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ABSTRACT

Given finite real-world data, input models are estimated with error. Thus, the system performance estimation
uncertainty includes both input and simulation uncertainties. Built on the global sensitivity analysis proposed
by Oakley and O’Hagan, we develop a metamodel-assisted Bayesian framework to quantify the contributions
from simulation and input uncertainties. It further estimates the impact from each source of input uncertainty
and predicts the value of collecting additional input data, which could guide the data collection to efficiently
improve the system response estimation accuracy. The empirical study demonstrates that our approach has
promising performance.

1 INTRODUCTION

When stochastic simulation is used to assess the mean response of complex systems, e.g., the expected
profit of biopharma supply chains, simulation experiments are often driven by multiple input models. Here,
suppose that the parametric families are known and the underlying input parameters are estimated by using
the finite real-world data, which introduces the input model estimation error, called input uncertainty. In
addition, given limited simulation budget, there exists the simulation estimation error. Thus, it is necessary
to quantify the overall estimation uncertainty of system response. Furthermore, it is beneficial to evaluate
the relative contribution from simulation uncertainty and each source of input uncertainty. This can be
used to guide the additional data collection and efficiently improve the system performance estimation.

This study is built on the metamodel-assisted Bayesian framework introduced in our previous work
(Xie et al. 2014). The input uncertainty is quantified by the posterior distribution of input parameters.
The uncertainty of system mean response surface is quantified by the posterior distribution characterized
by a Gaussian process (GP) metamodel. It is used to efficiently propagate the input uncertainty to system
output mean response. Then, given the input and simulation data, the posterior distribution of a compound
random variable can quantify the overall estimation uncertainty of system response.

In this paper, we extend the Bayesian framework proposed in Xie et al. (2014) to facilitate the global
sensitivity analysis. It can estimate the impact of each input uncertainty and further predict the value of
collecting more data from each underlying input model. Here the system response estimation uncertainty
is quantified by variance. Built on functional ANOVA introduced in Oakley and O’Hagan (2004), our
metamodel-assisted variance decomposition and sensitivity analysis can be used to estimate the contribution
from each source of input model estimation uncertainty and simulation uncertainty. We further provide the
approach to assess the value of collecting additional data in terms of improving the system performance
estimation accuracy. Compared with existing methods, e.g., Ng and Chick (2006), Song and Nelson (2015),
our approach demonstrates better performance.

Thus, the contributions of this study can be summarized as follows. First, we propose a fully Bayesian
framework to facilitate the global sensitivity analysis. Differing with the sensitivity analysis approach in
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Oakley and O’Hagan (2004) proposed for deterministic simulation, we consider stochastic simulation and
input uncertainty is quantified by the Bayesian approach. Second, built on the functional ANOVA, we
propose an approximation approach to facilitate and simplify the estimation of impact from each input
uncertainty and the value of collecting additional data. Third, the empirical study indicates that the proposed
framework has the promising performance. It does not rely on the normal assumption on the posterior
distributions of input parameters and also the linear form assumption on the system mean response surface.
These assumptions typically do not hold in many situations when the amount of real-world data is tight,
the input uncertainty is large and the response surface is complex and highly nonlinear.

The paper is organized as follow. Section 2 reviews the related studies in the simulation literature on
uncertainty quantification and sensitivity analysis. Section 3 provides the problem description. Built on Xie
et al. (2014) and Oakley and O’Hagan (2004), we provide a global metamodel-assisted sensitivity analysis
to quantify the the impact of each source of input uncertainty and assess the value of collecting additional
data from each input model in Section 5. We perform the empirical study on an M/M/1/K queue example
and a bio-pharmaceutical inventory management example in Section 6 and conclude in Section 7.

2 BACKGROUND

Borgonovo and Plischke (2016) provide a detailed review on the recent studies on both local and global
sensitivity analysis. In this section, we briefly review related studies, including probabilistic sensitivity
analysis for deterministic computer model, stochastic simulation uncertainty quantification, and sensitivity
analysis in stochastic simulation studying the contribution from each input model.

We focus on the probabilistic sensitivity analysis, which models input distribution and then analyzes
the induced uncertainty in outputs. Among those, variance based methods (Sobol 1993; Wagner 1995)
assess the contribution from each input based on expected reduction in output variance when knowing the
corresponding input with certainty. Functional ANOVA decomposition (Oakley and O’Hagan 2004) of
deterministic input-output mapping can be used to estimate the contribution from each random input. The
variance-based sensitivity measures, i.e., first-order effects and total effects, may fail to sum to the total
variance and adequately deal with interaction effects of inputs. Owen (2014) suggests a new sensitivity
measure, called Shapley value. Song et al. (2016) further analyze this measure and propose a Monte Carlo
algorithm to efficiently estimate Shapley effects.

