∑
`=1

Yj,`(ωk)

)
. (5)

Each validator can only process one transaction at a time. Let Fv denote the distribution of each verification
processing time. The processing priority could be based on gas fee. For simplification, we consider the first-come-
first-serve (FCFS) queue here. Thus, the verification for each transaction is based on the outputs from selected
validators (nodes) and we model the PoA based verification process as in a queueing network Qr including nodes
in the shard chain Cr. Thus, the verification time tv, j,`(ωk) includes both waiting and processing times, which
depends on the utilization of each node or validator. Since the VP decision is based on the decisions from all m
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selected validators, the total verification time for transaction Tx, j is,

tv, j(ωk) = max
`=1,...,m

tv, j,`(ωk). (6)

If the final decision z j(ωk) obtained by Equation (5) is “Accept”, one node in voting panel is randomly selected
to generate a shard block B(r)

i (h(r)p ,Tx, j(ωk),v j(ωk)) including transaction and detailed voting records, append it
to the shard chain Cr(ωk). For simplification, we assume the block generation and propagation time are included
in random verification delay tv, j because it tends to dominate the whole verification time. Otherwise, if z j(ωk) is
“Reject”, we stop this delivery ωk and record the corresponding outcome as “Not Finished”, ok = NF .

Then, the shard block header B(r)
i .Header is sent to the PoA-based smart contract SCPOA

0 on root chain for
confirmation. One node is randomly selected from NA to check the transaction hash, generate the the root-block
B(0)(h(0)p ,B(r)

i .Header), append it to the root chain C0 and broadcast the newly generated block to the blockchain
network to reach consensus. We also model the root-chain confirmation process by a FCFS queue network
Q0 including NA authority nodes. Suppose the confirmation processing time for each transaction follows the
distribution FRC. Denote the overall confirmation time as tRC, j, including waiting and processing times.

After the transaction Tx, j(ωk) is confirmed, the transporter T j(ωk) for j = 1, . . . ,Jk will ship the product to
the next stop, and collect the sensor data of storage conditions along the way. We assume a homogeneous random
delay for each shipment time td, j(ωk)∼ Fd . Then, T j(ωk) will send the product to the next transporter T j+1(ωk)
or the patient P(ωk) if it is the last transporter, and generate the transaction Tx, j+1(ωk) including sensor data. The
transaction Tx, j+1(ωk) will be signed and wait for verification and confirmation, which follows the same procedure
described above. After the last transaction Tx,Jk+1(ωk) is verified and confirmed, the delivery D(ωk) is finished
and we record the cycle time of this delivery tc(ωk) = t− t0(ωk), where t is the current system time. If there is
any transaction with modified data for this finished order k, the outcome ok = FC as “Finished Counterfeit” drug;
otherwise, ok = FA as “Finished Authentic” drug. The detailed implementation can be found in Algorithm 1.

3.3.2 Biopharma Supply Chain Performance Measures of Interest

For the biopharma supply chain system with blockchain platform, we are interested in both safety and efficiency.
Here, we consider three system performance measures: (1) expected cycle time for each order tc = E[tc(ω)]; (2)
expected percentage of counterfeited drugs reaching to patients qc = lim

K→∞
E[KFC/KF ]; and (3) expected percentage of

filled (i.e. finished) orders q f = lim
K→∞

E[KF/K], where KFC =∑
K
k=1 I(ok = FC) is the count of “Finished Counterfeit”

drugs and KF = ∑
K
k=1 I(ok = FC/FA) is the count of all “Finished” drugs, I(·) denotes the indicator function.

Suppose we run W replications of simulation. At each w-th replication with w = 1, . . . ,W , we collect the
simulation outputs t(w)c (ωk), o(w)k for k = 1, . . . ,K, we can compute corresponding K(w)

FC and K(w)
F , and the three

measures can be estimated by,

t̂(w)c =
1

KF

K

∑
k=1

t(w)c (ωk)I(ok = FC/FA); q̂(w)c = K(w)
FC /K(w)

F ; q̂(w)f = K(w)
F /K. (7)

We further control the simulation estimation error by taking average over W replications,

t̂c =
1

W

W

∑
w=1

t̂(w)c ; q̂c =
1

W

W

∑
w=1

q̂(w)c ; q̂ f =
1

W

W

∑
w=1

q̂(w)f . (8)

The estimated performance measures can provide insights about the system safety (i.e. q̂c), and system efficiency
and scalability (i.e. t̂c and q̂ f ).

