
P4-based In-Network Telemetry for FPGAs in the
Open Cloud Testbed and FABRIC

Sandeep Bal†, Zhaoyang Han∗, Suranga Handagala‡, Mert Cevik§ Michael Zink†, Miriam Leeser∗
Northeastern University ∗, University of Massachusetts Amherst †

Email: ∗zhhan,mel@coe.neu.edu, †sbal,mzink@umass.edu, ‡s.handagala@northeastern.edu, §mcevik@renci.org

Abstract—In recent years, Field Programmable Gate Arrays
(FPGAs) have gained prominence in cloud computing data
centers, driven by their capacity to offload compute-intensive
tasks and contribute to the ongoing trend of data center dis-
aggregation, as well as their ability to be directly connected to
the network. While FPGAs offer numerous advantages, they also
pose challenges in terms of configuration, programmability, and
monitoring, particularly in the absence of an operating system
with essential features like the TCP/IP networking stack. This
paper introduces an In-band Network Telemetry (INT) approach
based on the P4 language for FPGA data plane programming.
The goal is to facilitate monitoring and network performance
analysis by providing one-way packet delay information. The
approach is demonstrated in the Open Cloud Testbed (OCT)
and FABRIC testbeds, both offering open access to the research
community with greater FPGA availability than commercial
clouds. The workflow enables researchers to create custom
P4 programs and bitstreams for installation on FPGAs. The
paper presents a multi-step approach allowing experimentation
within the New England Research Cloud (NERC), testing in
OCT, and final deployment in FABRIC, well-suited for one-way
delay measurements due to synchronized clocks via GPS time
signals. Contributions include the provision of a P4 workflow
for FPGAs in a research cloud, a novel FPGA clock-based INT
approach, and a comprehensive evaluation through simulation
and experiments in the Open Cloud and FABRIC testbeds.

Index Terms—FPGA, Testbeds, P4, INT

I. INTRODUCTION

In recent years, Field Programmable Gate Arrays (FPGA)
have made an entry into data centers that are used for cloud
computing. Examples of FPGAs in cloud computing data
centers are offerings by Azure [17] and Amazon F1 [1]. The
recent increase in popularity of FPGAs in compute clouds is
driven by their ability to reduce compute load on their host
servers. For example, FPGAs can be used to handle compu-
tationally intensive workloads in security, image and video
processing, machine learning, and data analysis. Furthermore,
FPGAs contribute to the current data center disaggregation
trend, wherein server components such as memory, CPU,
storage, and accelerators can be independently combined at a
component level, departing from the traditional allocation on
a per-server basis. FPGAs support data center disaggregation
well since they often include onboard network interfaces that
allow communication that is independent of the host system.

While FPGAs offer many benefits concerning data center
disaggregation, they also pose challenges for configuration,
programmability, and monitoring. One of the major challenges

is the lack of the equivalent of an operating system that
provides basic features like the TCP/IP networking stack.

In this paper, we introduce an In-band Network Telemetry
(INT) approach which is based on the P4 language for network
data plane programming and can be executed on FPGAs. This
P4-based INT approach has the goal of supporting moni-
toring and network performance analysis by providing one-
way packet delay information. Reasons for such delays often
include the physical distance between two processing nodes,
processing time, buffer queue fill, and jitter between individual
data packets. In this paper, we implement a prototype INT
method using P4. In the future, we plan to incorporate the
Precision Time Protocol (PTP) for accurate one-way delay
computations. We aim to implement an approach that supports
100 Gbps line rate to identify performance bottlenecks in the
network. In addition, we plan to train ML models on the INT
data to enable efficient source routing. We demonstrate our
INT approach in the Open Cloud Testbed (OCT) [18] and
FABRIC [3]. Both testbeds provide open access to the research
community and offer considerably greater accessibility of FP-
GAs compared to what is provided in commercial clouds [1],
[17]. FABRIC also expands to multiple sites across the US
and a few international sites enabling large-scale experiments.
Additionally, FABRIC provides GPS-synchronized PTP, which
is an important component for clock synchronization. In
addition, we developed a workflow that allows researchers
to create their own P4 programs and bitstreams that can be
installed on FPGAs in OCT and FABRIC [6].

