
2/18/2009

1

Web Applications

Spring MVC

Agile J2EE: Where do we want to go?

2/18/2009

2

Agile J2EE: Why is this important?

Agile J2EE: Aren’t we there yet?

2/18/2009

3

Lightweight Containers

Open Source Frameworks

2/18/2009

4

The Spring Framework

Who is using Spring?

2/18/2009

5

Spring MVC

• We will focus on Spring MVC

2/18/2009

6

Web Framework

- Web applications have become a very important part of any enterprise

system.

- The key requirement for a web framework is to simplify development of the

web tier as much as possible.

- In this lecture, you will learn how to develop web applications using Spring.

- We will start with an explanation of Spring MVC architecture and the

request cycle of Spring web applications, introducing handler mappings,

interceptors, and controllers.

- Then we will discuss how we can use different technologies to render HTML

in the browser.

- Before we dive into a discussion of Spring MVC, let us review MVC.

MVC Architecture

• MVC is the acronym for the model view controller architectural pattern.

• The purpose of this pattern is to simplify the implementation of applications that need to

act on user requests and manipulate and display data.

• There are three distinct components of this pattern:

– The model represents data that the user expects to see. In most cases, the model

will consist of JavaBeans.

– The view is responsible for rendering the model. A view component in a text editor

will probably display the text in appropriate formatting; in a web application, it will, in

most cases, generate HTML output that the client’s browser can interpret.

– The controller is a piece of logic that is responsible for processing and acting on

user requests: it builds an appropriate model and passes it to the view for rendering

• In the case of Java web applications, the controller is usually a servlet. Of course, the

controller can be implemented in any language a web container can execute.

2/18/2009

7

Model 1 Architecture

Model 2 Architecture

2/18/2009

8

Spring MVC

• Spring MVC support allows us to build flexible applications using

MVC model two.

• The implementation is truly generic.

– The model is a simple Map that holds the data;

– the view is an interface whose implementations render the data;

– the controller is an implementation of the Controller interface.

Benefits of the Spring Web MVC Framework

• Easier testing. The fact that most of Spring's classes are designed as JavaBeans enables you to inject test data

using the setter methods of these classes. Spring also provides mock classes to simulate Java HTTP objects

(HttpServletRequest, for example) which makes unit testing of the web layer much simpler

• Bind directly to business objects Spring MVC does not require your business (model) classes to extend any

special classes; this enables you to reuse your business objects by binding them directly to the HTML form fields

• Clear separation of roles Spring MVC nicely separates the roles played by the various components that make up

this web framework.

• Adaptable controllers If your application does not require an HTML form, you can write a simpler version of a

Spring controller that does need all the extra components required for form controllers.

• Simple but powerful tag library Spring's tag library is small, straightforward, but powerful.

• Web Flow This module is a subproject and is not bundled with the Spring core distribution. It is built on top of

Spring MVC and adds the capability to easily write wizard like web applications that span across several HTTP

requests.

• View technologies and web frameworks Although we are using JSP as our view technology, Spring supports

other view technologies as well, such as Apache Velocity (jakarta.apache.org/velocity/) and FreeMarker

(freemarker.org).

• Lighter-weight environment. Spring enables you to build enterprise-ready applications using POJOs; the

environment setup can be simpler and less expensive because you could develop and deploy your application

using a lighter-weight servlet container.

2/18/2009

9

DispatcherServlet

• At the heart of Spring MVC is DispatcherServlet, a servlet that functions as Spring MVC’s front

controller. Like any servlet, DispatcherServlet must be configured in your web application’s

web.xml file. Place the following <servlet> declaration in your application’s web.xml file:

<servlet>

<servlet-name>roadrantz</servlet-name>

<servlet-class>org.springframework.web.servlet.DispatcherServlet

</servlet-class>

</servlet>

• This servlet processes requests and invokes appropriate Controller elements to handle them

• The DispatcherServlet intercepts incoming requests and determines which controller will

handle the request.

2/18/2009

10

ModelAndView

• The Spring controllers return a ModelAndView class
from their handling methods.

• The ModelAndView instance holds a reference to a
view and a model.

• The model is a simple Map instance that holds
JavaBeans that the View interface is going to render.

• The View interface defines the render method.

• It follows that the View implementation can be virtually
anything that can be interpreted by the client.

MVC Implementation
To create a web application with Spring, we need to start with the basic

web.xml file, where we specify the DispatcherServlet and set the

mapping for the specified url-pattern

2/18/2009

11

Why .htm URL-Pattern?

• It could be because all of the content produced by our application is HTML.

It could also be because we want to fool our friends into thinking that our

entire application is composed of static HTML files. And it could be that we

think .do is a silly extension.

