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Abstract—Sketch-based algorithms for network traffic moni-
toring have drawn increasing interest in recent years due to their
sub-linear memory efficiency and high accuracy. As the volume
of network traffic grows, software-based sketch implementations
cannot match the throughput of the incoming network flows.
FPGA-based hardware sketch has shown better performance
compared to software running on a CPU when handling these
packets. Among the various sketch algorithms, Count-min sketch
is one of the most popular and efficient. However, due to the
limited amount of on-chip memory, the FPGA-based count-Min
sketch accelerator suffers from performance drops as network
traffic grows. In this work, we propose a hardware-friendly
architecture with a variable width memory counter for count-
min sketch. Our architecture provides a more compact design to
store the sketch data structure effectively, allowing us to support
larger hash tables and reduce overestimation errors. The design
makes use of a P4-based programmable data plane and the AMD
OpenNIC shell. The design is implemented and verified on the
Open Cloud Testbed running on AMD Alveo U280s and can keep
up with the 100 Gbit link speed.

Index Terms—FPGA, Partial Reconfiguration, P4, Network
Systems

I. INTRODUCTION

For data processing and analysis, the count-min sketch
algorithm, presented by Cormode [6], has emerged as a
powerful and efficient technique for approximate counting and
frequency estimation tasks. It harnesses simple probabilistic
hash functions to precisely characterize data sequences while
using sub-linear memory space.

Count-min sketch is widely used in computer networking
for tasks such as heavy hitter detection, change detection,
and cardinality estimation. The heavy hitter detection problem
finds network flows that occupy a significant amount of
the network bandwidth. Identifying and taking action against
heavy hitters improves network applications like network traf-
fic engineering and can be applied to network intrusion detec-
tion [6], [7], [16]. Field-Programmable Gate Arrays (FPGAs)
are excellent candidates for implementing sketch algorithms.
The FPGA architecture is well known for its ability to imple-
ment parallelism and pipelining, which is an ideal match for
the sketch approach that needs to maintain counters in parallel
and process data streams in a pipelined manner. However, as
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network traffic proliferates over time and the bandwidth of
network interfaces increases, FPGA implementations of the
sketch algorithm suffer from performance drops due to limited
on-chip memories.

In this paper, we present a count-min sketch implementation
with a variable width counter array designed to provide
more efficient memory usage. Hua, et al. proposed a variable
width counter design: Bucketized Rank Indexed Counters
(BRICK) [11] for 64-bit CPUs. We optimize the BRICK archi-
tecture for FPGAs. Then we develop a count-min sketch FPGA
accelerator using the Protocol-Independent Packet Processing
(P4) language combined with the proposed implementation,
verify its correct behavior, and measure the performance on
an FPGA node directly connected to a 100 Gbps network.

The contributions of this paper are:
• We present HBRICK, a hardware friendly memory design

implementing variable width counter arrays on FPGA
fabric based on BRICK.

• We build a data-pipelined count-min sketch architecture
with HBRICK.

• We integrate a real time in-network count-min sketch
accelerator with the proposed architecture into an FPGA-
based NIC (AMD/Xilinx’s U280) that proceses 100Gbps
packet streams.

The resulting design combines P4 and High-Level Synthesis
(HLS) to implement a hardware-friendly count-min sketch
with a variable width counter and demonstrates the throughput
advantage and reduced resource utilization of the design. The
design is tested using network data in the Open Cloud Testbed
(OCT) [27]. It demonstrates a design model where the FPGA
can directly extract information from the packets and conduct
acceleration tasks without the interference of the host. This
approach can be extended to other applications where the
FPGA processes data directly from the network.

The rest of this paper is organized as follows. Sec. II
presents background and related work, focusing on the sketch
algorithm with variable width counters and highlighting its
benefits. We also discuss the recent works in combining the
usage of the network domain-specific language P4 and HLS
for developing network functions. In Sec. III, we investigate
the algorithms of BRICK and our optimized hardware-friendly
HBRICK. Sec. IV presents the combined use of P4 and HLS
to easily implement a system level in-network function design
that can be plugged into the FPGA-based SmartNICs. Next,



we present our experiments and results. We conclude with a
discussion and conclusions.