We present a two-step approach that allows experimenters
to develop a bitstream with the workflow we have set up
within the New England Research Cloud (NERC), test the
resulting bitstream on FPGAs in the Open Cloud Testbed
(OCT), before finally deploying and using it in FABRIC.
The latter is well suited for one-way delay measurements
in networks since the clocks in FABRIC nodes at different
locations are synchronized via GPS time signals.

This paper makes the following contributions:
• We implement a P4 workflow that allows the deployment

of bitstreams of FPGAs in FABRIC.
• We develop an INT approach that uses the (synchronized)

FPGA clock for timestamping. In FABRIC, this approach
can be used for one-way delay measurements.

• We evaluate our approach through simulation and exper-
iments in Open Cloud and FABRIC testbeds and present
results from these evaluations.



II. BACKGROUND AND RELATED WORK

A. Open Cloud Testbed

Fig. 1. Overview of OCT FPGA development and workflow [18]

The Open Cloud Testbed (OCT) [18] provides a research-
oriented experimentation testbed for systems researchers who
focus on cloud platforms. Testbeds like OCT deliver the
necessary hardware and software on top of bare metal services
to researchers in both the cloud and system communities,
enabling more experimental-based research opportunities.

16 FPGAs, namely AMD/Xilinx’s Alveo U280 data center
cards with High Bandwidth Memory to support data-heavy
tasks, are currently provided in OCT along with a toolchain
that supports the development of bitstreams [8].

The OCT workflow consists of two primary stages which are
illustrated in Fig. 1. Development Stage: OCT development
tools are hosted on a virtual machine (VM) within the New
England Research Cloud (NERC). OCT users can remotely log
into this VM to create FPGA bitstreams, host executables and
drivers using the provided tools. In addition, licenses required
for certain Xilinx IPs are hosted on a separate license server.

Deployment Stage: After creating the bitstreams and host
executables/drivers, users transfer them to the deployment
machine(s) on CloudLab, where the FPGAs are installed.
The subsequent process involves programming the FPGAs,
executing the host executables, and optionally fetching the
results back to the development machine.

Currently, OCT consists of 16 high-end servers each
equipped with an Alveo U280 accelerator card. Besides the
PCIe link connecting the server’s CPU and the FPGA, each
FPGA is directly connected to the 100 GbE network using
QSFP28 direct attach copper (DAC) cables. Among the sixteen
accelerators, four are designated for applications involving
Xilinx custom flow, such as the AMD OpenNIC shell and P4-
based approach discussed in this paper, while the remaining

twelve follow the standard Xilinx flow with Xilinx Runtime
and an XDMA-based shell. By accommodating both flows,
our system meets different user needs, making it flexible and
effective across various situations. Currently, we are advancing
the FPGA capabilities of OCT by integrating 8 more Alveo
U280s, along with 4 VCK5000s and 4 V70s. This expansion
aims to broaden the applications of OCT, specifically by
incorporating AI-based functionalities.

B. FABRIC

The NSF FABRIC [3] project has the goal to create a
versatile experimentation environment that allows researchers
to conduct experiments across a wide range of networking
and computing scenarios. Its infrastructure provides advanced
networking capabilities, enabling researchers to explore inno-
vative networking architectures, protocols, and technologies.
Through flexible resource allocation, researchers can configure
components of FABRIC according to their needs. To achieve
this goal, FABRIC has deployed nodes at almost 40 sites
across the US and at some international locations.

Recently, a series of FPGAs were deployed in FABRIC
nodes and are now available to researchers to include them
in their experiment infrastructures. We have created a P4
workflow and collaborated with the FABRIC team to enable
the resulting bitstreams on FPGAs in FABRIC. More details
on P4 in FABRIC are provided in Sect. III.

The combination of a testbed that spans the US and beyond
and P4-enabled FPGAs, in addition to the provision of a highly
accurate time signal, makes FABRIC a suitable infrastructure
for research in advanced networking, including areas like INT.

