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Abstract. Wireless systems such as cellular networks have begun to
see proposals for increased operational flexibility through reuse of the
same hardware but with different signal standards. This paper presents
an approach to characterise a power amplifier (PA) for multiple sig-
nal standards. Following from this, behavioural modeling demonstrates
that the same coefficients trained for a single signal standard can be
effectively applied to multiple signal standards. This result is used to
design and implement a digital predistorter (DPD) capable of lineariz-
ing for different signal standards on a Field Programmable Gate Array
(FPGA). This implementation is experimentally validated on a state-of-
the-art RFSoC FPGA from Xilinx to correct for PA non-linearities in
the transmit chain using an efficient hardware design. Additionally the
behavioural modelling and DPD solutions have been validated using dis-
tinctly different PAs to demonstrate the proposed look up table approach
is hardware agnostic and works when the appropriate dimensions are set
for the dynamic nonlinear structure in each case.

Keywords: Behavioural modeling · Pre-distortion · Memory Polyno-
mial · Software Defined Radio · FPGA.

1 Introduction

Software Defined Radio (SDR) has been around for several decades, but the
implementations of such radios, despite including reconfigurable elements such as
Field Programmable Gate Arrays (FPGAs), are surprisingly static. Most SDRs
are configured to support one protocol and a specific design, once deployed,
is seldom changed. In previous work, researchers have addressed the issue by
demonstrating the reception of multiple different protocols with the same front
end [11], [18]. In this paper, we address the issue of handling multiple different
signal standards on the transmit side. The transmitter makes use of a power
amplifier (PA) and, to obtain maximum power efficiency, the PA is operated
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near its saturation point, which leads to nonlinear distortion as well as significant
memory effects.

Pre-distortion or linearization of signals to compensate for the non-linearity
and memory effects of power amplifiers (PAs) is a broad area of research in
telecommunication systems [24, 17, 2]. The trend for linearization algorithms is
to apply increasingly complicated nonlinear structures such as artificial neural
networks [12] or vector-switched Volterra series [1] in order to pre-distort the
input signal. The nonlinear pre-distorter structures contain weights which must
be trained and it is this training operation that introduces the highest computa-
tional cost. Look-up tables have been implemented in the past to provide coeffi-
cients for the pre-distorter [22], however these solutions have not previously been
applied for use with multi-standard radios. A compelling objective for modeling
these systems is to identify the most computationally efficient structure which
can accurately characterise the PA behaviour and estimate the output signal. A
structure that encompasses memory effects, various bandwidths and nonlinear-
ity is the Volterra series, however the number of coefficients used in a Volterra
series increases rapidly with increasing nonlinear order or memory depth. More
compact memory models can be achieved using the memory polynomial and
generalised memory polynomial.

A limitation associated with behavioural modeling of power amplifiers has
been that a model trained with one standard of input and output signals is
not typically applicable to other signal standards, and thus the resulting be-
havioural models are traditionally limited to a single protocol. This is in direct
contravention to the ethos expected of a software defined radio. Ideally the ra-
dio should be capable of transmitting multiple standards; in this research we
focus on 3G, 4G and 5G cellular network communications. Wideband Code Di-
vision Multiple Access (WCDMA) is widely used in 3G networks [16], while
Orthogonal Frequency-Division Multiplexing (OFDM) is utilised in 4G and 5G
networks. 5G offers a wider range of configurations for the construction of sig-
nals and as a result different signal formats can be generated compared to 4G.
In this paper we propose a strategy to model the behaviour of the PA such that
the necessary coefficients can be used across these different signal modulation
schemes. This structure is then extended to the practical case of providing a
digital Pre-Distorter (DPD). The contribution of this paper is describing how
the same trained model or DPD coefficients to be used across different signal
standards. The result is a look-up-table (LUT) based DPD implementation for
multi-standard cognitive radios. The DPD is implemented on a state-of the-art
Xilinx RFSoC FPGA which integrates an embedded ARM processor, FPGA
fabric, and RF frontend in a single package. In this paper LUT refers to the
storage of coefficients for the DPD implementation and not the look up tables
that are part of the FPGA fabric.

In Section 2 we introduce the background information about power amplifier
non-linearity, behavioural modeling, and related work. The two main areas for
validation of this work cover behavioural modelling and DPD. In both cases ex-
perimentally measured results for power amplifier operation with different input
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signal standards are collected as described in Sec. 3.1. From these measurements,
power level matching between standards can be achieved and the corresponding
sets of coefficients applied to different standards, first for behavioural modelling
as described in Sec. 3, and next for predistortion as described in Sec. 4. Results of
the DPD experiments using signals from different signal standards are presented
in Sec. 5. Conclusions from this work are summarised in Sec. 6.