II. BACKGROUND

A. Sketch with Variable Width Counters

FPGAs are particularly well suited to accelerate streaming
algorithms, where data are streamed into the accelerator and
processed in a single pass. As the data size is much larger than
the hardware memory resources, the goal is to use sub-linear
memory resources compared to the number of data items to
estimate a certain variable.

In this paper, we target a particular streaming data problem:
detecting the heavy hitters in network flows. Here, each data
item is an individual network packet. We identify a set of
packets with the same five-tuple (source and destination IP
addresses, source and destination transport protocol number,
and transport protocol type) as a packet flow. We characterize
a packet flow as a “heavy hitter” when the accumulative size of
all packets within the flow surpasses a specified threshold [6].

Sketches are algorithms that condense data stream infor-
mation using sub-linear memory about the data stream size.
Typically, sketches comprise multiple counter arrays to ap-
proximate the frequency of elements within the stream. In
the heavy hitter problem, we use the sketch algorithm to
record the packet flow size. While sketches utilize smaller
memory, increasing the number of entries in the counter arrays
reduces the estimation error of the sketch. With a constrained
memory size, reducing the number of bits used for each entry
in the counter arrays allows for more entries within each array.
This results in better estimation accuracy due to the increased
capacity for capturing more elements in the data stream.

We analyze the sizes of 588K network flows based on
real network traces made public by CAIDA [3]. We calculate
the minimum bit width required to store these flow sizes.
As shown in Fig. 1, the real network traces contain mostly
small flows. The heavy hitters, which require more memory
bits for recording, constitute only a small fraction of the total
flows. In other words, only a very small number of counter
entries require more bits. One solution to reduce memory
usage efficiently is to use variable width counters instead
of fixed width. To achieve the variable width counters, extra
processing cycles are commonly required to access a certain
entry due to its adaptive architecture. Thus, variable width
counters provide a trade-off opportunity between computing
overhead and memory.

B. P4-based In-network Computing on FPGA-based Smart-
NICs

In-network computing aims to offload compute intensive
networking tasks from the CPU to network devices like pro-
grammable NICs. In-network computing can reduce the over-
head incurred by the CPU host and improve the performance
in throughput and other metrics. Different kinds of hardware
devices, such as AMD Pensando’s DPUs, Nvidia Bluefield
SmartNICs, and AMD/Xilnx’s FPGAs, have been used for
computing in the network. There was a lack of device-agnostic
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Fig. 1. Minimum Counter Bit Width Requirement Distribution of 588K
TCP/UDP flows of real network traces. The largest packet flow requires 29-bit
to store its total size while most flows only require 14-bit counters.

high-level abstractions in processing packets among these
devices. P4, a domain-specific language originally developed
to control packet forwarding in the data plane for devices like
routers and switches, provides a language for programming
these NIC devices at a higher level [2].

FPGAs have been a good candidate as P4-programmable
devices since the beginning of the P4 language. P4-
NetFPGA [12] created a workflow enabling offloading P4
functions onto FPGA-based NICs while maintaining high
throughput. To maximize the capabilities of FPGAs in in-
network computing, we propose a design that combines P4 and
HLS. The intended network task will be segmented into one
or more computational kernels, which are constructed using
HLS, whereas P4 will control the packet flow through different
kernels based on packet headers. We demonstrate our design
as a case study of the combination.

C. Related Work

FPGA-based designs of count-min sketch with its variants
have been widely studied in the past decade because of
the match between the hardware device features and sketch
structures. Tong et al. [23]–[25] implemented FPGA-based
count-min sketch in the 2010s. They provide details on count-
min sketch implementations. They analyzed the data conflicts
caused by memory access latency and designed a data for-
warding unit to mitigate its effect [25]. In contrast, [5] and
[21] describe the design of an approximate counter that can
record larger data values with less memory. Kiefer et al. [14]
propose a programming model to summarize general sketch
designs and their system, Scotch, generates the hardware
designs automatically. Their techniques are independent of the
counter array design, which our work can easily apply. Dif-
ferent groups have also researched other FPGA-based sketch
algorithms including Hyperloglog [4], [15], [17].