C. In-band Network Telemetry

In-band Network Telemetry (INT) [16] represents an ap-
proach to network monitoring and visibility, which integrates
telemetry data directly into the data plane of the network,
providing real-time insights into the performance, quality, and
behavior of network traffic. The INT approach is different
to traditional out-of-band monitoring methods. By embed-
ding telemetry information within the packets themselves,
INT enables granular monitoring and analysis, facilitating the
identification of bottlenecks, latency issues, and other network
anomalies. INT offers new insight in the performance of
distributed systems resulting in better resource management
and troubleshooting. For example, INT allows the probing of
the performance of individual segments of an end-to-end path
by inserting and removing probes direclty into data packets.

In the context of INT, P4 plays a crucial role in defining
how telemetry information is embedded in the packets as they
traverse the network. With INT, P4 programs can be designed
to capture specific information about the packets, such as
ingress and egress ports, latency metrics, or other relevant data.
This is achieved through the insertion of instructions in the P4
code that define how telemetry data is collected. In Sect. IV,
we explain how P4 is used to collect timestamp information
and embedded in data packets.



III. P4 IN OCT AND FABRIC
P4 is a domain-specific language for packet processing and

forwarding. It offers software control over data plane process-
ing within network devices like routers, switches, and NICs.
P4 can be used for parsing packet headers, configuring match
tables, forwarding packets, and In-band Network Telemetry.

The interest in instantiating P4 applications on FPGAs has
grown since the inception of the P4 language [11] due to the
excellent programmability and reconfigurability characteristics
of FPGAs. For example, the P4-NetFPGA flow [7] employs
the Xilinx SDNet (now AMD/Xilinx’s VitisNet) toolchain,
which translates the P4 code to a hardware description lan-
guage. Additional research endeavors [13]–[15] exploring var-
ious networking challenges build on this foundational work-
flow. Yet, researchers have had to build their own P4-FPGA
toolchains from scratch in order to fully utilize P4.

Recently, two open-source toolchains [4], [6] using
AMD/Xilinx’s VitisNet were developed. These works have the
goal to relieve researchers from having to create their own
toolchains and accelerate the development of new P4 codes
that can run on FPGAs. Both workflows are supported on the
FPGAs that are offered in OCT and FABRIC.

One major difference between OCT and FABRIC is the way
researchers can access the FPGAs. In OCT the FPGAs are
offered on bare metal servers, which provides a very flexible
approach. In OCT, through the support of [6] and its bare metal
servers, the P4 applications become runtime programmable.
The FPGA and server do not need to reboot while swapping
different P4 applications. This feature provides extra flexibility
for researchers. On FABRIC, the FPGA can only be accessed
through VMs, which offers as an extra layer of protection.
This needs to be considered by experimenters since it adds
ease of use at the cost of an extra layer of complexity.

IV. P4-BASED TIMESTAMPING ON FPGAS

n intermediate
 hosts

Ingress Host

CPU

Alveo U280 
P4-Enabled 

FPGA

PCIe

Ethernet 
Header

IPv4/IPv6 
Header

TCP/UDP 
Header

Intermediate 
Host

CPU

Egress Host

CPU

Alveo U280 
P4-Enabled 

FPGA

Alveo U280 
P4-Enabled 

FPGA

PCIe

PCIe

Ethernet 
Header

IPv4/IPv6 
Header

TCP/UDP 
Header

Ethernet 
Header

IPv4/IPv6 
Header

TCP/UDP 
Header

Custom 
INT Header

Ethernet 
Header

IPv4/IPv6 
Header

TCP/UDP 
Header

Custom 
INT Header

Fig. 2. P4-based INT timestamping for one-way delay measurement.

This section discusses the implementation of the In-band
Network Telemetry (INT) functionality within a partially re-
configurable P4 program deployed on the FPGAs of the Open
Cloud and FABRIC testbeds. The specific INT functionality
we target involves the measurement of the one-way delay
between two arbitrary nodes. This is achieved by timestamping
data packets at the sender and comparing this timestamp
with the receiver’s local clock. This requires a very precise
synchronization of the sender’s and receiver’s clocks.