2 Background

2.1 Nonlinear Power Amplifiers with Memory Effects

Power amplifiers perform a critical function in wireless communication systems,
which is to transfer the supplied power to a modulated signal at high frequency
in order to transmit it over greater distances. Unfortunately, in order to operate
the power conversion of the power amplifier efficiently, the resulting PA output
signal suffers distortion in the form of dynamic and non-linear behaviours. In
particular, Gallium Nitride (GaN) power amplifiers have become the technology
of choice for high power applications such as cellular network basestations and
satellite communications. This is as a result of GaN devices having a higher
breakdown field allowing them to operate at higher output voltages compared
to other semiconductor substrates. Additionally electrons on GaN have a higher
saturation velocity and large charge capability which allow high current density.
GaN devices however demonstrate non-linear behaviour when operated in effi-
cient modes and can experience charge trapping which is more difficult to char-
acterise than for other semiconductor technologies. GaN PAs may be modelled
using non-linear digital filters with sufficient order of nonlinearity and number
of memory taps.

Fig. 1. PA model training

The operation of a digital filter is to take input signal samples x(n), combine
the current sample and previous samples, weight all of them and sum the result-
ing products. A nonlinear filter contains weights H(n), which are multiplied by

various combinations of the input samples. The objective is for the output d̂(n)
to be comparable to the desired output signal d(n). The operation of training
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these nonlinear filter or model coefficients, is done in such a way as to minimise
the difference between d(n) and d̂(n). Fig. 1 depicts this relationship.

2.2 Discrete Dynamic Nonlinear Models and Training Algorithm

For this research, Least Squares (LS) was chosen as the coefficient training tech-
nique with the following behavioural models : memory polynomial (MP) and
generalised memory polynomial (GMP).

Parameter estimation or training of the behavioural model is as important
as the capabilities of the model chosen. Least squares estimation is a direct esti-
mation process where the input and output signals are analysed in vector form
and an optimal solution can be derived from direct matrix inversion [15]. The
least squares solution can be extracted solely with the input and output sample
data. The least squares algorithm chooses weights to minimise the function in
Eq. 1.

J(N) =
1

N

N∑
t=1

(y(t)−XT (t) #»w) (1)

Where N represents the length of the signal data sets, X and y denote the
input and output signal datasets respectively. #»w refers to the calculated weights.

A range of behavioural models were considered for this work. The main differ-
ence between them stems from the different number of coefficients used in each
to perform behavioural modeling. These models can be classified as subsets of
the Volterra model, for which the discrete version is given by Eq. 2. The Volterra
model is ideally suited for characterizing nonlinear systems with memory effects
such as power amplifiers.

yV S(n) =

M−1∑
i1=0

· · ·
M−1∑
iP=0

hp(i1, · · · , ip)
P∏
i=1

x(n− ir) (2)

Here x(n) and y(n) are the input and output signals to the power ampli-
fier respectively. hp(i1, ..., ip) represents the filter co-efficient expansion utilising
P , the highest order for the non-linearity of the Volterra series expansion. M
represents the maximum memory depth.

The memory polynomial is a model derived from the Volterra model com-
prised only of the linear terms and higher order products with the same time-
shifts [7]. Combining these higher order products of delayed input signal com-
ponents into a single array, form the memory polynomial as described by Eq. 3.
While the model only considers a fraction of the input signal combinations
present in the Volterra series, the addition of delayed input samples allow the
characteristic memory effect of the power amplifier to be modelled.

yMP (n) =

P∑
p=1

M∑
m=0

apmx(n−m)|x(n−m)|p−1 (3)
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where apm are the estimated model parameters, and P and M represent the
highest non linear order and the memory depth of the model, respectively.

The GMP [20] can be considered as taking multiple delayed MP models,
given by Eq. 3, to include leading and lagging cross-terms as seen in Eq. 4. In
this way a wider range of combinations of delayed input signal samples from the
Volterra model are considered compared to the memory polynomial.

yGMP (n) =
∑
kεKa

∑
lεLa

aklx(n− l)|x(n− l)|k+

∑
kεKb

∑
lεLb

∑
mεMb

bklmx(n− l)|x(n− l −m)|k+

∑
kεKc

∑
lεLc

∑
mεMc

cklmx(n− l)|x(n− l + m)|k

(4)

Here Ka and La index the arrays for the input signal and its envelope; Kb,Lb
and Mb refer to the indexing of the input signal and its lagging envelope; and
Kc,Lc and Mc are index arrays for the input signal and its leading envelope.
akl, bklm and cklm are the estimated model parameters.

