Web Applications

Spring MVC

Agile J2EE: Where do we want to go?

Need to be able to produce high quality
applications, faster and at lower cost

Need to be able to cope with changing
requirements
Waterfall is no longer an option

Need to simplify the programming model

Need to reduce complexity rather than rely
on tools to hide it

...but must keep the power of the J2EE platform

2/18/2009

Agile J2EE: Why is this important?

Java™ technology/J2EE is facing challenges
at the low end

NET
PHP
Ruby

Concerns from high end clients (banking in
particular) that J2EE development is slow
and expensive

Complacency is dangerous

Agile J2EE: Aren’t we there yet?

Problems with traditional J2EE architecture. ..

Difficult to test traditionally architected J2EE apps
EJBs depend heavily on the runtime framework,
making them relatively hard to author and test

Simply too much code
Pet Store as an example
Much of that code is mundane “glue” code

Heavyweight runtime environment

Components need to be explicitly deployed
to be able to run, even for testing

Slow change-deploy-test cycle

2/18/2009

Lightweight Containers

Frameworks are central to modern J2EE
development
Many projects encounter the same problems
Service location
Consistent exception handling
Parameterizing application code...
J2EE “out of the box” does not provide a
complete (or ideal) programming model
Result: many in-house frameworks
Expensive to maintain and develop
Better to share experience across many projects

Open Source Frameworks

Responsible for much innovation in last 2-3 years
Flourishing open source is one of the great strengths
of the Java platform

Successful projects are driven by actual common

problems to be solved

Ideally placed to learn from collective developer
experience

Several products aim to simplify the development
experience and remove excessive complexity
from the developer’s view

2/18/2009

The Spring Framework

Open source project
Apache 2.0 license
21 developers
Interface21 lead development effort, with seven

committers (and counting), including the two
project leads

Aims
Simplify J2EE development
Provide a comprehensive solution to developing
applications built on POJOs

Provide services for applications ranging from simple
web apps up to large financial/“enterprise” applications

Who is using Spring?

Spring is widely used in many industries,
including...
Banking

Transactional Web applications, message-driven middleware
Retail and investment banking

Scientific research

Defence

A growing number of Fortune 500 companies
High volume Web sites

Significant enterprise usage, not merely
adventurous early adopters

2/18/2009

Portlet g
MVC Remoting
ORM Web
AOP — JMX JCA IMS [—
MVC
DAO Context
Core

The Spring Framework Is composed of several well-defined modules built on top of the

core container. This modularity makes it possible to use as much or as little of the Spring

Framework as Is needed In a particular application.

Spring MVC

* We will focus on Spring MVC

2/18/2009

2/18/2009

Web Framework

- Web applications have become a very important part of any enterprise
system.

- The key requirement for a web framework is to simplify development of the
web tier as much as possible.

- In this lecture, you will learn how to develop web applications using Spring.

- We will start with an explanation of Spring MVC architecture and the
request cycle of Spring web applications, introducing handler mappings,
interceptors, and controllers.

- Then we will discuss how we can use different technologies to render HTML
in the browser.

- Before we dive into a discussion of Spring MVC, let us review MVC.

MVC Architecture

* MVC is the acronym for the model view controller architectural pattern.

» The purpose of this pattern is to simplify the implementation of applications that need to
act on user requests and manipulate and display data.

» There are three distinct components of this pattern:

— The model represents data that the user expects to see. In most cases, the model
will consist of JavaBeans.

— The view is responsible for rendering the model. A view component in a text editor
will probably display the text in appropriate formatting; in a web application, it will, in
most cases, generate HTML output that the client’s browser can interpret.

— The controller is a piece of logic that is responsible for processing and acting on
user requests: it builds an appropriate model and passes it to the view for rendering

» Inthe case of Java web applications, the controller is usually a servlet. Of course, the
controller can be implemented in any language a web container can execute.