More complicated sketch systems using P4 [18], [26]
implemented on network devices including the Intel Tofino
switch [13] have been presented in the past. P4 provides
flexibility in designing sketch systems for complex network
monitoring tasks. As P4 is device-independent, developers can



scale their P4 designs across the network with heterogeneous
network devices. In [22], the authors propose a framework that
can disaggregate complex network tasks described by P4 into
multiple small functions and assign them to different types
of network devices including Intel Tofino switches, AMD’s
FPGAs and legacy x86 CPUs. Our application also builds
on the P4 language, where we use P4 to define the packet-
level behaviors for network flows and combine it with HLS to
generate a high-performance processing block for count-min
sketch that interacts with P4. This allows us to test our design
on an FPGA directly connected to the network.

III. ALGORITHM AND HARDWARE IMPLEMENTATION

A. Count-min Sketch

In general, a streaming data problem is described as follows:
For a given sequence ST = {X1, X2, ...XT }, compute a
function F of the sequence: F (ST ). To solve a data streaming
problem while also utilizing sub-linear memory resources, an
approximate estimation of the function F is generally used.

Count-min (CM) sketch is a widely used algorithm to
estimate the sum of data elements. The idea is to map a data
element to multiple counters using independent hash functions
and then increase the value of the corresponding counters by
the size of the data element. To estimate the total size of
a certain flow, the algorithm will return the minimum value
among all counters for that data element.

Algorithm 1 Count-Min Update
Input: ST

Output: C
Cd[W ]← 0
for t← 1 to T do
kt, ct ← Xt

for d← 1 to D do
Cd[hd(kt)] = Cd[hd(kt)] + ct

end for
end for

To illustrate the algorithm, we define D hash functions hd ∈
H . Each hash function is associated with a counter with W
entries: Cd[W ] ∈ C. The count-min counters are maintained
as shown in Algorithm 1. The symbols kt and ct are denoted
as the key (packet flow ID) and the size of the packet XT .
The flow ID can be determined by the five tuples introduced
earlier.

To query the flow information for a given key k, the
algorithm compares all the corresponding values from all
counters and returns the minimum value. It can be described
as:

F (ST , k) = min(Cd[hd(k)]),∀d ∈ D (1)

The combination of the design parameters D and W defines
the estimation error bound of the CM sketch. The theoretical
CM error bounds are as follows. For a given D = log(1/δ),
W = 2/ϵ and any threshold ϕ, with the probability of 1− δ,
the sketch algorithm will not falsely over-estimate any flow

with size lower than ϕ − ϵ of the entire stream. In other
words, mathematically, the overestimation error of the count-
min sketch will not exceed 1− δ.

B. Challenges in Bucketized Rank Indexed Counters (BRICK)
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Fig. 2. Bucket design of BRICK Architecture and Bucket Migration. The
red parts indicate the bucket overflow migration when there is not enough A3

sub-counter bits.

BRICK [11], a variable width counter design, is established
based on the idea that not all data entries in the counter will
use up all the bits assigned. On the contrary, it assumes that
most of the data entries will only require an average number
of bits. The entire BRICK counter system is constructed from
N buckets, totaling W = Nk entries. In each counter bucket,
the first level contains k sub-counters with average bitwidth,
while subsequent levels Ai contain ki < k sub-counters. We
refer to these subsequent level sub-counters as optional levels
and A1 as the base level. If we properly select the base level
bitwidth as the average bitwidth of the entire data, most of the
data will only use up the base level sub-counters. Only a small
portion of the data will require optional level sub-counters, i.e.
A2, A3, .... As a result, we achieve reduced memory utilization
through this multi-level memory counter design. Fig. 2 depicts
a specific three-level counter bucket comprising k counter
entries. When an entry with address C is recorded, the correct
bucket is determined by C/k, and its relative position within
the bucket is Ci = C mod k. The first three bits of the entry
are stored in the base sub-counter. If the value exceeds three
bits, it automatically overflows to the optional levels.