The Normalised Mean Square Error (NMSE) denotes a common figure of
merit used to indicate the accuracy of a model in characterising power amplifiers
behaviour [13]. The NMSE is convenient as it only requires a single value to
describe the overall deviations between predicted and measured values of the
model output d̂(n) and experimentally validated output d(n) over what can be
large datasets.

2.3 Related Work

Look-up-table (LUT) solutions for nonlinear power amplifiers have been previ-
ously introduced for both behavioural modelling and predistortion. The chronol-
ogy of these LUT solutions shows new methods have emerged for both applica-
tions.

As a means of modeling the behavior of RF power amplifiers, a number of
different LUT approaches have been proven to be effective. A data-based nested
LUT structure has equivalent performance to the memory polynomial for mod-
eling of power amplifiers exhibiting memory effects as shown in [9]. This LUT
approach has been further extended to a 2-D LUT model for transmitters/PAs
exhibiting memory effects. With an additional dimension [10], the LUT is ex-
panded to take into account the dependency of the device behavior on the pre-
ceding samples. The 2-D LUT models the transfer function of the device under
test as a complex gain that is a function of the magnitude of the current and
previous samples. More recently, Nunes et al. have demonstrated a LUT solu-
tion for high efficiency power amplifier architecture [23]. A newer class of power
amplifier behavioral model named hybrid look-up tables (H-LUT) improves the
performance of a conventional nested LUT model [6]. Here, a combination of
a memoryless LUT and nested LUT are connected in parallel. The accuracy of
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the proposed model is also better suited for being trained with smaller training
datasets compared to the nested LUT model alone.

In [4] a LUT is pre-trained for a power amplifier and used to pre-distort the
signal supplied to the PA. At that time, the pretrained LUT demonstrated a solu-
tion requiring four orders of magnitude less memory, three orders of magnitude
reduction in convergence time and eliminated the reconvergence time needed
following a channel switch. FPGA-based LUT solutions have been proposed for
switchmode PAs [5]. As a case study a polar configured Class F switch-mode
PA is shown to be effectively linearized by the proposed approach. Additional
enhancements to the LUT implementation have been proposed [8] [21]. Here
the aim is to reduce the hardware resources required to implement the solu-
tion in an FPGA. Savings of total hardware resources can be made in terms of
arithmetic hardware blocks though the structure of the DPD calculations are
re-ordered. Molina et. al. [19] show how a predistorter with lower complexity
than polynomial models translated to a LUT. This is achieved by expressing
a DPD function as a system of linear-in-parameter equations. Least squares is
used to train the LUT coefficients directly. More recent work on LUT [3] is based
on spline-interpolated look-up-tables. While similar to established polynomial-
based solutions, a reduction in DPD processing is presented. The use of LUT
predistorters has been adopted for optical communications also. Implementa-
tions for nonlinear weighted look-up-table predistortion [14] and reduced size
LUT [25] show the continued interest in LUT based predistorters. Importantly,
this work demonstrates the ability to store sets of coefficients, but determine
what set of coefficients to use based on the observed nonlinear performance of
the PA, for any given signal. This can avoid the need for the standard LUT
approach which has to train a set of coefficients for every possible combination
of signal standard and operating power level.

3 Multi-standard Behavioural Modeling

3.1 Data Collection

In order to analyze and study multi-standard behavioural models and imple-
mentations, signals were required for each of the standards studied. The signals
used were generated in MATLAB using modulation functions from the Com-
munications, LTE & 5G toolboxes. To get the measured results from the PA at
different input power levels a testbench was setup, as in Fig. 2 and 3. Here an
RFSoC ZCU111 for transmitting and receiving the signals has been used. The
signal was generated at the Intermediate Frequency (IF) centred at 1GHz from
the RFSoC DAC with sampling frequency of 737.28 MHz and then with the
help of the mixer the signal was upconverted to the required center frequency
of 2.6 GHz. After this stage, the signal was passed through the GaN-SiC pallet
amplifier (RFHIC RTP26010-N1) and the power of the signal was maintained
sufficiently to drive the PA in a nonlinear region of operation. This particular
PA has two output ports, one of which was connected to a spectrum analyser
and the second coupled output port was connected to the downconverter mixer
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which uses the same LO frequency as of the upconverter mixer. Here the signal is
downconverted back to the IF frequency i.e., 1GHz and is passed to the RFSoC
ADC which also has a sampling rate of 737.28 MSPS. In the case of this PA the
model memory depth was chosen to be 3 and the non-linear order of the MP
model was chosen to be 3.