The INT approach presented in this paper has been imple-
mented utilizing the AMD/Xilinx OpenNIC shell, an open-
source FPGA-based 100G Network Interface Card (NIC)
platform. The INT functionality of the P4 hardware Intellectual
Property (IP) block is generated through the utilization of
AMD/Xilinx’s Vitis Networking P4 (VitisNetP4) tools [6].
This toolchain generates the custom hardware IP from the P4
block required for the implementation of the INT functionality.
Packets containing INT information are transmitted between
an ingress and an egress node with P4-enabled FPGAs, which
can be a part of a larger network as shown in Figure 2.
Along with a generic Network Interface Card (NIC), the
ingress and egress nodes also host AMD/Xilinx’s Alveo U280
FPGAs as P4-enabled SmartNICs capable of processing the
INT information from the packets (see Sects. II and III for
further details). P4-capable nodes along the path can process
the INT data if the goal is to measure one-way delay at
several locations, not only the ingress and egress nodes. Clock
synchronization requirements as outlined above also apply to
intermediate nodes if they are involved in the INT process.

This INT approach to measure one-way delay is divided
into a two-step process. In the initial phase, the incorporation
of the INT data into the incoming data packets is performed
on the P4-enabled FPGA. This operation can be performed
at any FPGA within a network. For the remainder of this
paper and without loss of generality we assume that the INT
timestamping is executed at the ingress node. In the second
step, packets including the INT header that has been added at
an upstream node have the timestamp information extracted,
which is subsequently used to calculate the one-way delay
between the two nodes. In addition, the INT header is removed
from the packets, which allows the forwarding of them via
standard, non-P4-capable nodes to their destination.

The following subsections provide a detailed explanation of
this two-step process.

A. Adding the Custom Header with INT Information

Fig. 3 represents the format of the custom header that we
implement at the ingress P4-enabled FPGA node.1 The custom
header has a fixed size of 10 bytes. Out of the 10 bytes, the first
8 bytes in the custom header store the actual timestamp value
in hexadecimal format. The timestamp, which represents the
ingress time of a captured packet, is extracted from an in-built
library provided by Xilinx/AMD in the standard metadata,
and its size is predefined. The trailing 2 bytes of them are
allocated to store the protocol identifier for the next header to
facilitate its parsing in the P4 program. This protocol identifier
is copied from the EtherType field of the Ethernet header,
which is also 2 bytes in size. Consequently, we store a custom
protocol identifier in the EtherType field to identify and parse
the custom header at the egress node. The custom protocol
identifier is chosen to be a reserved value for experimental
purposes following the Internet Assigned Numbers Authority

1While P4 provides a full-fledged standard for the inclusion of INT data in
packets [12], we decided on a much simpler initial approach. We will consider
using the official INT standard in future work.



(IANA). This ensures that our custom protocol does not
interfere with other existing protocols in use. Insertion of the
custom header changes the total size of the packet by 10 bytes
and this is updated in the user metadata. This custom header
is inserted between the Ethernet and the Network Layer, see
Fig. 4. For simplicity, we only consider the ingress and egress
nodes without intermediate nodes. Once inserted, the packet
is forwarded to its next destination.

Ethernet Header Custom INT Header IPv4/IPv6 Header TCP/UDP Header

16 Bit Protocol Identifier64 Bit Timestamp Data

Fig. 3. Custom INT Header for timestamping.

Ingress Host

CPU

Alveo U280 P4-
Enabled FPGA

PCIe

Input FPGA 
Interface

Output 
FPGA 

Interface

Ethernet Header
Custom INT Header

IPv4/IPv6 Header

TCP/UDP Header

Ethernet Header

IPv4/IPv6 Header

TCP/UDP Header

Fig. 4. Process for adding the custom INT header to an incoming packet.