For stochastic simulation, we can use the posterior distributions quantifying the input uncertainty.
Various approaches are proposed to propagate the input uncertainty to the output, including the direct
simulation approach that runs simulations at posterior samples of input distribution (Chick 2001; Chick
and Ng 2002; Zouaoui and Wilson 2004), and metamodel based approaches that model the mean response
surface as a function of input parameters (Cheng and Holland 2004; Ng and Chick 2006; Barton et al.
2013).

Furthermore, various approaches were proposed to study the contribution from each input model
estimation uncertainty. Freimer and Schruben (2002) propose the analysis of variance (ANOVA) approaches
based on fixed effects model and random effects model. They study the effect of input parameter estimation
uncertainty on the output response by varying the parameter value over the range of its confidence interval
(CI) and suggest where to collect more real-world data. Ng and Chick (2006) approximate input parameter
posterior with asymptotic normal distribution and propagate input uncertainty to output by using first-order
Taylor expansion of response surface. Given a fixed budget, they proposed an optimization approach to
guide the additional data collection so that we can minimize the overall estimation variance. Song and
Nelson (2015) employ a linear regression model on the system response and consider the first two moments
of the input processes as regressors. The bootstrap is used to estimate each source of input uncertainty. They
predict the value of data collection through taking the derivative of system response estimation variance
with respect to the sample size of input data.



Xie, Zhang, and Wang

3 PROBLEM DESCRIPTION

For complex stochastic systems, the system mean response often depends on multiple input models, denoted
by F ≡{F1, . . . ,FL}, which could include models with component-wise and time-serial dependence. Suppose
that the parametric families of input models are known. Thus, F is specified by a finite number of input
parameters, denoted by φφφ ≡

(
φφφ 1, . . . ,φφφ L

)
, where φφφ ` is a d` dimensional vector of parameters for the `-th

input distribution F̀ and φφφ is a d = ∑
L
`=1 d` dimensional vector of parameters. Then, the simulation output

from the r-th replication can be written as

Yr(φφφ) = µ(φφφ)+ εr(φφφ),

where µ(φφφ) = E[Yr(φφφ)] denotes the unknown output mean and εr(φφφ) represents the simulation error with
zero mean. Notice that the simulation output depends on the selection of input parameters.

We are interested in the system mean response at underlying true input models, denoted by µ(φφφ c).
The unknown true input parameters φφφ c are estimated by finite real-world data. Let m` denote the size
of i.i.d. real-world observations from the `-th input model, denoted by X`,m`

≡ {X`,1,X`,2, . . . ,X`,m`
} with

X`,p
i.i.d∼ Fc

` for p = 1,2, . . . ,m`. Let Xm = {X`,m`
, `= 1,2, . . . ,L} be the collection of samples from all L

input models in Fc, where m = (m1,m2, . . . ,mL). The unknown input distributions are estimated from Xm,
and the input uncertainty is quantified by the posterior distribution for the input parameters

p(φφφ |Xm) ∝ p(φφφ)p(Xm|φφφ).

The underlying mean response surface µ(·) is unknown. Without strong prior belief on the true response
surface, a Gaussian process (GP) metamodel is used to model our belief on mean response surface and
the metamodel uncertainty is quantified by the posterior distribution of µ(·). Let ·̃ denote the posterior
sample. Thus, the posterior distribution of the compound random variable µ̃(φ̃φφ) characterizes the overall
estimation uncertainty of mean response µ(φφφ c).

In Xie et al. (2014), we introduced a GP metamodel-assisted Bayesian framework to construct a
percentile credible interval (CrI) quantifying the overall system mean response estimation uncertainty and
further estimate the relative contributions from input and simulation uncertainties. It can be used to guide
running more simulations when the overall uncertainty is too large and the simulation uncertainty dominates
the input uncertainty. However, in the real applications, we could face the situations where the amount of
real-world data is very limited. For example, in the biopharmaceutical manufacturing, we often produce a
few batches of drug substance each year and bio-drugs tend to have short life cycle (say 1.5–3 years). Thus,
it is critically important to quantify the impact of our limited knowledge on each source of uncertainty
impacts on the system performance estimation. Therefore, built on Xie et al. (2014) and Oakley and
O’Hagan (2004), in this paper, we develop a global sensitivity analysis to estimate the impact from each
source of input uncertainty quantified by the posterior p(φφφ `|X`,m`

) and predict the value of collecting
additional data (say ∆m`) from the `-th input model with `= 1,2, . . . ,L.