Model 1 Architecture

/-WebIAppiication Server-—-\

——1. Reques}—t JSP
+—4. Response —

| — Service

i Facade

|

Browser 2. Use 3. Service call
— '
— |
E}j JavaBeans Data Stores
\. B
Web/Application Ser\rer—\ .
(_ Service
- Fagade
1. Request i Controller 2. Create
— =
| Model: 'Service call
Browser 5.Forward to =
JavaBeans -
View (JSP,
k- 6.Response Velocity, etc.) 4. Use

2/18/2009

Spring MVC

+ Spring MVC support allows us to build flexible applications using
MVC model two.

 The implementation is truly generic.
— The model is a simple Map that holds the data;
— the view is an interface whose implementations render the data;
— the controller is an implementation of the Controller interface.

Benefits of the Spring Web MVC Framework

Easier testing. The fact that most of Spring's classes are designed as JavaBeans enables you to inject test data
using the setter methods of these classes. Spring also provides mock classes to simulate Java HTTP objects
(HitpServletRequest, for example) which makes unit testing of the web layer much simpler

Bind directly to business objects Spring MVC does not require your business (model) classes to extend any
special classes; this enables you to reuse your business objects by binding them directly to the HTML form fields
Clear separation of roles Spring MVC nicely separates the roles played by the various components that make up
this web framework.

Adaptable controllers If your application does not require an HTML form, you can write a simpler version of a
Spring controller that does need all the extra components required for form controllers.

Simple but powerful tag library Spring's tag library is small, straightforward, but powerful.

Web Flow This module is a subproject and is not bundled with the Spring core distribution. It is built on top of
Spring MVC and adds the capability to easily write wizard like web applications that span across several HTTP
requests.

View technologies and web frameworks Although we are using JSP as our view technology, Spring supports
other view technologies as well, such as Apache Velocity (jakarta.apache.org/velocity/) and FreeMarker
(freemarker.org).

Lighter-weight environment. Spring enables you to build enterprise-ready applications using POJOs; the
environment setup can be simpler and less expensive because you could develop and deploy your application
using a lighter-weight servlet container.

2/18/2009

uses ---4 DispaicherServiet I
¥
HandlerMapping I dispatches ViewResolver -resolves
maps request —| Controller forwards —— View
Creates reads
ModelAndView
retrieves |
manipulates stores

DispatcherServlet

At the heart of Spring MVC is DispatcherServlet, a servlet that functions as Spring MVC'’s front
controller. Like any servlet, DispatcherServlet must be configured in your web application’s
web.xml file. Place the following <servlet> declaration in your application’s web.xml file;

<servlet>
<servlet-name>roadrantz</servlet-name>
<servlet-class>org.springframework.web.servlet.DispatcherServlet
</servlet-class>

</serviet>

This servlet processes requests and invokes appropriate Controller elements to handle them

The DispatcherServlet intercepts incoming requests and determines which controller will
handle the request.

2/18/2009

ModelAndView

* The Spring controllers return a ModelAndView class
from their handling methods.

* The ModelAndView instance holds a reference to a
view and a model.

» The model is a simple Map instance that holds
JavaBeans that the View interface is going to render.

» The View interface defines the render method.

* It follows that the View implementation can be virtually
anything that can be interpreted by the client.

MVC Implementation

To create a web application with Spring, we need to start with the basic
web.xml file, where we specify the DispatcherServlet and set the
mapping for the specified url-pattern

[P Untitlad - Notepad
File Edit Format View Help
<serviet>
<servlet-name>dispatcher</servlet-name>
<servlet-class>org.springframework.web.servlet.Dispatcherserviet</servlet-class>
<load-on-startup>2</load-on-startup>
</serviet>
<serviet-mapping>
<servlet-name>dispatcher</servlet-name>
<url-pattern>*.htm</url-pattern>
</servlet-mapping>|

2/18/2009

10

Why .htm URL-Pattern?

It could be because all of the content produced by our application is HTML.
It could also be because we want to fool our friends into thinking that our
entire application is composed of static HTML files. And it could be that we
think .do is a silly extension.