4 EMPIRICAL STUDY ON THE PERFORMANCE OF BLOCKCHAIN PLATFORM DESIGN

Based on the simulation framework described in Section 3.3, we perform the simulation experiments to study the
performance of proposed blockchain design for biopharma supply chain, in terms of both efficiency and security.
Set the total number of nodes to be 1000 with |Nm|= 100, |Nt |= 800, |Np|= 100, |NA|= 100, and evenly allocate
them to all shards. The delivery orders are evenly assigned to all shards. Suppose the number of shipments is
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Algorithm 1: Two Layer Blockchain Platform for Biopharma Supply Chain Risk Management

Input: Node sets NA, NB, N(r)
m , N(r)

t , N(r)
p with r = 1, . . . ,R; inpuinteroperability t models FA, Fv, FRC,

and Fd ; verification panel size m.
Output: t̂c, q̂c, and q̂ f .
Function Verify(ND(ωk), Tx, j(ωk), m):

(A1) Once receiving Tx, j(ωk), the smart contract SCPoA
r(ωk)

on shard r(ωk) randomly selects m nodes
from ND(ωk) as voting panel VP(ωk,ω

c
N )⊂ ND(ωk);

for Each node N j,`(ωk) ∈ VP(ωk,ω
c
N ) do

(A2) SCPoA
r(ωk)

sends Tx, j(ωk) to the validator N j,`(ωk) and wait for the verification;
(A3) After the verification is finished, record the time tv, j,`(ωk)∼ Fv;
if N j,`(ωk) ∈ NB then

Yj,`(ωk) = 1, record in v j(ωk);
else if Tx, j(ωk).Sender ∈ NB or Tx, j(ωk).Receiver ∈ NB then

Yj,`(ωk) =

{
0, with probability (1−u)
1, with probability u

, record in v j(ωk);

else
Yj,`(ωk) = 1, record in v j(ωk);

(A4) Record the decision z j(ωk) by applying Equation (5). Compute the overall verification time
tv, j(ωk) by applying Equation (6). Set the time t = t + tv, j(ωk);

if z j(ωk) == 0 then
(A5) Transaction Tx, j(ωk) not verified. Stop this delivery ωk and set tc(ωk) = ∞, ok = NF ;
return False

else
(A6) Randomly select one node N j,`(ωk) from voting panel to generate a shard-block

B(r)
i (h(r)p ,Tx, j(ωk),v j(ωk)) on shard-chain Cr(ωk);

(A7) Send shard-block header B(r)
i .Header to the smart contract on root chain SCPoA

0 . Randomly
select one node NA(ωk) from global authorities panel NA for confirmation;

(A8) NA(ωk) verifies B(r)
i .Header and generates the root-block B(0)

i′ (h(0)p ,B(r)
i .Header) on C0.

Update the blockchain network state S. Record the confirmation time tRC(ωk)∼ FRC;
for Each Delivery ωk do

(1) Based on FA, generate the order arrival time t = t0(ωk). Specify the set ND(ωk). The manufacturer
M (ωk) creates the bio-drug data and releases the drug product to the first transporter T1(ωk);

(2) M (ωk) and T1(ωk) generate the first transaction Tx,1(ωk), trigger the smart contract SCPoA
r(ωk)

for
verification, and call Verify(ND(ωk), Tx, j(ωk), m);

while j ≤ Jk +1 && Verify(ND(ωk), Tx, j(ωk), m) ! = False do
if j ≤ Jk then

(3) Ship the product to next stop with the shipment time td, j(ωk)∼ Fd . Transporter T j(ωk)
collects the sensor data along the shipment. Update the time t = t + td, j(ωk);

(4) Transporter T j(ωk) sends the product to the next transporter T j+1(ωk) or the patient
P(ωk). T j(ωk) and T j+1(ωk) together generate new transaction Tx, j+1(ωk). Trigger the
smart contracts SCPoA

r(ωk)
and call Verify(ND(ωk), Tx, j+1(ωk), m);

else
(5) End this delivery k, set tc(ωk) = t− t0(ωk), record finished status ok;