4 METAMODEL-ASSISTED BAYESIAN UNCERTAINTY QUANTIFICATION

Here, we briefly review the metamodel-assisted Bayesian uncertainty quantification framework proposed in
Xie et al. (2014). Since each simulation run could be computationally expensive, a GP or stochastic kriging
(SK) metamodel is employed to efficiently propagate the input uncertainty to the output. Specifically, the
simulation output from the r-th replication can be modeled as

Yr(φφφ) = β0 +W (φφφ)+ εr(φφφ),

where our belief on the unknown mean response µ(·) is modeled by a GP, M(φφφ)≡ β0 +W (φφφ) with W (φφφ)
representing a mean-zero GP, and the simulation estimation uncertainty is ε(φφφ)∼ N(0,σ2

ε (φφφ)).
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A parametric form of the spatial covariance, denoted by Σ(φφφ ,φφφ ′) = Cov[W (φφφ),W (φφφ ′)] = τ2r(φφφ −φφφ ′),
is typically assumed, where τ2 denotes the variance and r(·) is a correlation function that depends only on
the distance φφφ −φφφ ′. Based on Xie et al. (2010), we use the product-form Gaussian correlation function,

r(φφφ −φφφ ′) = exp
(
−∑

d
j=1 θ j(φ j−φ ′j)

2
)

in the empirical study, where θθθ = (θ1,θ2, . . . ,θd) represents the

correlation parameters. Then, the prior of M(φφφ) can be represented by a Gaussian process M(φφφ) ∼
GP(β0,τ

2r(φφφ −φφφ ′)).
To reduce the uncertainty of our belief on system mean response surface µ(φφφ), we choose an experiment

design consisting of pairs D ≡{(φφφ q,nq),q= 1,2, . . . ,k} at which to run simulations and collect observations,
where (φφφ q,nq) denotes the location and the number of replications, respectively, at the q-th design point.
The simulation outputs at D are YD ≡

{
(Y1(φφφ

q),Y2(φφφ
q), . . . ,Ynq(φφφ

q));q = 1,2, . . . ,k
}

and the sample mean
at design point φφφ q is Ȳ (φφφ q) = ∑

nq
j=1Yj(φφφ

q)/nq. Let the sample means at all k design points be ȲD =

(Ȳ (φφφ 1),Ȳ (φφφ 2), . . . ,Ȳ (φφφ k))T . The simulations at different design points are independent and the variance of
ȲD is represented by a k× k diagonal matrix C = diag

{
σ2

ε (φφφ
1)/n1,σ

2
ε (φφφ

2)/n2, . . . ,σ
2
ε (φφφ

k)/nk
}

.
Let Σ be the k× k spatial covariance matrix of the design points and let Σ(φφφ , ·) be the k× 1 spatial

covariance vector between each design point and a fixed prediction point φφφ . If the parameters (τ2,θθθ ,C)
are known, given all simulation outputs, the metamodel uncertainty can be characterized by a refined GP,

Mp(φφφ)∼ GP(up(φφφ),σ
2
p(φφφ)),

where up(·) is the minimum mean squared error (MSE) linear unbiased predictor

up(φφφ) = β̂0 +Σ(φφφ , ·)>(Σ+C)−1(ȲD − β̂0 ·111), (1)

and the corresponding variance is

σ
2
p(φφφ) = τ

2−Σ(φφφ , ·)>(Σ+C)−1
Σ(φφφ , ·)+ηηη

>[111>(Σ+C)−1111]−1
ηηη , (2)

where β̂0 = [111>(Σ+C)−1111]−1111>(Σ+C)−1ȲD andηηη =111−111>(Σ+C)−1Σ(φφφ , ·) (see Ankenman et al. (2010)).
The unknown parameters (τ2,θθθ) are estimated by MLEs, denoted by (τ̂2,θ̂θθ). The sample variance is used
as an estimate for the simulation variance at design points C. By plugging (τ̂2,θ̂θθ ,Ĉ) into Equations (1)
and (2), we can obtain the estimated mean ûp(φφφ) and variance σ̂2

p(φφφ).
The input uncertainty is quantified by the posterior p(φφφ |Xm) and the metamodel uncertainty is quantified

by the posterior distribution of µ(·) specified by the GP, Mp(φφφ) ∼ GP(up(φφφ),σ
2
p(φφφ)). Thus, given the

input and simulation data Xm and YD , the posterior distribution of the compound random variable Mp(φ̃φφ)
characterizes the overall estimation uncertainty of µ(φφφ c). Xie et al. (2014) proposed a procedure to build
a percentile CrI quantifying the system overall estimation uncertainty as follows.

1. Choose an experiment design D = {(φφφ q,n),q = 1,2, . . . ,k} with design points generated by using
LHD. They are evenly distributed on the smallest ellipsoid covering the most likely posterior samples
from p(φφφ |Xm). The number of replications at all design points is the same.

2. Run simulations at design points to obtain outputs YD . Compute the sample average Ȳ (φφφ q) and
sample variance S2(φφφ q) of the simulation outputs for q= 1,2, . . . ,k. Fit the SK metamodel parameters
(β0,τ

2,θθθ ,C) to obtain ûp(φφφ) and σ̂2
p(φφφ).

3. Generate φ̃φφ
(b)
∼ p(φφφ |Xm) for b = 1,2, . . . ,B. Let µ̂b ≡ ûp(φ̃φφ

(b)
). Draw M̂b ∼N

(
µ̂b, σ̂

2
p(φ̃φφ

(b)
)

)
.