But the truth of the matter is that the URL pattern is somewhat arbitrary and
we could’ve chosen any URL pattern for DispatcherServlet.

Our main reason for choosing *.htm is that this pattern is the one used by
convention in most Spring MVC applications that produce HTML content.
The reasoning behind this convention is that the content being produced is
HTML and so the URL should reflect that fact.

/= 15.4 inch laptop, like new, 2.0GHz dual core etc. - Windows Internet Explorer E|E|[g\
@ ﬁ v @ hitpiifboston.craigslist orgfabsisys/ 1036286761 hitml } ol [#2 | X [ve search B |[2]-
w o ‘@ 15.4 inch laptap, like new, 2.0GHz dual core efc. | M- B o [rrage v {FTeds v T
r A
boston craigslist > boston/camb/brook > computers & tech email this posting to a friend
Avoid scams and fraud by dealing locally! Beware any deal involving Westem Union, Moneygram, wire transfer, please flag with care:
cashier check, money order, shipping, escrow, or any promise of transaction protection/certification/guarantee. More
> miscategorized
a % prohibited
15.4 inch laptop, like new, 2.0GHz dual core etc. - $500 ‘
spam/overpost
best of craigslist
Reply to- sale-1038286761 @craigskist org © seloLomgE
Date: 2009-02-17, 10:36AM EST
Gateway laptop, like-new condition and very fast. Excellent battery life for its class; 2.5-3.5 hours, depending on settings. I will
reset it to factory settings with the system restore disk. All manuals and the charger included.
Windows Vista
15 4 inch screen
2 0GHz dual core Pentium (Intel Core 2 Duo T5750 Dual Core Mobile Processor)
3Gb of RAM
160 Gigabyte hard drive
can deliver/meet up in the boston metro area ~
L3 € mernet H 100 v

2/18/2009

11

Using Handler Mappings

* How does our web application know which
servlet (controller implementation) to invoke?

* This is where Spring handler mappings kick in.
In a few easy steps, you can configure URL
mappings to Spring controllers.

* All you need to do is edit the Spring
application context file.

Spring uses HandlerMapping implementations to identify the controller to invoke and provides
three implementations of HandlerMapping, as shown below.

All three HandlerMapping implementations extend the AbstractHandlerMapping base class.

99% of users will be using BeanNameUrlHandlerMapping or SimpleUrlHandlerMapping.

HandlerMapping

Description

BeanNameUr IHandlerMapping

SimpleUrlHandlerMapping

ControllerClassNameHandlerMapping

The bean name is identified by the URL. If the URL

were /product/index.html, the controller bean ID that
handles this mapping would have to be set to /product/
index.html. This mapping is useful for small applications,
as it does not support wildcards in the requests.

This handler mapping allows you to specify in the
requests (using full names and wildcards) which
controller is going to handle the request.

This handler mapping is part of the convenience over
configuration approach introduced with Spring 2.5. It
automatically generates URL paths from the class names
of the controllers.

2/18/2009

12

1. BeanNameUrlHandlerMapping

We will start with the example of BeanNameUrlHandlerMapping. This is the simple
HandlerMapping implementation that maps controller bean IDs to the servlet URLs.
This HandlerMapping implementation is used by default if no HandlerMapping is
defined in the Spring context files.

Oftentimes you'll find yourself mapping your controllers to URL patterns that are quite similar to
the class names of the controllers.

The URL pattern is the same as the name of the controller class, dropping the Controller portion
and adding .htm. It seems that with a pattern like that it would be possible to assume a certain
default for the mappings and not require explicit mappings.

In fact, that's roughly what ControllerClassNameHandlerMapping does:

<bean id="urlMapping" class="org.springframework.web.servlet. mvc.ControllerClassNameHandlerMapping"/>

By configuring ControllerClassNameHandlerMapping, you are telling Spring’s DispatcherServlet to

map URL patterns to controllers following a simple convention. Instead of explicitly mapping each
controller to a URL pattern, Spring will automatically map controllers to URL patterns that are
based on the controller’s class name.