To connect the data at different levels of the counters, the
BRICK approach uses the technique called rank indexing.
Rank indexing is based on 1-bit bitmaps I . For an L-level
design, there will be L−1 bitmaps. Each bitmap has the same
number of entries as its level. If we denote Ii as the bitmap of
i-th level Ai, Ii[p] denotes whether the sub-counter entry Ai[p]
extends to the next level Ai+1. If the bit is set to true (shown
as a shaded block in the figure), the rank q = rank(Ii[p]) is
entry p ’s next-level location. The rank(Ii[p]) function returns
the number of ones in the current bitmap Ii in the range [0, p].
For example, in Fig. 2, the entry C3 at the first level has its
corresponding bit at bitmap I1 set to be true (shaded). It is
the second shaded box of the entire bitmap I1, i.e. its rank is
2. Therefore the entry C3 has an extension to the next level,
A2[2].

The design divides the counter into small buckets and
assumes that data is normally distributed so that data items
with large values will fall into different buckets on average.



However, real data is often skewed and not normally dis-
tributed. Another important scheme of the BRICK design is
to handle the insufficient number of sub-counters. As the sub-
counters for higher levels are limited, the worst case is the sub-
counters at the higher level are not enough to accommodate all
the large data items. In other words, more than expected large
flows fall into the same bucket. In Fig. 2, the sub-counter A3

overflows as it reaches the capacity of A3. When this happens,
the BRICK design will copy all the data in the bucket to a
spare, full width bucket. In [11], the authors provide concrete
mathematical analysis in determining the width and number
of entries for each level of the sub counters to reduce the
possibility of overflows.

The BRICK design was originally designed for CPU-
based sketch counters. When network functions like sketch
implementations are offloaded to FPGA-based SmartNICs,
it is necessary to accommodate such variable width counter
designs onto the FPGA to improve memory efficiency and
estimation accuracy. A few challenges need to be addressed
for implementing such design on an FPGA to achieve high
performance:

• As multiple cycles are required to read a complete entry
from the counters, data hazards are introduced and cause
increasing errors in the sketch estimation.

• An inefficient shift operation happens during the counter
update stage. For example, in Fig. 2, if C2 at level A1 is
about to extend to the next level, it should fill the position
A2[2]. If A2[2] is already occupied from earlier counter
operations, a shift of A2[2] and A2[3] is required.

• There is an inefficient bucket migration strategy. The
BRICK design requires a few full width buckets and
every entry of the bucket has the worst-case width. This
is an inefficient use of the memory as all the data in the
original bucket have an extra copy in the full-size bucket.
In addition, extra time is required for copying the data.

C. Design of Hardware-friendly Bucketized Rank Indexed
Counters (HBRICK)

To address the above issues, we propose the Hardware-
friendly Bucketized Rank Indexed Counters (HBRICK).

The main issue causing data hazards in the BRICK design
is its recursive indexing algorithm, which results in variable
cycles to update the counter based on the element’s bitwidth.
Larger elements with more sub-counters require more cycles.
To resolve this, we propose a parallel indexing architecture,
as shown in Fig. 3. Instead of recursively indexing the sub-
counters, we separate the process into an indexing phase and
an update phase. We combine the indexing arrays Ii into a
single large array I . During the indexing phase, We use I
to generate the indices for all layers together through the
rank operation. With the full-size indexing array I , we can
index all layers in parallel and fetch the results from sub-
counters simultaneously. Our universal index array design
simplifies index management. Although the bitmap I requires
more memory space than in BRICK, this allows us to control
the entire update process at a fixed clock cycle Tc, solely
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Fig. 3. HBRICK’s optimized bucket design

based on the number of entries k in each bucket. Given this
fixed overhead, we create a Data Forwarding Unit (DFU) for
each bucket, essentially a FIFO with a depth Tc. This unit
consolidates multiple accesses to the same entry into a single
access over consecutive Tc cycles. Algorithm 2 presents the
details of HBRICK.