Therefore, the posterior samples {M̂1,M̂2, . . . ,M̂B} of the compound variable Mp(φ̃φφ) with φ̃φφ ∼ p(φφφ |Xm)
and Mp(φφφ)∼ GP(up(φφφ),σ

2
p(φφφ)) quantify the overall system mean response estimation uncertainty.
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Conditional on Xm and YD , the total estimation uncertainty of µ(φφφ c) can be decomposed as

σ
2
T ≡ Var[Mp(φ̃φφ)] = E{Var[Mp(φ̃φφ)|φ̃φφ ]}+Var{E[Mp(φ̃φφ)|φ̃φφ ]}= E[σ2

p(φ̃φφ)]+Var[up(φ̃φφ)], (3)

where σ2
M ≡ E[σ2

p(φ̃φφ)] and σ2
I ≡ Var[mp(φ̃φφ)] quantify the impact from metamodel and input uncertainties.

If σ2
M dominates, we can run more simulations at the promising region that could reduce the metamodel

uncertainty most. If σ2
I dominates, we need to find the key sources of input model estimation uncertainty.

We can estimate each variance component as follows:

• Total variance: σ̂2
T = ∑

B
b=1(M̂b− M̄)2/(B−1), where M̄ = ∑

B
b=1 M̂b/B.

• Input variance: σ̂2
I = ∑

B
b=1(µ̂b− µ̄)2/(B−1), where µ̄ = ∑

B
b=1 µ̂b/B.

• Metamodel variance: σ̂2
M = ∑

B
b=1 σ2

p(φ̃φφ
(b)
)/B.

5 SENSITIVITY ANALYSIS

Motivated by Oakley and O’Hagan (2004), we extend the Bayesian framework proposed in Xie, Nelson,
and Barton (2014) so that it can facilitate the global sensitivity analysis and estimate the value of collecting
additional real-world input data. According to Equation (3), the contribution of input uncertainty is quantified
by σ2

I ≡ Var[up(φφφ)]. In Section 5.1, we conduct the sensitivity analysis to estimate the impact from each
source of input uncertainty characterized by the posterior p(φφφ `|X`,m`

) with ` = 1,2, . . . ,L. It is based on
the functional ANOVA. An approximation approach is proposed to quickly estimate the impact from each
input uncertainty. Then, for each dominant source of input uncertainty, in Section 5.2, we predict the
value of collecting additional data, say ∆m`, which can guide the data collection to efficiently improve the
estimation accuracy of the mean response µ(φφφ c).

5.1 Variance Decomposition

Based on the function ANVOA (Oakley and O’Hagan 2004), we first decompose the function up(·) into

main effects and interactions of the input components. Let µb = up(φ̃φφ
(b)
) with φ̃φφ

(b)
∼ p(φφφ |Xm). Let

U = up(φ̃φφ) with φ̃φφ ∼ p(φφφ |Xm). Then,

µ
b = E(U )+

L

∑
`=1

z`(φ̃φφ
(b)
` )+ ∑

`<p
z`,p(φ̃φφ

(b)
` ,φ̃φφ

(b)
p )+ ∑

`<p<q
z`,p,q(φ̃φφ

(b)
` ,φ̃φφ

(b)
p ,φ̃φφ

(b)
q )+ . . .+ z1,...,d(φ̃φφ

(b)
), (4)

with z`(φ̃φφ
(b)
` ) = E(U |φφφ ` = φ̃φφ

(b)
` )−E(U ), z`,p(φ̃φφ

(b)
` ,φ̃φφ

(b)
p ) = E(U |φφφ ` = φ̃φφ

(b)
` ,φφφ p = φ̃φφ

(b)
p )−E(U )−z`(φ̃φφ

(b)
` )−

zp(φ̃φφ
(b)
p ), E(U ) =

∫
φφφ

up(φφφ)dGφφφ , E(U |φφφ ` = φ̃φφ
(b)
` ) =

∫
φφφ−`

up(φφφ |φφφ ` = φ̃φφ
(b)
` )dGφφφ−` , E(U |φφφ ` = φ̃φφ

(b)
` ,φφφ p =

φ̃φφ
(b)
p ) =

∫
φφφ−`,−p

up(φφφ |φφφ ` = φ̃φφ
(b)
` ,φφφ p = φ̃φφ

(b)
p )dGφφφ−`,−p where Gφφφ is the cumulative distribution function (c.d.f)

of the posterior distribution p(φφφ |Xm); φφφ−` denotes the parameters in φφφ except those for the `-th input
model, Gφφφ−` is the c.d.f of the posterior distribution for φφφ−`, φφφ−`,−p denotes the parameters in φφφ except
those of the `-th and p-th input models, Gφφφ−`,−p is the c.d.f of the posterior distribution for φφφ−`,−p.