BeanNameUrlHandlerMapping example

Write the controller class that performs the logic behind the
page.

Configure the controller in the DispatcherServlet's context
configuration file.

Configure a view resolver to tie the controller to the JSP.

Write the JSP that will render the page to the user.

2/18/2009

13

€12 vusufController java x|

BE-E-ATFE PR (g e H |4

1 package com.yusuf; Alw

2

5[] import javax.servlet.http.Hutp3ervletRequest:

4 | import javax.servlet.http.Hutp3ervletResponse:

§ | import org.springframevork.wsh.servlet.ModelindView;

6 | import org.springframevork.weh.servlet.mve.ibstractController: |

2

& | import java.ucil.HashMap:

9 | import java.util.Map:

10 b impore java.uril.Date;

1

1z public class YusufController extends bstractController { |

13

14 public YusufController(] {

15 3

18

(6] protected ModelindView handl Internal (Http3ervietR t request, HttpdervletResponse response) throws Exc

bE] ¢

13 Map model = ney HashMap():

n model.put ("Greecing”, "Hello World");

z1 model.put ("Zerver time”, new Date()):

22 return new ModeldndView("index", "message”, model);

23 ¥ | =

" .
2

[15 dispatcher-servistom x|

BE-H QTSR FE(EN 00 v¥ P

1 <?xml version="1.0" encoding="UTF-8"2> ~

2[] <beans smlns="hrtp://wrm. springframevork.org/schena/beans”

3 HInS ®S1="hEtp:/ /W, wE . org/ 2001/ ENLSc hema- inatance”

4 xmlns:p="hrop://wuv.springframevork.org/schema/p"

s xmlns:aop="http://wuw.springframevork. org/ schemal/aop”

3 SMInS :Ex="HUEY ! ¢/ UVE . SPringTramewark. org/ sehema) Ty

7 xsiischemalosation="http:/ /v, apringframenork. org/ achema/heans http://ww. Springframework. ory/ sohema/ beans/ 5

& hetp://www.springframevork.org/schema/aop http://wow. springframevork. org/schema/aop/spring-aop-z.5. xad

9 http://wow.springframevork. org/schema/tx http://www. springframevork.org/ schema/ tk/spring-tx-2. 5. xsd">

10

11 <bean id="beanlamelr 1HandlerMapping” ©lass="org.springframework.veh.serviet. handler . BeantameUr 1Hand lerMapping™/ >

12 <bean name="/index.htm” class='"com.yusuf.VusufController™s

13 </pean>

14

155 <bean id="viewResolver” class="ory.sSpringframevork.weh.serviet.view. InternalResourceVienResolver™s

16 <property neme="prefix":

17 <valueb/WEB-INF/3sp/</value>

18 </property>

19 <property names"Surffix:

Eil <valuer.jsp</valuer

21 </property>

2z «/bean> =

23 - </peans> -
<] 5

2/18/2009

14

@\ndex P ox

LEE

BE-8- Q53 fe% &% o

1 <jsp:useBean id="nmessage” Cype="java.ubil.Hashliap” scope="reguest” fx]
z

3 <htrl:

4 <hody bgoolor="pink”s

3 User: <%= messags 5>

3 </body>

7 </ htmls -
g ~
%1 |ms]

= http:HMlocalhost: BOB4/mvc1findex. him - Windows Internet Explorer

O

+ [hitpsflocalhost a0a4mect findes bim o #2)[x] [u

——

e

W |@http:ﬂflocalhost:SDB4ﬂmvc1Iindex.htm | ‘ IR o= v | Page ~ () Tooks -

{Greeting=Hello World, Server time=Tue Feb 17 20:21:28 EST 2009}

Dane

[€ Internet 100%

2/18/2009

15

1. The first stop in the request’s travels is Spring’s DispatcherServlet. Like most Java-based MVC frameworks, Spring
MVC funnels requests through a single front controller servlet. A front controller is a common web-application
pattern where a single servlet delegates responsibility for a request to other components of an application to
perform the actual processing. In the case of Spring MVC, DispatcherServlet is the front controller.