Algorithm 2 HBRICK Access
Input: Index i
Output: Count C
C ← 0
Bucket B ← i÷N
j ← i mod k
S ← rank(j, IB)
for l← 1 to L do

Note: Iterations execute in parallel
C+ = Al[Sl]

end for

To improve the inefficient shift operation, we employ data
packing techniques for the optional level sub-counters. We
pack all the data in optional levels into single data words re-
spectively, transforming the data shift operation into an atomic
bit-wise shift. While this reduces the total number of entries
k in each bucket, it also decreases the processing overhead
and helps improve the total throughput. Additionally, since
the access for an optional level value is a single word, we can
store this word in a local register during consecutive accesses.
This approach avoids the data dependency for BRAM reads
and writes. However, the drawback of this design is that it is
constrained by the maximum bitwidth of the BRAMs, which
is 72 bits.

To efficiently address bucket overflows, we propose inte-
grating a BRAM-based fully associative memory block into
the design. This addition enables the rapid identification of
overflowed entries across the entire counter set. Each entry in
the bucket is assigned a dirty bit in an array V ; this dirty bit
indicates whether the entry has been evicted from the bucket.



By combining the index array and the dirty bit array, we save
additional memory space compared to the original BRICK
architecture. According to [11], for real network trace with
millions of packets, BRICK requires J = 100 extra full width
buckets with k entries each to accommodate overflowed data
items. Usually, there are only 1 or 2 overflows that happen
per bucket. As a result, HBRICK requires only J entries in
total to migrate the overflows, compared to k ∗ J total entries
required in BRICK.

Index 
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Fig. 4. HBRICK Associative Memory Design. (a) demonstrates a single
mapping between the 9-bit key and 72 entries. (b) shows an extension of
the associative memory with a larger key width and capacity.

The design of the associative memory also utilizes the on-
chip BRAM. The FPGA dual-port BRAMs are 36Kb memory
on AMD Alveo cards and each can be configured as 512
entries with 72-bit wide data. In other words, we can create
a simple array with 9-bit addresses to store 72-bit wide data.
However, this design will lead to very sparse memory usage.
We applied a similar rank index technique used in our bucket
design to construct our associative memory since we only need
hundreds of entries while the key space is large. For a given
key, we use the 72-bit BRAM value to store whether such key
is in the associative memory, as shown in Fig. 4, and indicate
the location of the value. In HBRICK, we applied the key
width based on W and the capacity based on the possibility of
overflow. With the above designs, we demonstrate the counter
update algorithm in Algorithm 3.

Fig. 5 shows the overall design of the entire HBRICK
counter. The optimized bucket design has three stages. At
the pre-processing stage, the access to the same entry will
be combined. The indexing stage will calculate the correct
indices to access the correct BRAMs among all levels. At last,
the values are fetched from the BRAMs and reconstructed into

Algorithm 3 HBRICK Update
Input: Index i, New Value C

Bucket B ← i÷N
j ← i mod k
S ← rank(j, IB)
if WIDTH EXPAND then

if OVERFLOW then
VB [j]← 1

else
Counter Shift: A[S] >> dl

end if
end if
Update Base Sub-counters:
A1[j] = C[:]
Update Optional Sub-counters:
for l← 2 to L do

Note: Iterations execute in parallel
Al[Sl]& = C[:]

end for
Write Al back to BRAM

the final value. If the dirty bit is set, access to the associative
memory is needed.

-

-
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A3

Idirty bit
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DFU
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N Buckets
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HBRICK Design
pre-processing Indexing Value fetch

if evicted

else

dirty bit == 1

Fig. 5. Overall HBRICK architecture and data paths. The optimized bucket
design includes three stages: pre-processing, indexing, and value fetching.

IV. SYSTEM IMPLEMENTATION

To demonstrate the use of our HBRICK counter in the
count-min sketch algorithm and to measure its performance,
we develop an in-network count-min sketch implementation
with HBRICK and implement it on an FPGA-based NIC.