Fig. 2. Test bench block diagram

Fig. 3. Experimental Measurement Bench RFSoC ZCU111 with RFHIC RTP26010-N1
PA

For measuring at different power levels, the power of the signals generated
from the RFSoC was adjusted using the RF Data Converter Interface. The
sample length generated in MATLAB for different standard signals was 70,000
samples. To time align the signal and reduce the noise floor to achieve better
dynamic range, the length of the signal captured was 10 times the length of the
transmitted signal i.e., 700,000 samples. Once the signal has been time aligned,
both the transmitted and received signals were normalised with respect to the
maximum absolute value of each. The first 30,000 samples of the averaged input
and output signals have been used for training the behavioural model and a
further 30,000 were used for the validation of the model.
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3.2 AM-AM Distortion Characteristics as Guide to Coefficients

A common technique used to illustrate the characteristic behaviour of a nonlin-
ear power amplifier is the AM/AM curve. The data points from the input and
output signals clearly show if the operation of the PA is predominantly linear,
when the points populate an approximately straight line, or non-linear when the
curve deviates from a straight line. In this work, AM/AM curves are employed
to demonstrate the degree to which different signal standards cause different
characteristic behaviour from the power amplifier despite the signals having the
same average output power level. Fig. 4 shows the discrepancies between exper-
imentally measured 3G, 4G and 5G signals with the same power level (obtained
as described in Sec. 3.1), passed through a PA operating nonlinearly.

Fig. 4. An experimentally validated illustration of the input-output signal relationship
transmitted at 2.6GHz for 3G,4G and 5G signals. Signals were transmitted through
the same PA at equivalent transmit power.

Further investigations into PA characterisation given different input signals
led to the observation that various AM/AM curves of 3G, 4G and 5G-NR, at
different power levels, are very similar, as seen in Fig. 5. Therefore by noting the
relative difference in the signal power levels for the different signal standards,
that all yield the same characteristic AM/AM performance, one can map the
power levels for which the same set of model coefficients can work.
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Fig. 5. Experimentally validated AM/AM curve illustrating that 3G, 4G and 5G input
signals can produce comparable AM/AM curves given the signals are sent at disparate
transmit power levels.

3.3 Multi-Standard Behavioural Models

As indicated in Fig. 4, for the same power amplifier excited by different signals
with the same average power level and similar bandwidth, there is a noticeable
difference in the AM/AM curves. This in turn indicates a difference of behaviour
of the hardware as a result of the different signals. It is therefore not sufficient
to assume a particular operating behaviour for the power amplifier based on
the average output signal power alone; the signal used must also be taken into
account.

This paper presents a means by which a single set of behavioural model
coefficients can be extracted and stored in a look-up-table for use with any signal
standard so long as the relative power level offsets between different signal types
are accounted for. The matching of behavioural model coefficients is implemented
across different signal standards. This is performed by extracting coefficients for
different power levels for each standard. From the measured output signals the
corresponding AM/AM curves are fitted. One set of coefficients are extracted
for one signal standard and the AM/AM curve for that standard which best fits
the other signal standards is sought.

By exciting the power amplifier using various signals at a range of operating
power levels, sets of signals can be compiled and relationships between standards
can be learned. Importantly, the signals which match closest in terms of model
coefficient performance do not have identical operating power levels.
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3.4 Behavioural Model Validation

In order to validate the proposed technique for multiple signal standards, com-
monly used signal modulation schemes for 3G, 4G and 5G communications are
examined. A signal bandwidth of 20 MHz for single carrier signals were sent
through an RFHIC Doherty PA as described in Sec. 3.1.