(6) Driven by the drug-order interarrival distribution FA, the new arrivals are put into the corresponding
shard queues. Run simulations with runlength K by following the procedure and compute t̂c, q̂c, and q̂ f

as in Equation (8). Repeat it for W replications.
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uniformly distributed between 9 to 19, so that the number of participants involved in each delivery is uniformly
distributed between 10 to 20. We set the percentage of bad nodes p0 = 2.4% with reputation score (1−u) = 0.2
Here, the selection of p0,u and the expected number of transactions in each delivery can lead to the percentage of
counterfeit drugs close to 30% recorded in World Health Organization (WHO) (2006). Assume the inter-arrivals of
orders, verification, and confirmation times of each node follow the exponential distributions, i.e., FA = exp(µA),
Fv = exp(µv) and FRC = exp(µRC), where µA = 10, µv = 9 and µRC = 0.1 are the mean levels. We assume each
shipment time follows gamma distribution, Fd = Γ(3.0,1.0).

We first show the advantage of the two layer blockchain design over the traditional single chain. We compare
the single chain with a two-layer chain with 2 shards and 10 shards under fixed m = 5, and we run simulation
experiments with run-length K = 1000 transactions, after 200 warm-up, and W = 100 replication. We consider
the expected transaction processing throughput, Th = E

[
∑k, j I(Tx, j(ωk).Time ∈ [t, t +1])

]
, which can be estimated

through T̂h = ∑k, j I(Tx, j(ωk).Time ∈ [tstart , tend ])/(tend− tstart) where [tstart , tend ] is the simulation time. Notice that
Tx, j(ωk).Time is the time when transaction Tx, j(ωk) finishes the verification and confirmation, and it is added
into the blockchain network; see Step (A8) in Algorithm 1. Based on the simulation results, the estimated
average throughput for single chain, two-layer chains with 2 and 10 shards are 2.920±0.001, 5.317±0.015, and
24.949±0.124. Since two-layer blockchain processes transactions in parallel, it can provide higher throughput
and the advantage becomes more significant as the number of shards increasing.

When it comes to safety, we consider the two-layer blockchain with 2 shards and voting panel size m = 1,5.
We compare its performance with the cases, including (1) without blockchain and (2) two-layer blockchain with
the perfect information where good validators can identify any modified transaction after verification. In terms
of safety level, q̂c, q̂ f are reported, and we record the false reject rate that is the percentage of authentic drugs
not passing verification, q f r = lim

K→∞
E[KFR/(K−KF)], where KFR = ∑

K
k=1 I [(ωk not modified ) & (ok = NF)] is

the count of false rejected deliveries. We can obtain estimate q̂ f r similarly as q̂c and q̂ f . We run simulations at
each setting with run-length K = 1000 orders, after 200 warm-up, and W = 100 replication, and record the results
in Table 1. Compared with supply chain without blockchain which has around 30% counterfeit drugs delivered
to patients, the percentage of counterfeit drugs reaching to patients decreases dramatically after incorporating the
proposed blockchain. As m increases, the drug safety level increases at the expense of longer verification time.
With uncertain information, the false reject rate also slightly increases since we simply assume voting based on
the expected reputation. In reality, the additional information should be collected through more validations.

Table 1: Simulation results of different blockchain designs.

m Throughput Verification Time Counterfeit Finish Rate False Reject
without blockchain — — — 30.45±0.16% 100±0% —
partial information 1 12.940±0.028 58.685±0.097 0.20±0.02% 68.85±0.15% 8.05±0.10%

5 5.317±0.015 148.010±0.239 0.06±0.01% 69.24±0.13% 8.07±0.09%
perfect information 1 12.946±0.030 59.343±0.097 0±0% 68.30±0.14% 0±0%

5 Conclusions

Built on two-layer blockchain structure in QuarkChain, we introduce a blockchain framework to facilitate the
biopharma supply chain interoperation and risk management to hedge against drug counterfeit, false information
and malicious modification cyberattacks. The state of blockchain network is partitioned based on the geographical
positions of the transactions. Multiple shard chains coordinated by root chain can process the transactions in
parallel, which can significantly increase the blockchain processing throughput and efficiency. Further, driven
the critical challenges in biopharma supply chain, we introduce the preliminary design of root-chain-first and
reputation-based PoA consensus protocol to improve the bio-drug safety. A stochastic simulation approach is
developed to study the effectiveness of the proposed blockchain enabled interoperability framework. The empirical
results indicate that our approach has promising performance to hedge against the cyberattacks and improve the
drug safety and the transaction processing efficiency.
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