Since the main effect usually accounts for almost all the estimation variance of system response in
many real-world systems (Oakley and O’Hagan 2004), we approximate Equation (4) as

µ
b ≈ E(U )+

L

∑
`=1

z`(φ̃φφ
(b)
` ). (5)

Let W`(m`) = Var(z`(φφφ `)|Xm) be the variance contributed by the input uncertainty of parameter φφφ `. Let
G` to be the c.d.f of the posterior distribution p(φφφ `|Xm). Then,

W`(m`) = Var(z`(φφφ `)|Xm) =
∫

φφφ `

z2
`(φφφ `)dG`−

[∫
φφφ `

z`(φφφ `)dG`

]2

=
∫

φφφ `

E(U |φφφ `)
2dG`−E2(U ). (6)
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To facilitate the sensitivity analysis and avoid the complexity required to calculate the integral term∫
φφφ `

E(U |φφφ `)
2dG`, we first approximate E(U |φφφ `) in Equation (6) by the first order Taylor’s expansion at

the maximum a posterior (MAP) estimate of p(φφφ `|Xm), denoted by φ̂φφ `

E(U |φφφ `)≈ α`+γγγ
>
` φφφ `, (7)

where

γγγ` =
∂E(U |φφφ ` = φφφ `)

∂φφφ `

∣∣∣∣
φφφ `=φ̂φφ l

=
∫

φφφ−`

∂up(φφφ |φφφ ` = φφφ `)

∂φφφ `

∣∣∣∣
φφφ `=φ̂φφ `

dGφφφ−` , (8)

and α` = E(U |φφφ ` = φ̂φφ `)−γγγ>` φ̂φφ `. Then, by plugging (7) into Equation (6), the impact from the `-th input
uncertainty can be estimated by

W`(m`)≈ (α2
` −E2(U ))+2α`

d`

∑
i=1

γ`,iE(φ`,i|Xm)+
d`

∑
i=1

d`

∑
j=1

γ`,iγ`, jE(φ`,iφ`, j|Xm), (9)

where γ`,i is the i-th element in γγγ` and φ`,i is the i-th parameter in φφφ ` for i = 1, . . . ,d`, E(φ`,i|Xm) and
E(φ`,iφ`, j|Xm) are the posterior mean and cross-moment of the parameters φφφ `.

Then, we present a quick way to approximate the posterior moments in Equation (9). Let g(·) be
a smooth, positive function. Set L(φφφ `) = [log(p(Xm|φφφ `))+ log(p(φφφ `))]/m` and L?(φφφ `) = [log(g(φφφ `))+
log(p(Xm|φφφ `)) + log(p(φφφ `))] /m`. The studies in Tierney and Kadane (1986), Tierney et al. (1989)
proposed accurate approximations of the posterior mean of any function g(φφφ `),

Ê(g(φφφ `)|Xm) =

(
|Ω?|
|Ω|

)1/2

exp
(

m`(L?(φ̂φφ
?

`)−L(φ̂φφ `))
)
,

where the posterior modes φ̂φφ ` and φ̂φφ
?

` maximize L(φφφ `) and L?(φφφ `) correspondingly, Ω and Ω? are the
negative of inverse Hessian matrices of L(φφφ `) and L?(φφφ `) at φ̂φφ ` and φ̂φφ

?

` . For Equation (9), the function g(·)
is φ`,i or φ`,iφ`, j.

Then, we calculate γγγ` by applying (8). Since up(φφφ) = β̂0 +Σ(φφφ , ·)>(Σ+C)−1(ȲD − β̂0 ·111), we can
calculate the derivative,

∂up(φφφ |φφφ ` = φφφ `)

∂φφφ `
=

∂Σ(φφφ , ·)>

∂φφφ `
(Σ+C)−1(ȲD − β̂0 ·111).

For the Gaussian correlation function r(φφφ−φφφ ′) = exp
(
−∑

d
j=1 θ j(φ j−φ ′j)

2
)

used in the empirical study, we

have ∂Σ(φφφ ,·)>
∂φφφ `

is a d`×k matrix with the (i,q)−th element, τ2 exp
(
−∑

d
j=1 θ j(φ j−φ

q
j )

2
)(
−2θ`,i(φ`,i−φ

q
`,i)
)
.

Let ggg`(φφφ−`) =
∂up(φφφ |φφφ `=φφφ `)

∂φφφ `

∣∣∣
φφφ `=φ̂φφ `

to be a d` dimensional vector. Then, γγγ`, E(U ) and α` in Equation (9)

can be estimated by

γ̂γγ` =
1
B

B

∑
b=1

ggg`(φ̃φφ
(b)
−`), Ê(U ) =

1
B

B

∑
b=1

up(φ̃φφ
(b)
), α̂` =

1
B

B

∑
b=1

up(φφφ ` = φ̂φφ `,φφφ−` = φ̃φφ
(b)
−`)− γ̂γγ

>
` φ̂φφ `.