We implement the entire system on an FPGA node in the
Open Cloud Testbed (OCT) [27], where an AMD Alveo U280
FPGA is used as a SmartNIC attached both to the host CPU
and to the 100Gbps network to receive and process incoming
packets. The experimental setup is described in Sec. V. The
system is generated with support from the toolchain developed
by the OCT operators [9]. The OCT provides a framework
that allows network researchers to easily program their P4
applications onto the FPGA through the use of AMD’s P4
compiler. In our case, we extended the usage of this framework
and combined it with HLS to achieve a much more compli-
cated design. We showcase the usage of two different high-



level abstractions under the network processing framework and
explore how to connect two different toolchains.
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Fig. 6. System Architecture for HBRICK-based Count-min Sketch. Data on
the numbered path: 1. raw packet; 2. packet key; 3. estimate value; 4&5 packet
forward to the host.

This system implementation is broken up into two parts:
front end and back end. On the back end, we use the count-min
sketch with HBRICK counter generated by HLS as the back
end kernel recording and estimating the flows. The front end is
a P4 block that controls the packet’s path, and extracts header
fields as the flow key. It also helps reconstruct the packets
and forward the packet to the host. Fig. 6 shows the system
architecture of our design. We make use of the open source
OpenNIC shell [1] as the fundamental framework, which offers
MAC and DMA support for IO. Our application is a plugin
block that sits between the CMAC and QDMA blocks of the
OpenNIC shell.

The code snippet for the P4 function is shown in Listing 1.
We explore the usage of the P4 extern functions as the
connecting point between the HLS-generated blocks and P4
blocks. In particular, we utilize the P4 extern functions as the
wrapper of our HLS function and create a standard interface to
exchange the necessary information between blocks. Through
the use of the high-level language P4, we have significantly

1 ...
2 parser MyParser(packet_in pkt, out headers hdr){
3 apply {
4 pkt.extract(hdr)};
5 }
6 control HHD_Processing(inout headers hdr) {
7 // Declare exteranl sketch engine
8 UserExtern<in_tuples_t, out_tuples_t>(4) sketch;
9 ...

10 apply {
11 // Prepare input for the sketch engine
12 ...
13 //Call the backend sketch engine
14 sketch.apply(tuple_in, tuple_out);
15 // Define post-process behaviours:
16 // Setting the user-defined header field
17 if (tuple_out.flow_size > THRESHOLD)
18 hdr.isHitter = 1;
19 else
20 hdr.isHitter = 0
21 forwardPacket();
22 }
23 }
24 ...

Listing 1. P4-based front-end

reduced the effort required for designing and implementing
network functions. The P4 code requires only about 300 lines,
50% of which is the definition of headers. Our HBRICK-based
count-min sketch also requires about 400 lines of HLS code.
The abstraction of the P4 language demonstrates a powerful
design model for extracting necessary information directly
from the network packets. The FPGA kernel can then bypass
the unnecessary data copy in the host CPU. In our case, the
extracted information is packet headers. Alternatively, it can
also be information in the packets’ payloads. For example,
we can easily use this design model to extract images from
the network packet and execute machine learning inference on
FPGAs directly.

V. EXPERIMENTS AND RESULTS

In this section, we describe the testing environment, OCT,
and test results of our design. First, we quantify our results in
reducing BRAM utilization. Next, we provide a design accu-
racy profile comparing our HBRICK to the original BRICK.
Finally, we present end-to-end throughput results from testing
in a real network with actual network packets.

A. Testing

For testing, we request an FPGA node from the Open Cloud
Testbed [10]. The node is connected to OCT infrastructure
through 100G network links for network tests. We load our
implementation onto the FPGA and employ it to receive and
identify packets from the network. The packets are real time
traces from the Center for Applied Internet Data Analysis
(CAIDA) that were collected at the Equinix-Chicago backbone
link in January, 2016 [3]. We replay these packets from another
OCT node that connects to the same network via 100Gbps port
as our FPGA node. The FPGA node processes all the incoming
packets from the 100Gb link and then forwards them to the
host, where we verify the received packets and measure the
performance. The host is running with DPDK [8] as the NIC
driver which allows it to keep up with the throughput.