2. The DispatcherServlet's job is to send the request on to a Spring MVC controller. A controller is a Spring
component that processes the request. But a typical application may have several controllers and
DispatcherServlet needs help deciding which controller to send the request to. So, the DispatcherServlet
consults one or more handler mappings to figure out where the request’s next stop will be. The handler mapping
will pay particular attention to the URL carried by the request when making its decision.

3. Once an appropriate controller has been chosen, DispatcherServlet sends the request on its merry way to the
chosen controller. At the controller, the request will drop off its payload (the information submitted by the user)
and patiently wait for the controller to process that information. (Actually, a well-designed Controller performs little
or no processing itself and instead delegates responsibility for the business logic to one or more service objects.)

4. So, the last thing that the controller will do is package up the model data and the name of a view into a
ModelAndView object. E It then sends the request, along with its new ModelAndView parcel, back to the
DispatcherServlet. As its name implies, the ModelAndView object contains both the model data as well as a hint
to what view should render the results.

5. So that the controller isn’t coupled to a particular view, the ModelAndView doesn’t carry a reference to the actual
JSP. Instead it only carries a logical name that will be used to look up the actual view that will produce the
resulting HTML. Once the ModelAndView is delivered to the DispatcherServiet, the DispatcherServiet asks a
view resolver to help find the actual JSP.

6. Now that the DispatcherServlet knows which view will render the results, the request’s job is almost over. Its final
stop is at the view implementation (probably a JSP) where it delivers the model data. With the model data
delivered to the view, the request’s job is done. The view will use the model data to render a page that will be
carried back to the browser by the (not-so-hard-working) response object.

The request will make several stops from the time that it
leaves the browser until the time that it returns a response.

Handler
Mapping
Request @ Dispatcher "| Controller
e e T N
o ViewResolver
View

A request Is dispatched by Dispatcherservlet toa
controller (which Is chosen through a handler mapping). Once the
controller Is finlshed, the request Is then sent to a view (which Is
chosen through a viewResolver) to render output.

2/18/2009

16

2. SimpleUrlHandlerMapping

+ SimpleUrlHandlerMapping offers more flexibility in the request
mappings.

* You can configure the mapping as key/value properties in the
publicUrlMapping bean.

» Asimple example of a Spring application context file containing the
handler mapping configuration is on the next slide.

(2 depatcher-sarvist.xml x| KN

BPEB-B- Q3SR LR 9% 08 v¥ &

<bean id="simpleUrlMapping” class="org.springframework.veb.servlet.handler.SimpleUrlHandlerMapping”>
<property name="mappings":
£ <props:
<prop key="/homes.htm”>homeController</prop>
<prop key="/cars.honrcarController</prop>
<prop key="/books.htm">bookController</prop>
o </propss
e </propercy>
r </bean>

<hean name="homeController”
class="org. springframevork.web.servlet.mve. ParameterizablevievController™
prvievNames"homesPage" />

<bean name="carController'"
class="org. springframevork.web. servliet.wve. ParameterizableVievConcroller ™
prviewName="carsPage” />

<hesn nawe="hookController”
class="org. springframevork.web.servlet.mve. ParameterizablevievController™
prviewName="booksPage" />

<hean id="viewResolver”
class="org. springframevork.web.servlet.viev. InternalPesourceViewResolver”
piprefix="/VEE-INF/jsp/"
prsuffix=".jsp” />

= </beans>

2/18/2009

17

3. ControllerClassNameHandlerMapping

» Oftentimes you'll find yourself mapping your controllers to URL patterns that are
quite similar to the class names of the controllers.