By plugging these estimates γ̂γγ`, α̂`, and Ê(U ) into Equation (9), we can estimate the contribution of the
`-th input model estimation uncertainty,

Ŵ`(m`) = (α̂2
` − Ê

2
(U ))+2α̂`

d`

∑
i=1

γ̂`,iÊ(φ`,i|Xm)+
d`

∑
i=1

d`

∑
j=1

γ̂`,iγ̂`, j(Ê(φ`,iφ`, j|Xm)), (10)
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where Ê(φ`,i|Xm) =
(
|Ω?|
|Ω|

)1/2
exp
(

m`(L?(φ̂φφ
?

`)−L(φ̂φφ `))
)

with L(φφφ `) = [log(p(Xm|φφφ `))+ log(p(φφφ `))]/m`

and L?(φφφ `) = [log(φ`,i)+ log(p(Xm|φφφ `))+ log(p(φφφ `))]/m`, φ̂φφ ` and φ̂φφ
?

` maximize L(φφφ `) and L?(φφφ `) respec-
tively, Ω and Ω? are the negative of the inverse Hessian matrices correspondingly.

For most commonly used input distributions with conjugate prior (e.g., exponential family), there are ana-

lytical solutions to φ̂φφ `, φ̂φφ
?

` , Ω and Ω?. Similarly, Ê(φ`,iφ`, j|Xm) =
(
|Ω?|
|Ω|

)1/2
exp
(

m`(L?(φ̂φφ
?

`)−L(φ̂φφ `))
)

with
L(φφφ `) = [log(p(Xm|φφφ `))+ log(p(φφφ `))]/m` and L?(φφφ `) = [log(φ`,iφ`, j)+ log(p(Xm|φφφ `))+ log(p(φφφ `))]/m`.

5.2 Value of Additional Data

We estimate the relative contribution from each input uncertainty by Ŵ`(m`) for `= 1,2, . . . ,L. It is beneficial
to quantify the system response estimation variance reduced by collecting additional data from each input
model, say Fc

` , which we refer to the value of more data. Suppose ∆m` additional data are collected
from Fc

` . Then, the new input uncertainty Ŵ`(m`+∆m`) can be estimated according to Equation (10), by
replacing the corresponding posterior means with

Ê(g(φφφ `)|Xm) =

(
|Ω?|
|Ω|

)1/2

exp
(
(m`+∆m`)(L?(φ̂φφ

?

`)−L(φ̂φφ `))
)
,

where L(φφφ `) =
log(p(Xm|φφφ `))

m`
+ log(p(φφφ `))

m`+∆m`
, L?(φφφ `) =

log(p(Xm|φφφ `))
m`

+ log(p(φφφ `))+log(g(φφφ `))
m`+∆m`

, and all other terms are
unchanged. Thus, we can estimate the value of collecting ∆m` additional data from F̀ with `= 1,2, . . . ,L,

∆Ŵ`(∆m`) = Ŵ`(m`)−Ŵ`(m`+∆m`). (11)

The value ∆Ŵ`(∆m`) for ` = 1, . . . ,L can guide the decision making to efficiently reduce the impact of
input uncertainty, while accounting for the cost of additional data collection.

6 EMPIRICAL STUDY

In this section, we study an M/M/1/K example and compare the proposed approach with those introduced
in Ng and Chick (2006) and Song and Nelson (2015). Then, we use a bio-pharmaceutical inventory problem
with five products including multivariate input models to study the performance of our approach.

6.1 An M/M/1/K Queueing Example

We consider an M/M/1/K queueing example with capacity K = 20. To evaluate the performance of our
approach, suppose that the true arrival and service rates λ c = 4 and νc = 5 are unknown, and they are estimated
from the real-world data Xm. We use the conjugate priors p(λ ) = Gamma(1,1) and p(ν) = Gamma(1,1).
We are interested in the expected waiting time, which has the closed form solution when the arrival and
service rates are known (Sztrik, János 2012). For an M/M/1/K queue with utilization rate ρ = λ/ν , the
expected waiting time is µ = N

λ (1−PK)
− 1

ν
, where PK = ρK

∑
K
i=0 ρ i is the probability of K customer in queue.

Suppose the amount of real-world data for inter-arrival and service times is the same. There are three
factors impacting on the system response estimation variance: (1) the size of input data m; (2) the number
of design points used to construct the GP metamodel; and (3) the number of replications at each design
point. We set the size of real-world data m = 50,100,500, the number of design points k = 20,80, and the
number of replications n = 10,100. We set the same replications at all design points. At each replication,
the run length is 100 with the warm up as 100 in term of number of customers.

We first consider the ratio of σ̂2
I /σ̂2

M which measures the relative contribution from input uncertainty
compared with the metamodel uncertainty. We report the average of ratios obtained from 100 macro-
replications in Table 1. The input uncertainty has dominant impact on the total variance.
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Table 1: Ratio between input and metamodel variance.