B. Custom Header Removal and INT Processing

Before the custom header is removed, the timestamp data
is recorded at the egress node. A new, local timestamp is
recorded at the arrival of every incoming packet that includes
the custom INT header. This is triggered by the P4 code
implemented in the FPGA. The local timestamp and the one
carried in the INT header are used to compute the one-way
delay between ingress and egress nodes. Then, the protocol
identifier of the network layer is restored to the EtherType
field. Since the removal of the custom header reduces the size
of the packet by 10 bytes, the user metadata is updated. Finally,
the original packet is forwarded to the next hop.

V. EVALUATION

In this section, we demonstrate the implementation of our
INT application in two different testbeds: OCT and FABRIC.
Since the experiments involve running P4 programs on FP-
GAs, we first simulate the design and the environment and
verify its correctness. We then run the application on the OCT
testbed on two separate nodes containing P4-enabled FPGAs.
After that, we run the same application on the FABRIC testbed
where the FPGAs are located in different physical locations.
The details of the above processes are discussed below.

A. Simulation

Here we describe the simulation process in detail. To begin
with, we run our P4 program on a BMv2-based software
switch restricted by the Xilinx/AMD VitisNetP4 tools. Some
of these restrictions include the usage of the xsa.p4 archi-
tecture instead of the v1model architecture, the fields in

the standard metadata, and various extern functions, among
others [2]. The simulation process includes behavioral level
verification of the P4 program along with the Register Transfer
Level (RTL) simulation to verify the correctness of the P4
hardware logic generated by the VitisNetP4 tools.

Fig. 5. Sample input packet used to evaluate the addition of the INT header
in behavioral simulation.

Fig. 6. Sample packet entering the egress node, indicating the added
timestamp information in red, in behavioral simulation

Fig. 7. Sample packet leaving the egress node, indicating that the timestamp
has been removed.

To verify the correctness of the P4 program, we run the
header addition and removal of the INT process and verify
the correctness of the output packets. We used 8 packets as
input for adding the custom header in .pcap format provided
by the vendor as part of the VitisNetP4 workflow. Fig. 5 shows
one such packet converted from .pcap to .text format. Fig. 6
shows the same packet after the addition of the timestamp
(shown in red) between the Ethernet and the Network header.
Note that the timestamp is all 0s in this case since this is
a simulation and hence, there is no actual timestamp. (As
we will show in Sect. V-B, a timestamp that is based on
the FPGA cycle counter is added.) The output of the custom
header addition simulation is utilized at the input of the custom
header removal simulation. Fig. 7 represents the output of the
custom header removal simulation which is the same as in
Fig.5, thus verifying the correctness of the removal.

B. Open Cloud Testbed

Fig. 8. Sample input packet used to evaluate the addition of the INT header
in OCT



Fig. 9. Sample packet entering the egress node, indicating the added
timestamp information in red, in OCT

In this subsection, we evaluate the workflow through which
we run the INT application in the Open Cloud Testbed. We
reserve two nodes with a standard NIC (Intel XL710) and a
P4-enabled FPGA on each of them. At first, we program the
FPGA on one of the nodes to add the custom header on the
transmission path. Subsequently, we forward the same set of
packets that we utilized in Sect. V-A from the ingress node
to the egress node. Fig. 8 shows one such packet from the
set. Once we forward the packets from the ingress node, we
capture the packets at the egress node. Fig. 9 shows one of
the captured packets with the ingress timestamp (shown in
red). This confirms the addition of the ingress timestamp to
the packets. Subsequently, we program the egress node with
the P4 code that removes the custom header after the one-
way delay is computed internally on the FPGA. Finally, we
send the packets again from the ingress node to the egress
node via the P4-enabled FPGAs. We attempt to verify the
functional correctness of the INT application by forwarding
the set of 8 packets from the ingress node where the custom
header is added to the egress node where the one-way delay is
computed and the custom header is removed. Fig. 10 depicts
the INT application operating end-to-end between the ingress
and the egress nodes. In the scenario where the INT application
functions correctly, the output packets from the egress node
after the removal of the custom header should match the
input packets at the ingress node before the custom header is
added. As we can observe from Fig. 8 and Fig. 10, the packet
forwarded out of the egress node matches the packet input at
the ingress node, while the delay is computed between the
two nodes, hence verifying the INT functionality. We also test
the INT timestamping with an actual application in addition
to the replay of previously captured packets. In this case, we
use SSH to connect from the host OS of the ingress node to
the host OS of the egress node. In this case, the SSH session
between both nodes was successfully established.