Table 1. Relationship Between Signal Standards and Power Levels

Coefficient sets 1 2 3 4 5 6 7 8

5G (dBFS) -10 -9 -8 -7 -6 -5 -4 -3

4G (dBFS) -18 -17 -16 -15 -14 -13 -12 -11

3G (dBFS) -20 -19 -18 -17 -16 -15 -14 -13

Table 2. Cross Signal Standard Model Accuracy NMSE (dB)

3G
MP/GMP

4G
MP/GMP

5G
MP/GMP

3G -38.386 / -38.39 -42.008 / -41.931 -41.856/-41.804

4G -42.02/-41.961 -45.874 / -45.879 -41.995 / -41.918

5G -42.178 / -42.13 -39.623/ -30.589 -45.874/-44.067

Pairs of input and output signal datasets are captured for a PA and the
AM/AM curves for one signal standard are plotted. A subset of samples from
the alternative signal standards at similar power levels are used to check if their
AM/AM trace follows a similar trajectory. Comparing these, the relative power
levels between standards is determined, and the model coefficients are indexed
in the LUT relative to each signal standard power level. The relative power level
offsets between standards can be seen in Table 1. In this instance, eight sets
of coefficients are matched for the same power amplifier across three different
signal standards which each have a relative power level offset.

By knowing the relative power level offsets to use, a behavioral model can be
trained for one signal standard and reliably used to model the PA response across
the other signal standards. Table 2 illustrates the NMSE comparisons calculated
between different signal standards with similar AM/AM curves, which corre-
sponds to one of the columns in Table 1. The columns of Table 2 are populated
by training the coefficients using one of the signal standards and validating the
model accuracy for all three signal standards. The accuracy for each standard
is given in NMSE and placed in its respective row. Independent output signals
which were not used to train the models were used for the validation in each
case.
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4 LUT-based Multi-standard DPD Transceiver

4.1 DPD Coefficient Estimation

The inverse function of the PA system f(X) can be derived by swapping the
input signal x and output signal y in Eq. 3. Applying this inverse function f−1

will cancel the effect of the PA system f .

xMP (n) =

P∑
p=0

M∑
m=0

dpmŷ(n−m)|ŷ(n−m)|p (5)

Here ŷ is the PA output normalized by PA gain G and with a certain offset T
introduced by the PA system.

ŷ = y(n + T )/G (6)

The coefficients dpm of the DPD model can be estimated through different
methods. As there are more observations of y and x than the number of coef-
ficients, an over-determined system can be formed. The least squares algorithm
is used to estimate the coefficients.

4.2 Hardware Software Co-Design

In Section 3, different standards’ signals at different power levels are shown to
have the same AM/AM characteristics. Based on this analysis, a Digital Pre Dis-
tortion (DPD) solution for transmitting multi-standard signals is implemented,
as shown in Fig. 6. This solution shows a way of pre-distorting different stan-
dards’ signals with sets of coefficients trained by only one signal standard under
different power levels. In this way the resource utilization is minimized and as-
sociated power consumption of the entire design optimized.

Fig. 6. Proposed System Design Illustration

The proposed design can be divided into two parts: the baseband signal
processing and the RF front end. The baseband block handles the predistortion
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and other necessary signal processing tasks such as filtering and upsampling.
The processed signal is then sent through the RF front end.

On the baseband part, the address selection block is used to calculate the
addresses of the coefficients based on the signal power level and standard; these
are then sent to the look-up table. The coefficients are loaded from the look-
up table to the pre-distorter which, for the PA used in this case, required a
memory polynomial model with order 5 and memory depth 5. The resulting
pre-distorted baseband signals are then forwarded to the RF front end. For the
FPGA implementation, the original input signal in-phase (I) and quadrature (Q)
components are used as the input for the pre-distorter block. This pre-distorter
block can be updated through the coefficient I/Q ports where I and Q are the
real and imaginary parts of the coefficients. In this work, as the RF front end
used has 14-bit DACs and ADCs, the interfaces use 16-bit wide AXI buses where
the data are transferred as 16-bit fixed point values.

The data interface of the memory polynomial model is AXI-Stream which has
256 bits of data width. It consists of 8 IQ signal pairs, each with 16-bit width.
The memory polynomial core will process 8 input signals per clock cycle. To
improve the efficiency of the processing, the core utilizes a CORDIC algorithm
to calculate the magnitude term in Equation 5.