B. BRAM Utilization and Performance

We have implemented the design of HBRICK under differ-
ent configurations to find the optimal choices of the number of
layers. We know that increasing the number of counters and
layers will result in better estimation accuracy and increased
memory utilization. The increased memory utilization will
decrease the maximum operating frequency of the module
and thus affect the throughput. Also, the increased number
of memory layers will lead to large overhead and lower fre-
quency. Therefore, one goal is to determine the optimal trade-
off that achieves both high throughput and low estimation
error.

First, we investigate the optimal selection of the number of
layers. Table I illustrates the impact of the hierarchy of coun-
ters on frequencies and estimated processing overheads. As
the number of layers increases, memory utilization becomes
higher, but this comes at the cost of reduced processing speed



TABLE I
DIFFERENT HBRICK MEMORY LEVELS FOR 215 ENTRIES.

Levels Freq. (MHz) Overhead (cycles) BRAMs
2 412 10 132
3 397 14 114
4 213 18 106
5 74 22 99

and increased overhead. Therefore, we choose the three level
HBRICK counters for our performance measurements.

Fig. 7 shows a drop in clock frequency as the number
of entries in each hash table increases. As the depth of
the table increases, the BRAM size also grows. The figure
illustrates that when the BRAM exceeds a certain threshold,
the operating frequency drops significantly due to the extended
data path required to access the larger BRAM. Reshaping the
counters array and dividing it into multiple memory banks
can slightly increase the frequency, but the clock frequency
still experiences a reduction.
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TABLE II
BRAM UTILIZATION COMPARISON BETWEEN DIFFERENT

IMPLEMENTATIONS

Implementations Freq. (MHz) Overhead (cycles) BRAMs
Regular CM 453 2 153
Original BRICK 156 42 103
Ours 397 14 114

Based on the above results, we select D = 4 and W = 215

with three layers L = 3 of variable counters as our de-
sign configuration where the design can run at a maximum
397MHz. It provides a relatively low overestimation error
while maintaining a high operating frequency. Using a total of
4 hash functions provides good end-to-end throughput results.
Assuming network packets of 64 bytes (the minimum size) as
our input stream and that our pipeline can process one network
packet in each cycle, our design can achieve a 195Gbps
throughput with this frequency.

Finally, we implement the other two count-min sketches.
One is with the traditional counters and the other is with the
original BRICK counters. Table. II shows the BRAM utiliza-
tion and its max frequency achieved. The table shows that our
implementation outperforms the original BRICK in frequency
and achieves about 18.9% BRAM utilization improvement.

TABLE III
AVERAGE ABSOLUTE ERROR ON DIFFERENT DATASETS

Datasets Skewness CM Original BRICK Ours
Zipf 0 1748.4 116.7 114.3
Zipf 0.25 1712.3 119.5 121.6
Zipf 0.5 1361.2 142.5 142.5
Zipf 0.75 1642.5 154.3 156.1
Zipf 1 472.5 125.3 125.3
Zipf 1.25 129.6 104.4 102.2
Zipf 1.5 6.3 8.3 7.4
CAIDA-1 - 432.5 105.8 105.3

C. Design Accuracy Profiling

In this section, we use two types of datasets to measure
the accuracy and miss rate of our implementation. The first
dataset consists of real network traces captured by CAIDA
in 2016, containing 3 million packets. The second dataset is
synthetically generated to follow the Zipf distribution [20].
For the Zipf distribution, we generate multiple datasets with
varying degrees of skewness, determined by the exponent s.
The skewness ranges from 0 to 1.5, with all Zipf datasets
containing 3 million packets. As the skewness increases, the
total number of flows decreases, resulting in more heavy flows.