Fig. 10. Sample packet leaving the egress node, indicating that the timestamp
has been removed and the packet matches the one that was originally
transmitted.

C. FABRIC

Fig. 11 depicts the slice we use in the FABRIC testbed for
validating the intended functionality of the INT application.

In line with the OCT experiments, we allocate two nodes:
the ingress node featuring a P4-enabled FPGA and the egress
node equipped with a standard NIC. All resources used for
this experiment are housed at the MASS site.

Node 1

FPGA with P4 
INT timestamp

Eth1 Eth2

VM 

Node 2

VM 

Eth1

Fig. 11. Experiment setup for the evaluation in FABRIC.

Fig. 12. Sample input packet used to evaluate the addition of the INT header
in FABRIC

We deploy the same bitstream we used for the evaluation in
OCT (see Sect. V-B) on the FPGA in FABRIC. Subsequently,
we again proceed to forward the identical set of packets, as
utilized in Section V-A, from the ingress node to the egress
node. One of the input packets from the sample is shown in
Fig. 12. These set of sample packets are then captured at the
egress node along with the added INT header. Fig. 13 shows
one of the captured packets with the ingress timestamp (shown
in red). This confirms the inclusion of the ingress timestamp in
the packets. In future work, we would also like to implement
the INT functionality between two P4-enabled FPGA nodes
from two different FABRIC sites. Achieving this goal requires
the allocation of FPGAs from different sites in our experiment
slice since each FABRIC site only contains a single FPGA.

VI. DISCUSSION

Currently, our approach uses the cycle counter of the FPGA
as the clock. This is not a well-synchronized clock since
every local oscillator drifts over time. Mitigating this issue
and enabling the synchronization of local computer clocks
in distributed systems is achieved through protocols like the
Network Time Protocol (NTP) [9] and the Precision Time
Protocol (PTP) [10]. In this section, we outline an approach to
how a local, synchronized clock can be implemented on the
FPGAs. As shown in Fig. 14, the FPGAs installed in OCT
and FABRIC can host a PTP client. This client will be able to



Fig. 13. Sample packet entering the egress node, indicating the added
timestamp information in red, in FABRIC

communicate with a GPS-synchronized PTP server, allowing
for accurate clock synchronization.

FPGA

Eth1 Eth2 

P4
INT

Clock

PTP
Client

Data 
Plane

Control 
Plane

PTP 
Server 

(a) (b)

FPGA

Eth1 Eth2 

P4
INT

Clock

PTP
Client

Data 
Plane

PTP 
Server 

Fig. 14. Two clock synchronization approaches via PTP

As shown in Figure 14, FABRIC nodes provide a GPS-
synchronized PTP server with which the PTP client residing
on the FPGA can communicate [5]. This communication can
happen in two different ways. In the first case (shown in
Fig. 14 (a)), both of the FPGA’s network interfaces are used.
One of the interfaces is connected to the data plane and
the other one to the control network. This approach has the
advantage that the NTP traffic will not interfere with the actual
experiment traffic that is transmitted on the data plane.

The second approach (shown in Fig. 14 (b)), is more general
and can be used by FPGAs that have only one physical
network interface. In this scenario, the NTP traffic can be
transmitted on a different VLAN than the data plane traffic.
With a slight modification of the P4 code, the PTP traffic can
be filtered out and forwarded to the PTP client on the FPGA.

VII. CONCLUSIONS AND FUTURE WORK

We present a P4-based approach for In-band Network
Telemetry (INT) that can be executed on FPGAs. With INT
gaining importance in the area of network monitoring and
the increasing popularity of FPGAs in data centers and core

networking nodes as smartNICs, FPGAs must support INT
to avoid measurement gaps in the network. We propose a P4-
based INT approach for FPGAs that is based on a workflow we
have developed for the development of bitstreams that can be
implemented on FPGAs. We demonstrate how this workflow
can be used for INT one-way delay measurements through
simulation and experiments in OCT and FABRIC.