σ̂2
I /σ̂2

M m = 50 m = 100 m = 500

n = 10
k = 20 19.764 8.285 3.017
k = 80 42.150 17.603 8.536

n = 100
k = 20 33.427 12.969 5.382
k = 80 76.590 25.587 9.305

Since the input uncertainty has the dominant impact, we study the contribution from each input model
and evaluate the robustness of approximations introduced in Equations (5) and (9). The first metric is the

relative absolute difference between the input variance σ̂2
I with ∑

L
`=1Ŵ`(m`), defined by Err= |σ̂2

I −∑
L
`=1 Ŵ`(m`)|
σ̂2

I
.

We compare the proposed input variance decomposition with that in Ng and Chick (2006) and Song and
Nelson (2015). Ng and Chick (2006) considered the local linear metamodel of system mean response.
The metamodel uncertainty is quantified by the posterior distribution. Song and Nelson (2015) proposed
a linear metamodel for first two moments of each input model. To compare these approaches, we use the
same design points and run the same number of replications. Table 2 records the average Err obtained
from 100 macro-replications. Our method provides the better estimation accuracy on σ2

I .

Table 2: Approximation error of input uncertainty for the M/M/1/K example.

Err Our Method Ng (2006) Song (2015)
m = 50 0.287 0.360 0.443

m = 100 0.206 0.248 0.291
m = 500 0.094 0.109 0.122

We then estimate the contribution from each input model. Since there is the closed form of the system
mean response (Sztrik, János 2012), we estimate the true component-wise input variance W c

` (m`) for `= 1,2
according to Equation (6), where the integrations are estimated by using B = 1000 posterior samples of
input parameters. We use the sample variance of B responses to estimate W c

` (m`). The average of the

absolute relative error RelativeError = |Ŵ`(m`)−W c
` (m`)|

W c
` (m`)

estimated by using 100 macro-replications is reported
in Table 3. Our method provides more accurate estimation for the relative contribution from each source
of input uncertainty.

Table 3: Relative error of each input model uncertainty.

W1 (Arrival) Our Method Ng (2006) Song (2015)
m = 50 0.195 0.288 0.304

m = 100 0.147 0.190 0.203
m = 500 0.127 0.141 0.158

W2 (Service) Our Method Ng (2006) Song (2015)
m = 50 0.221 0.318 0.373

m = 100 0.160 0.192 0.209
m = 500 0.142 0.155 0.170

Finally, we study the value of additional data on reducing the input uncertainty. The value of collecting
∆m additional data from Fc

` can be estimated from Equation (11) as ∆Ŵ`(∆m) for `= 1,2. To evaluate the
performance, we first get the component-wise variance W c

` (m) based on the posterior p(φφφ |Xm). Then, we
generate ∆m additional data from the true input model Fc

` . Denote the updated dataset and posterior as
Xm+∆m and p(φφφ |Xm+∆m). Then, we can estimate the new component-wise variance W c

` (m+∆m). Thus,
∆W c

` (∆m) =W c
` (m)−W c

` (m+∆m)measures the value of additional ∆m data. We record the average absolute
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error of |∆Ŵ`(∆m)−∆W c
` (∆m)| obtained from 100 macro-replications in Table 4. We set ∆m = 10,50 when

m = 50,100 and ∆m = 50,100 when m = 500. Our method provides more accurate estimate for the value
of additional data.

Table 4: Estimation error of value of additional ∆m data.

Error of ∆Ŵ1(∆m) (Arrival) Our Method Ng (2006) Song (2015)

m = 50
∆m = 10 0.016 0.025 0.033
∆m = 50 0.079 0.104 0.137

m = 100
∆m = 10 5.9E-03 6.6E-03 7.4E-03
∆m = 50 0.041 0.05 0.066

m = 500
∆m = 50 3.8E-03 4.8E-03 5.7E-03
∆m = 100 0.011 0.014 0.021

Error of ∆Ŵ2(∆m) (Service) Our Method Ng (2006) Song (2015)

m = 50
∆m = 10 0.023 0.034 0.041
∆m = 50 0.087 0.116 0.150

m = 100
∆m = 10 6.4E-3 7.1E-3 7.7E-3
∆m = 50 0.055 0.064 0.078

m = 500
∆m = 50 5.1E-3 5.8E-3 6.2E-3
∆m = 100 0.018 0.025 0.032

6.2 A Biopharmaceutical Inventory Example

Here, we use the bio-pharmaceutical inventory control example to evaluate the performance of our approach.
Suppose there are 3 drugs. For each drug, the inventory is kept to meet the customer demand and we use
the (R,Q) ordering policy. If the inventory position is less than the reorder point R, Q units of drugs are
ordered. Both customer demand and delivery lead time from supplier for each drug are random. There are
L = 5 input models with d = 10 parameters.