Fig. 7. Parallel Processing Memory Polynomial Hardware Implementation

Implementation details of the parallel memory polynomial model are shown
in Fig. 7. The model processes multiple signal samples per clock cycle. The input
data is first disassembled into multiple signal samples. Each sample is connected
to a basis generation core. This block along with a CORDIC core, calculates the
term x(n)|x(n)|p−1 and the results are rerouted to the corresponding coefficient
multiplication block. Each coefficient multiplication block requires multiple input
bases for the memory taps. For simplicity, the figure here illustrates the design
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with up to 3 memory taps. In the actual implementation, the memory taps are
set to 5. These input bases will be multiplied with the corresponding coefficients.
The sum of the results is the output signal.

The addresses selection block requires the transmitted signal as input. The
relevant power of the signal is calculated and, along with the chosen signal
standard, is used to select the appropriate set of coefficients to use. The update
of coefficients is also controlled by this block, where the coefficients are updated
constantly.

5 Hardware Implementation and Experimental
Validation

Fig. 8. DPD TestBench RFSoC ZCU216 with NXP’s AFSC5G37D37 Doherty PA

The testbench setup is shown in Fig. 8. Xilinx’s RFSoC Gen 3 (ZCU216)
is used to perform DPD and baseband signal processing. With software and
hardware co-design, the address selection block is implemented on the ARM
core which utilizes the AXI-Lite bus to update the coefficients based on the input
signal. The computationally intensive task of computing the memory polynomial
model is performed on FPGA fabric.

The test PA is an AFSC5G37D37 Doherty PA from NXP, which is different
from the PA used in the previous validation section. Using a different PA shows
the generality of the proposed behaviour modeling and corresponding digital
predistortion. Since the output power of the RFSoC is limited, a driver stage
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PA BGA7210 is used to increase the input power to the test PA. The BGA7210
is a high linearity PA with variable gain which is operating in its linear region.
This PA allows us to set the input signal to different power levels.

5.1 Experiment: DPD performance comparison with different
standard’s training signals

For these experiments, three DPD models are obtained and each model is trained
with a particular signal standard. To validate performance of the resulting DPD
coefficients, each set of extracted coefficients are tested for three signal stan-
dards, namely 3G, 4G and 5G. From these experiments on the PA hardware,
Table 3 shows the NMSE performance for different signal standards. In each
row, the test signal is the same, independent of the training model it is applied
to. This includes the power level. With the same test signal we achieve similar
performance across different standards. The results show that the DPD model
can maintain similar performance even when the test signals and training signal
are under different standards.

Table 3. NMSE (dB) Comparisons with 3G, 4G and 5G Training and Testing Signal

Test
Training

3G 4G 5G

3G -26.36 -25.49 -31.13

4G -26.80 -31.25 -26.33

5G -24.88 -24.53 -24.97

5.2 Experiment: DPD performance comparison along different
power levels

Exploring in more detail the performance of the proposed technique over different
power levels, an experiment is devised where the signals under test are 5MHz 3G
signals with different power levels. The different power levels are achieved using
the driver PA. The DPD coefficients are trained using 4G signals and to facilitate
a direct comparison, the 3G signals. The obtained results are presented in Table 4
and show the NMSE comparison when the input signals are at different power
levels. These results show that the proposed DPD has only marginally reduced
performance. Additionally, the gap can be narrowed if a greater number of sets
of coefficients were trained.

6 Conclusions

This paper provides a definitive solution to behavioural modeling and digital
pre-distortion for multiple signal standards. By matching the relative AM/AM
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Table 4. NMSE Comparison with 3G Training Signal and 4G Training Signal for 3G
Test Signal at Different Power Levels

3G Test Signal Power (dBFs) -9 -9.5 -10 -10.5 -11 -11.5

4G training signal (dB) -25.22 -27.59 -28.30 -28.64 -28.91 -30.76

3G training signal (dB) -28.57 -28.73 -29.86 -29.55 -30.84 -31.94

difference (dB) -3.35 -1.14 -1.56 -0.91 -1.93 -1.18

curves for different signals passed through the same power amplifier, sets of
common coefficients that will work across signal standards can be found. While
the technique is demonstrated using polynomial models and Least Squares, the
relationships between different input signal standards exist irrespective of the
model structure used. Experimental validation is performed using input signals
of three different signal modulation schemes, and behavioral modelling and DPD
are carried out with experimental measurements using two different PAs from
two different manufacturers. The LUT approach works well for both cases and
the model or predistorter dimensions can be set in the usual way to cover the
characteristic behaviour of the chosen PA. The results show that training of a
model, the most computationally intensive aspect, can be done for one signal
standard and successfully applied to others provided the relative signal power
level offsets are known. Thus the same transmitter design can be used for multiple
signal standards.
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