• But the truth of the matter is that the URL pattern is somewhat arbitrary and

we could’ve chosen any URL pattern for DispatcherServlet.

• Our main reason for choosing *.htm is that this pattern is the one used by

convention in most Spring MVC applications that produce HTML content.

• The reasoning behind this convention is that the content being produced is

HTML and so the URL should reflect that fact.

2/18/2009

12

Using Handler Mappings

• How does our web application know which
servlet (controller implementation) to invoke?

• This is where Spring handler mappings kick in.
In a few easy steps, you can configure URL
mappings to Spring controllers.

• All you need to do is edit the Spring
application context file.

Spring uses HandlerMapping implementations to identify the controller to invoke and provides

three implementations of HandlerMapping, as shown below.

All three HandlerMapping implementations extend the AbstractHandlerMapping base class.

99% of users will be using BeanNameUrlHandlerMapping or SimpleUrlHandlerMapping.

2/18/2009

13

1. BeanNameUrlHandlerMapping

• We will start with the example of BeanNameUrlHandlerMapping. This is the simple

HandlerMapping implementation that maps controller bean IDs to the servlet URLs.

• This HandlerMapping implementation is used by default if no HandlerMapping is

defined in the Spring context files.

• Oftentimes you’ll find yourself mapping your controllers to URL patterns that are quite similar to

the class names of the controllers.

• The URL pattern is the same as the name of the controller class, dropping the Controller portion

and adding .htm. It seems that with a pattern like that it would be possible to assume a certain

default for the mappings and not require explicit mappings.

• In fact, that’s roughly what ControllerClassNameHandlerMapping does:

<bean id="urlMapping" class="org.springframework.web.servlet.mvc.ControllerClassNameHandlerMapping"/>

By configuring ControllerClassNameHandlerMapping, you are telling Spring’s DispatcherServlet to

map URL patterns to controllers following a simple convention. Instead of explicitly mapping each

controller to a URL pattern, Spring will automatically map controllers to URL patterns that are

based on the controller’s class name.

BeanNameUrlHandlerMapping example

• Write the controller class that performs the logic behind the

page.

• Configure the controller in the DispatcherServlet’s context

configuration file.

• Configure a view resolver to tie the controller to the JSP.

• Write the JSP that will render the page to the user.

2/18/2009

14

2/18/2009

15

2/18/2009

16

1. The first stop in the request’s travels is Spring’s DispatcherServlet. Like most Java-based MVC frameworks, Spring

MVC funnels requests through a single front controller servlet. A front controller is a common web-application

pattern where a single servlet delegates responsibility for a request to other components of an application to

perform the actual processing. In the case of Spring MVC, DispatcherServlet is the front controller.

2. The DispatcherServlet’s job is to send the request on to a Spring MVC controller. A controller is a Spring

component that processes the request. But a typical application may have several controllers and

DispatcherServlet needs help deciding which controller to send the request to. So, the DispatcherServlet

consults one or more handler mappings to figure out where the request’s next stop will be. The handler mapping

will pay particular attention to the URL carried by the request when making its decision.

3. Once an appropriate controller has been chosen, DispatcherServlet sends the request on its merry way to the

chosen controller. At the controller, the request will drop off its payload (the information submitted by the user)

and patiently wait for the controller to process that information. (Actually, a well-designed Controller performs little

or no processing itself and instead delegates responsibility for the business logic to one or more service objects.)

4. So, the last thing that the controller will do is package up the model data and the name of a view into a

ModelAndView object. E It then sends the request, along with its new ModelAndView parcel, back to the

DispatcherServlet. As its name implies, the ModelAndView object contains both the model data as well as a hint

to what view should render the results.

5. So that the controller isn’t coupled to a particular view, the ModelAndView doesn’t carry a reference to the actual

JSP. Instead it only carries a logical name that will be used to look up the actual view that will produce the

resulting HTML. Once the ModelAndView is delivered to the DispatcherServlet, the DispatcherServlet asks a

view resolver to help find the actual JSP.

6. Now that the DispatcherServlet knows which view will render the results, the request’s job is almost over. Its final

stop is at the view implementation (probably a JSP) where it delivers the model data. With the model data

delivered to the view, the request’s job is done. The view will use the model data to render a page that will be

carried back to the browser by the (not-so-hard-working) response object.

The request will make several stops from the time that it

leaves the browser until the time that it returns a response.

2/18/2009

17

2. SimpleUrlHandlerMapping

• SimpleUrlHandlerMapping offers more flexibility in the request

mappings.

• You can configure the mapping as key/value properties in the

publicUrlMapping bean.