The demands for drugs 1 and 2 are dependent, following a multivariate normal distribution
N ((µ1,µ2)

>,VVV ) with µ1 = 50,µ2 = 100, v11 = 20,v12 = v21 = 10,v22 = 40. The demand for drug 3
follows N (µ3,v3) with µ3 = 100 and v3 = 10. The lead time for drug i follow by Pois(λi) with
λ1 = 0.5,λ2 = 1,λ3 = 2. The parameters are estimated from finite “real-world data.” Based on Gel-
man et al. (2004), for the multivariate normal, we use the conjugate Normal-Inverse-Wishart prior with
VVV ∼ Inverse-Wishart(v0,Λ

−1
0 ) and (µ1,µ2)|VVV ∼N (µµµ0,VVV/κ0), where v0 = 1,κ0 = 0.01,µµµ0 = (0,0)> and

Λ0 is a 2× 2 diagonal matrix with the diagonal term to be 0.01. For the normal distribution, we use
the conjugate Normal-Inverse-Gamma prior with v3 ∼ Inverse-Gamma(1/2,1/2) and µ3|v3 ∼N (0,v3/κ0)
where κ0 = 0.01. For Poisson distributions, we use the conjugate Gamma prior λi ∼ Gamma(1,1) for
i = 1,2,3.

The inventory policy for the 3 drugs is R = (100,100,150) and Q = (200,200,300) respectively. We are
interested in the expected total inventory for the 3 drugs. According to Jensen and Bard (2003), suppose Ri
and Qi are the reorder point and order quantity for drug i, then the expected inventory level Ii =

Qi
2 +Ri−µiTi

where µi is the average demand of drug i during each time period and Ti is the expected delivery delay.
Thus, in our problem, the expected total inventory is a nonlinear function of input parameters. We presume
it to be unknown and estimate from simulations. We use m = 50,100,500 data for each input model F̀
with ` = 1, . . . ,L to obtain the posterior distribution for the input parameters, select k = 50,100 design
points, and run n = 10,100 replications at each design point. At each replication, the run length is 100
and the warm up period is also 100. We report average ratio of σ̂2

I /σ̂2
M from 100 macro-replications in

Table 5. The input uncertainty dominates the metamodel uncertainty.
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Table 5: Ratio of input and metamodel uncertainties.

σ̂2
I /σ̂2

M m = 50 m = 100 m = 500

n = 10
k = 50 16.653 8.280 2.954
k = 100 29.702 13.498 6.623

n = 100
k = 50 19.625 8.591 3.162
k = 100 36.735 14.293 7.440

Similar with Table 2, we report the approximation error of the total input variance, with Err1 =
|σ̂2

I −∑
L
`=1 W`|

σ̂2
I

,
for the bio-pharmaceutical inventory control example. We use n = 100 and k = 100. The results in Table 6
are obtained based on 100 macro-replications. Our method can better approximate the total input variance.

Table 6: Approximation error of the input variance.

Err1 Our Method Ng (2006) Song (2015)
m = 50 0.315 0.394 0.470

m = 100 0.247 0.296 0.331
m = 500 0.120 0.148 0.166

We evaluate the estimation accuracy of the impact from the `-th input model, Ŵ`(m) for `= 1, . . . ,5.

Since there are 5 components, we consider the average estimation error Err2 =
1
L ∑

L
`=1

|Ŵ`(m)−W c
` (m)|

W c
` (m) . We

estimate the mean response by side experiment. We record the results of Err2 obtained from 100 macro-
replications in Table 7. Our method can provide the better estimation of the impact from each input
uncertainty. In addition, we evaluate the value of collecting additional ∆m data and record the average
absolute error of |∆Ŵ`(∆m)−∆W c

` (∆m)| in Table 8 for `= 1, . . . ,5.

Table 7: Average error of estimated component-wise input variance.

Err2 Our Method Ng (2006) Song (2015)
m = 50 0.208 0.257 0.314

m = 100 0.173 0.202 0.238
m = 500 0.149 0.164 0.173

7 CONCLUSIONS

Built on the functional ANOVA introduced by Oakley and O’Hagan (2004), we extend the metamodel-
assisted Bayesian framework proposed in Xie et al. (2014) for global sensitivity analysis that can quantify
the impact of each input model estimation uncertainty. Then, we estimate the value of collecting additional
data from each input model, which could be used to guide the data collection and efficiently improve the
system performance estimation accuracy. The empirical study on an M/M/1/K queue and a biopharma
inventory example demonstrates the efficiency and efficacy of proposed approach.
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Error of ∆Ŵ1(∆m) (Drug 1,2 Demand) Our Method Ng (2006) Song (2015)

m = 50
∆m = 10 0.429 0.548 0.637
∆m = 50 1.872 2.470 3.105

m = 100
∆m = 10 0.157 0.193 0.248
∆m = 50 0.790 0.922 1.145

m = 500
∆m = 50 0.104 0.119 0.136
∆m = 100 0.413 0.458 0.504
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