We have two future work goals for this project. Our first goal
is to implement the actual clock synchronization on the FPGAs
as outlined in Sect. VI. This will require the implementation
of a PTP client and the logic that will synchronize the
local clock on the FPGA. Our second goal is to extend the
evaluation of our INT approach to more elaborate topologies
that contain more than two nodes. To achieve this goal, we
will set up topologies across the FABRIC testbed that will
span geographically distinct sites. If possible, we will expand
these topologies to include international FABRIC sites. In the
long term, it is our goal to expand the INT features of our
P4-based approach supports. This will include the collection
of local node data like throughput and queue size.

REFERENCES

[1] Amazon. EC2 F1 Instances. https://aws.amazon.com/ec2/instance-types/
f1/. Accessed: 2024-01-09.

[2] Vitis networking p4 user guide (ug1308). https://docs.xilinx.com/r/
en-US/ug1308-vitis-p4-user-guide, 2023. [Accessed 12-01-2024].

[3] I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K. Wang, T. Lehman,
and P. Ruth. Fabric: A national-scale programmable experimental
network infrastructure. IEEE Internet Computing, 23(6):38–47, 2019.

[4] ESNet SmartNIC toolchain. https://github.com/esnet/esnet-smartnic-hw.
Accessed: 2024-01-15.

[5] FABRIC. PTP Support in FABRIC Experiments. https://github.com/
fabric-testbed/ptp. Accessed: 2024-01-09.

[6] Z. Han, S. Handagala, et al. A framework to enable runtime pro-
grammable p4-enabled fpgas in the open cloud testbed. In IEEE
INFOCOM Workshops, pages 1–6, 2023.

[7] S. Ibanez, G. Brebner, et al. The p4-¿ netfpga workflow for line-rate
packet processing. In ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 1–9, 2019.

[8] M. Leeser, S. Handagala, and M. Zink. FPGAs in the Cloud. Computing
in Science & Engineering, 23(6):72–76, 2021.

[9] J. Martin, J. Burbank, W. Kasch, and P. D. L. Mills. Network Time
Protocol Version 4: Protocol and Algorithms Specification. RFC 5905,
June 2010.

[10] A. S. Nagra, M. A. Pasha, and S. Masud. Fpga implementation of
ieee 1588 protocol for bluetooth-based distributed wireless systems. In
2022 29th IEEE International Conference on Electronics, Circuits and
Systems (ICECS), pages 1–4, 2022.

[11] P4 Lang. https://p4.org, 2024. [Online; accessed 01-15-2024].
[12] In-band Network Telemetry (INT) Dataplane Specification. https://p4.

org/p4-spec/docs/INT v2 1.pdf. Accessed: 2024-01-09.
[13] M. Saquetti, G. Bueno, et al. P4VBox: Enabling P4-based switch

virtualization. IEEE Communications Letters, 24(1):146–149, 2019.
[14] H. Soni, M. Rifai, et al. Composing dataplane programs with µP4. In

Proceedings of the ACM Special Interest Group on Data Communica-
tion on the applications, technologies, architectures, and protocols for
computer communication, pages 329–343, 2020.

[15] N. Sultana, J. Sonchack, et al. Flightplan: Dataplane disaggregation
and placement for P4 programs. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 571–592, 2021.

[16] L. Tan, W. Su, et al. In-band network telemetry: A survey. Computer
Networks, 2021.

[17] J. Zhang, Y. Xiong, et al. The Feniks FPGA Operating System for Cloud
Computing. In ACM APSys, September 2017.

[18] M. Zink, D. Irwin, et al. The Open Cloud Testbed (OCT): A platform for
research into new cloud technologies. In 10th International Conference
on Cloud Networking (CloudNet), pages 140–147. IEEE, 2021.