• A simple example of a Spring application context file containing the

handler mapping configuration is on the next slide.

2/18/2009

18

3. ControllerClassNameHandlerMapping

• Oftentimes you’ll find yourself mapping your controllers to URL patterns that are

quite similar to the class names of the controllers.

• For example, mapping

– rantForVehicle.htm to RantsForVehicleController

– rantsForDay.htm to RantsForDayController.

• Notice a pattern?

– In those cases, the URL pattern is the same as the name of the controller

class, dropping the Controller portion and adding .htm.

• It seems that with a pattern like that it would be possible to assume a certain default

for the mappings and not require explicit mappings

In fact, that’s roughly what ControllerClassNameHandlerMapping does:

<bean id=“classNameHandlerMapping“

class="org.springframework.web.servlet.mvc.ControllerClassNameHandlerMapping“

/>

• By configuring ControllerClassNameHandlerMapping, you are telling Spring’s

DispatcherServlet to map URL patterns to controllers following a simple convention. Instead

of explicitly mapping each controller to a URL pattern, Spring will automatically map

controllers to URL patterns that are based on the controller’s class name.

• Put simply, to produce the URL pattern, the Controller portion of the controller’s class name

is removed (if it exists), the remaining text is lowercased, a slash (/) is added to the

beginning, and ".htm" is added to the end to produce the URL pattern.

• Consequently, a controller bean whose class is RantsForVehicle-Controller will be mapped

to /rantsforvehicle.htm. Notice that the entire URL pattern is lowercased, which is slightly

different from the convention we were following with SimpleUrlHandlerMapping.

2/18/2009

19

Spring Controllers

• Controllers do all the work to process the request, build the model based on the request, and pass the

model to the view for rendering.

• Spring’s DispatcherServlet intercepts the requests from the client and uses a HandlerAdapter

implementation that is responsible for delegating the request for further processing.

• You can implement the HandlerAdapter yourself, allowing you to modify the chain of command the

request must pass through.

• Spring provides many types of controllers. This can be both good and bad. The good thing is that you

have a variety of controllers to choose from, but that also happens to be the bad part because it can be

a bit confusing at first about which one to use.

• The best way to decide which controller type to use probably is by knowing what type of functionality

you need. For example,

– do your screens contain a form?

– Do you need wizardlike functionality?

– Do you just want to redirect to a JSP page and have no controller at all?

• These are the types of questions you will need to ask yourself to help you narrow down the choices.

2/18/2009

20

Class diagram showing a partial list of Spring controllers

2/18/2009

21

Interceptors

• Interceptors are closely related to mappings, as
you can specify a list of interceptors that will be
called for each mapping.

• HandlerInterceptor implementations can process
each request before or after it has been
processed by the appropriate controller.

• You can choose to implement the
HandlerInterceptor interface or extend
HandlerInterceptorAdapter, which provides
default donothing implementations for all
HandlerInterceptor methods.

As an example, we are going to implement a

BigBrotherHandlerInterceptor that will process each request.

public class BigBrotherHandlerInterceptor extends HandlerInterceptorAdapter

{

public void postHandle(HttpServletRequest request, HttpServletResponse
response, Object handler, ModelAndView modelAndView) throws Exception
{

// process the request

}

}

• The actual implementation of such an interceptor would
probably process the request parameters and store them in
an audit log.

2/18/2009

22

To use the interceptor, we will create a URL mapping and interceptor

bean definitions in the Spring application context file as shown below

<bean id="bigBrotherHandlerInterceptor“ class="com.apress.prospring2.ch17.web.BigBrotherHandlerInterceptor"/>

<bean id="publicUrlMapping“ class="org.springframework.web.servlet.handler.SimpleUrlHandlerMapping">

<property name="interceptors">

<list>

<ref local="bigBrotherHandlerInterceptor"/>

</list>

</property>

<property name="mappings">

<value>

/index.html=indexController

/product/index.html=productController

/product/view.html=productController

/product/edit.html=productFormController

</value>

</property>

</bean>

View Resolvers

• A ViewResolver is a strategy interface that Spring MVC uses to look

up and instantiate an appropriate view based on its name and locale.

• There are various view resolvers that all implement the ViewResolver

interface’s single method: View resolveViewName(String viewName,

Locale locale) throws Exception.

• This allows your applications to be much easier to maintain. The

locale parameter suggests that the ViewResolver can return views

for different client locales, which is indeed the case

2/18/2009

23

ViewResolver Implementations

Choosing a View Resolver

• Many projects rely on JSP (or some other template language) to render the view results.

• Assuming that your application isn’t internationalized or that you won’t need to display a completely

different view based on a user’s locale, we recommend InternalResourceViewResolver because it is

simply and tersely defined (as opposed to the other view resolvers that require you to explicitly define

each view).