* For example, mapping
— rantForVehicle.htm to RantsForVehicleController
— rantsForDay.htm to RantsForDayController.
* Notice a pattern?
— Inthose cases, the URL pattern is the same as the name of the controller
class, dropping the Controller portion and adding .htm.
* |t seems that with a pattern like that it would be possible to assume a certain default
for the mappings and not require explicit mappings

In fact, that’s roughly what ControllerClassNameHandlerMapping does:

<bean id="classNameHandlerMapping*
class="org.springframework.web.servlet. mvc.ControllerClassNameHandlerMapping*
/>

By configuring ControllerClassNameHandlerMapping, you are telling Spring’s
DispatcherServlet to map URL patterns to controllers following a simple convention. Instead
of explicitly mapping each controller to a URL pattern, Spring will automatically map
controllers to URL patterns that are based on the controller’s class name.

» Put simply, to produce the URL pattern, the Controller portion of the controller’s class name
is removed (if it exists), the remaining text is lowercased, a slash (/) is added to the
beginning, and ".htm" is added to the end to produce the URL pattern.

» Consequently, a controller bean whose class is RantsForVehicle-Controller will be mapped
to /rantsforvehicle.htm. Notice that the entire URL pattern is lowercased, which is slightly
different from the convention we were following with SimpleUrHandlerMapping.

2/18/2009

18

[tais

1 roadrantz omve. RantsForVehicleControl ler
ControllerclassNameHandler -
Mapping maps a request to a controller by
stripping Controller from the end of the
/rantsforvehicle.htm class name and normalizing it to lowercase,

Spring Controllers

Controllers do all the work to process the request, build the model based on the request, and pass the
model to the view for rendering.

Spring's DispatcherServlet intercepts the requests from the client and uses a HandlerAdapter
implementation that is responsible for delegating the request for further processing.

You can implement the HandlerAdapter yourself, allowing you to modify the chain of command the
request must pass through.

Spring provides many types of controllers. This can be both good and bad. The good thing is that you
have a variety of controllers to choose from, but that also happens to be the bad part because it can be
a bit confusing at first about which one to use.

The best way to decide which controller type to use probably is by knowing what type of functionality
you need. For example,

— do your screens contain a form?
— Do you need wizardlike functionality?
— Do you just want to redirect to a JSP page and have no controller at all?
These are the types of questions you will need to ask yourself to help you narrow down the choices.

2/18/2009

19

Class diagram showing a partial list of Spring controllers

<< interfaces >

|
IA.b stractiriView Controller I |Basecomrrw=dthntmﬂer | |Param eterizableViewController,

|IJrIFiIenameVieannlmllerI

lnbmaﬁFomﬁommﬂer | 1Mstraﬁoammndcantmﬂer ‘

SimpleFormController |.4t-strac!W.izardFormGanrmﬂer |

|
Ican:ellab[eFormcnntrollerl

Spring MVC's selection of controller classes.

Controller type Classes

Useful when...

View ParameterizableViewController
UrlFilenameViewController

Your controller only needs to dis-
play a static view—no processing
or data retrieval is needed.

Simple Controller (interface) Your controller is extremely simple,
AbstractController requiring little more functionality
than is afforded by basic Java serv-
lets.
Throwaway ThrowawayController You want a simple way to handle

requests as commands (in a man-
ner similar to WebWaork
Lctions).

Multiaction MultiActionController

Your application has several
actions that perform similar or
related logic.

Command BaseCommandController
AbstractCommandController

Your controller will accept one or
more parameters from the request
and bind them to an object. Also
capable of performing parameter
validation.

Form AbstractFormController
SimpleFormController

You need to display an entry form
to the user and also process the
data entered into the form.

Wizard AbstractWizardFormController

You want to walk your user through
a complex, multipage entry form
that ultimately gets processed as
a single form.

2/18/2009

20

Interceptors

* Interceptors are closely related to mappings, as

you can specify a list of interceptors that will be
called for each mapping.

Handlerinterceptor implementations can process
each request before or after it has been
processed by the appropriate controller.

You can choose to implement the
HandlerInterceptor interface or extend
HandlerinterceptorAdapter, which provides
default donothing implementations for all
HandlerInterceptor methods.