• If, however, your views will be rendered using a custom View implementation (e.g., RSS, PDF, Excel,

images, etc.), you’ll need to consider one of the other view resolvers.

• We favor BeanNameViewResolver and XmlFileViewResolver over ResourceBundleViewResolver

because they let you define your View beans in a Spring context configuration XML file.

• By defining the View in a Spring application context, you’re able to configure it using the same syntax as

you use for the other components in your application.

• Given the choice between BeanNameViewResolver and XmlFileViewResolver, I’d settle on

BeanNameViewResolver only when you have a handful of View beans that would not significantly

increase the size of DispatcherServlet’s context file.

• If the view resolver is managing a large number of View objects, I’d choose XmlFileViewResolver to

separate the View bean definitions into a separate file. In the rare case that you must render a

completely different view depending on a user’s locale, you have no choice but to use

ResourceBundleViewResolver.

2/18/2009

24

Spring and Other Web Technologies

• In the previous sections, we used JSP pages to generate output that is sent to the client’s browser

for rendering.

• We could naturally build the entire application using just JSP pages, but the application and JSP

pages would probably become too complex to manage.

• Even though JSP pages are very powerful, they can present a considerable processing overhead.

• Because Spring MVC fully decouples the view from the logic, the JSP pages should not contain

any Java scriptlets.

• Even if this is the case, the JSP pages still need to be compiled, which is a lengthy operation, and

their runtime performance is sometimes not as good as we would like.

• The Velocity templating engine from Apache (we might discuss in the next lectures) is a viable

alternative, offering much faster rendering times while not restricting the developer too much.

• In addition to Velocity, we might explore the Tiles framework, which allows you to organize the

output generated by the controllers into separate components that can be assembled together

using a master template. This greatly simplifies the visual design of the application, and any

changes to the overall layout of the output can be made very quickly with fewer coding mistakes

and easier code management.

Spring Web Flow

• Almost every web application developer nowadays must

have been confronted with the requirement to limit the

user’s navigational freedom and guide the user through a

series of consecutive pages in a specific way for a business

process to be completed.

• If you haven’t had to implement such a process yourself

yet, you have certainly participated in one the last time you

placed an order with your favorite online retailer or booked

a flight online.

2/18/2009

25

Basic flowchart of a simplified version of such an airline ticket booking process

• This is a very simple example, but we’re sure you get the idea.

• Page sequences like this and more complex conversations usually require some sort of state

management. HTTP is a stateless protocol, meaning that each request is completely

independent of previous or later requests. Information is passed on through request parameters

or session attributes. Achieving stateful navigational control spanning a sequence of pages in a

stateless environment can be quite cumbersome.

• There are other situations that can also cause problems in a web application.

• What if a user in the example flow entered the postal code of his old address in the personal

details form, but only realized it after submitting his entries? Even if a link to the previous page is

provided, many users will just click the Back button to go back. Theoretically, this should prompt

the browser to display the last page purely retrieved from its own cache, but in practice, all

browsers implement their own strategies. Some browsers even reload data from the server.

Surely a web application should behave the same with all browsers; and especially in a way that

the web developer can predict.

• Another situation of concern is related to a user moving through the pages in the other direction.

By knowing the correct URLs and the parameters that these URLs expect, a user can

theoretically hop from one stage of a process to another while leaving out other stages in

between.

• In our ticket booking example, we would want to make sure the user can’t take an illegal

shortcut and just skip, say, the page for entering payment details.

2/18/2009

26

Another Common Problem

• To mention a last common problem in web applications,
think of a situation where a page seems to hang after you
click a link or submit a form. Instead of just waiting in front
of the screen, most of us would probably press the refresh
button. The undesirable state this can lead to, especially if
your last request was a POST request, is known as the
double-submit problem.

• When you were just posting a comment for a blog, the
worst thing that could happen was to post the same
comment twice.

• People might think you’re an impatient user; but now
imagine if your last post had nothing to do with a blog but
was a confirmation to take money out of your account.
How painful could that be?

why do we list all these problems?

2/18/2009

27

Web Flow

• In the next lecture, we will start a Spring

module that offers solutions to all of them.

• Spring Web Flow is a controller framework for

implementing page flows in web applications

that are based on MVC frameworks like Spring

MVC, Struts, or JSF.

Summary

• J2EE development can and should be simpler

– Priorities include testability and simplified API

– Should move to a POJO model

– Lightweight containers make this reality today!

• Spring is the leading lightweight container

– Robust and mature

– Makes J2EE development much simpler

– Does not mean sacrificing the power of the J2EE platform