As an example, we are going to implement a
BigBrotherHandlerInterceptor that will process each request.

public class BigBrotherHandlerInterceptor extends HandlerInterceptorAdapter

{

public void postHandle(HttpServletRequest request, HttpServietResponse

}

response, Object handler, ModelAndView modelAndView) throws Exception

Il process the request

}

* The actual implementation of such an interceptor would

probably process the request parameters and store them in
an audit log.

2/18/2009

21

To use the interceptor, we will create a URL mapping and interceptor
bean definitions in the Spring application context file as shown below

<bean id="bigBrotherHandlerInterceptor* class="com.apress.prospring2.ch17.web.BigBrotherHandlerInterceptor"/>
<bean id="publicUrlMapping" class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">
<property name="interceptors">
<list>
<ref local="bigBrotherHandlerlnterceptor"/>
<list>
</property>
<property name="mappings">
<value>
findex.html=indexController
Iproduct/index.html=productController
Iproduct/view.html=productController
Iproduct/edit.html=productFormController
</value>
</property>
</bean>

View Resolvers

» AViewResolver is a strategy interface that Spring MVC uses to look
up and instantiate an appropriate view based on its name and locale.

* There are various view resolvers that all implement the ViewResolver
interface’s single method: View resolveViewName(String viewName,
Locale locale) throws Exception.

« This allows your applications to be much easier to maintain. The
locale parameter suggests that the ViewResolver can return views
for different client locales, which is indeed the case

2/18/2009

22

ViewResolver Implementations

Implementation

Description

BeanNameViewResolver

ResourceBundleViewResolver

UrlBasedViewResolver

XmlViewResolver

This simple ViewResolver implementation will try to get the View
as a bean configured in the application context. This resolver
may be useful for small applications, where you do not want to
create another file that holds the view definitions. However, this
resolver has several limitations; the most annoying one is that
you have to configure the views as Spring beans in the applica-
tion context. Also, it does not support internationalization.

This resolver is far more complex. The view definitions are kept
in a separate configuration file, so you do not have to configure
the View beans in the application context file. This resolver sup-
ports internationalization.

This resolver instantiates the appropriate view based on the
URL, which can configure the URL with prefixes and suf-
fixes. This resolver gives you maore control over views than
BeanNameViewResolver but can become difficult to manage in
a large application and does not support internationalization.

This view resolver is similar to ResourceBundleViewResolver, as
the view definitions are kept in a separate file. Unfortunately, this
resolver does not support internationalization.

Choosing a View Resolver

Many projects rely on JSP (or some other template language) to render the view results.

Assuming that your application isn’t internationalized or that you won't need to display a completely
different view based on a user’s locale, we recommend InternalResourceViewResolver because it is
simply and tersely defined (as opposed to the other view resolvers that require you to explicitly define

each view).

If, however, your views will be rendered using a custom View implementation (e.g., RSS, PDF, Excel,
images, etc.), you'll need to consider one of the other view resolvers.

We favor BeanNameViewResolver and XmiFileViewResolver over ResourceBundleViewResolver
because they let you define your View beans in a Spring context configuration XML file.

By defining the View in a Spring application context, you're able to configure it using the same syntax as
you use for the other components in your application.

Given the choice between BeanNameViewResolver and XmiFileViewResolver, I'd settle on
BeanNameViewResolver only when you have a handful of View beans that would not significantly
increase the size of DispatcherServlet's context file.

If the view resolver is managing a large number of View objects, I'd choose XmliFileViewResolver to
separate the View bean definitions into a separate file. In the rare case that you must render a
completely different view depending on a user’s locale, you have no choice but to use

ResourceBundleViewResolver.

2/18/2009

23

Spring and Other Web Technologies

In the previous sections, we used JSP pages to generate output that is sent to the client's browser
for rendering.

We could naturally build the entire application using just JSP pages, but the application and JSP
pages would probably become too complex to manage.

Even though JSP pages are very powerful, they can present a considerable processing overhead.

Because Spring MVC fully decouples the view from the logic, the JSP pages should not contain
any Java scriptlets.

Even if this is the case, the JSP pages still need to be compiled, which is a lengthy operation, and
their runtime performance is sometimes not as good as we would like.

The Velocity templating engine from Apache (we might discuss in the next lectures) is a viable
alternative, offering much faster rendering times while not restricting the developer too much.

In addition to Velocity, we might explore the Tiles framework, which allows you to organize the
output generated by the controllers into separate components that can be assembled together
using a master template. This greatly simplifies the visual design of the application, and any
changes to the overall layout of the output can be made very quickly with fewer coding mistakes
and easier code management.

Spring Web Flow

* Almost every web application developer nowadays must
have been confronted with the requirement to limit the
user’s navigational freedom and guide the user through a
series of consecutive pages in a specific way for a business
process to be completed.

* |f you haven't had to implement such a process yourself
yet, you have certainly participated in one the last time you
placed an order with your favorite online retailer or booked
a flight online.

2/18/2009

24

Basic flowchart of a simplified version of such an airline ticket booking process

At the beginning, the user can search for flights until she has picked a suitable one. So far,
the process is pretty straightforward. However, by confirming her flight selection, she enters a more
complex booking process involving a set of steps that all need to be completed successfully before
the selected flight can be booked. In our simple example, the user will have to enter her personal
details correctly before she is asked to provide the airline with payment details. Once those details
have been accepted, a final confirmation is requested before the tickets are booked, and the user
can finally start looking forward to visiting her travel destination.

)

) — — — —— — e— e
/A\A@arch fights)es seleclﬂ\gr‘@r{unhrm se\ecu@»{.{nter personal detal}f;@ter payrnentdetan}t@ﬁrm book@—{{BDOKED)
i S s - — g e

This is a very simple example, but we're sure you get the idea.

Page sequences like this and more complex conversations usually require some sort of state
management. HTTP is a stateless protocol, meaning that each request is completely
independent of previous or later requests. Information is passed on through request parameters
or session attributes. Achieving stateful navigational control spanning a sequence of pages in a
stateless environment can be quite cumbersome.

There are other situations that can also cause problems in a web application.

What if a user in the example flow entered the postal code of his old address in the personal
details form, but only realized it after submitting his entries? Even if a link to the previous page is
provided, many users will just click the Back button to go back. Theoretically, this should prompt
the browser to display the last page purely retrieved from its own cache, but in practice, all
browsers implement their own strategies. Some browsers even reload data from the server.
Surely a web application should behave the same with all browsers; and especially in a way that
the web developer can predict.

Another situation of concern is related to a user moving through the pages in the other direction.
By knowing the correct URLs and the parameters that these URLs expect, a user can
theoretically hop from one stage of a process to another while leaving out other stages in
between.

In our ticket booking example, we would want to make sure the user can't take an illegal
shortcut and just skip, say, the page for entering payment details.

2/18/2009

25

Another Common Problem

* To mention a last common problem in web applications,
think of a situation where a page seems to hang after you
click a link or submit a form. Instead of just waiting in front
of the screen, most of us would probably press the refresh
button. The undesirable state this can lead to, especially if
your last request was a POST request, is known as the
double-submit problem.

* When you were just posting a comment for a blog, the
worst thing that could happen was to post the same
comment twice.

* People might think you’re an impatient user; but now
imagine if your last post had nothing to do with a blog but
was a confirmation to take money out of your account.
How painful could that be?

why do we list all these problems?

2/18/2009

26

2/18/2009

Web Flow

* In the next lecture, we will start a Spring
module that offers solutions to all of them.

* Spring Web Flow is a controller framework for
implementing page flows in web applications
that are based on MVC frameworks like Spring
MVC, Struts, or JSF.

Summary

 J2EE development can and should be simpler
— Priorities include testability and simplified API
— Should move to a POJO model
— Lightweight containers make this reality today!

« Spring is the leading lightweight container
— Robust and mature
— Makes J2EE development much simpler
— Does not mean sacrificing the power of the J2EE platform

27