We measure the performance of the sketches using the
average absolute error, defined as the average error between the
real and estimated sizes of all flows. Our design is compared to
the traditional count-min sketch (CM), which employs a fixed
width counter. Both designs use a similar number of BRAMs.

As shown in Table III, our design demonstrates superior
accuracy when the data is skewed. Given the similar total
memory usage, overflows are more likely to occur when
using the fixed width counters, leading to significant errors.
However, as skewness continues to increase, our variable width
counter design also shows increased error. When the skewness
exceeds 1.25, predominantly heavy flows cause our design to
suffer from overflows. Despite this, our design performs well
with real world CAIDA datasets and Zipf distribution when
the skewness is around 1.

D. End-to-End Results

We implemented the entire design with the selected config-
urations and tested it on OCT FPGA nodes as described in
Sect. IV. Our overall design achieves the resource utilization
for each block shown in Table. V.

In Table. IV, we compare our design with other FPGA
implementations. Among all the listed implementations, we
measured the real-time throughput through the existing FPGA-
based SmartNIC framework. Other implementations provide
their throughput based on the generated design frequency.
Our measured throughput of this design is about 92Gbps on



TABLE IV
PERFORMANCE COMPARISON OF VARIOUS FPGA-BASED DESIGNS

Design Counter Type Device Theoretical Throughput (Gbps) Real-time (Gbps) D, W 1− δ
[19] exact Xilinx Virtex 2 XC2V1000 61 - 4, 212 -
[25] exact Xilinx Virtex Ultrascale XCVU440 155 - 5, 216 -
[25] exact Xilinx Virtex Ultrascale XCVU440 146 - 10, 215 0.999
[15] exact Xilinx Alveo U250 575 (with three CM kernels) - - 0.99
[21] approx. Xilinx Virtex UltraScale+ 196 - 4, 216 0.98
[21] approx. Xilinx Virtex UltraScale+ 212 - 5, 215 0.99
HBRICK exact Xilinx Alveo U280 195 92/100 4, 215 0.98

TABLE V
OVERALL RESOURCE UTILIZATION

BRAM LUTs URAM DSPs
OpenNIC shell 16.54% 8% 1% 0
P4 Front end 4.6% 3.4% 0 0
Sketch engine 30.6% 1% 0 0

one Ethernet port of the AMD U280. Our design also shows
a comparable design frequency and theoretical maximum
throughput with other implementations. In [21], the authors
implement an approximate counter design called HSAC, which
adopts the Simple Active Counter (SAC), a counter that uses a
representation similar to floating-point numbers. As shown in
Table. IV, our design demonstrates better accuracy compared
to this approximation-based counter. The design presented
in [15] shows high performance results using multiple count-
min kernels and demonstrating cumulative performance. Their
architecture primarily addresses data conflicts between these
parallel kernels, using normal counters with universal bitwidth.
Our design is orthogonal to their architecture and can further
enhance memory efficiency. A detailed discussion will be
covered in the next section.

Overall, our design demonstrates comparative performance
in accuracy and throughput with reduced memory usage com-
pared to other FPGA-based implementations.

VI. DISCUSSION AND FUTURE WORK

This paper presents a novel variable width counter archi-
tecture for count-min sketch algorithm with reduced memory
resource utilization compared to traditional count-min sketch
implementations. In Sec. V, we demonstrate the advantage of
using our design. Currently, we have implemented a single
sketch engine on an Alveo U280 FPGA. An improvement
we plan for the future is to increase the number of parallel
engines using straightforward duplication. In [15], the authors
refer to this as a “pessimistic” architecture and they propose
an “optimistic” architecture that uses shared memory as shown
in Fig. 8 with really high-performance as shown in Table. IV.
Our design is a natural fit for this parallel architecture as we
have already divided the counters into numerous small buckets.
For future work, we plan to explore our design’s performance
with parallel engines.

Our design uses P4 controlling packet processing while
offloading the sketch task to an external function implemented
using HLS. It demonstrates a design methodology of using
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……
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Count-min BRAM_1

Count-min BRAM_2

……

Dispatch
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Fig. 8. Shared Memory for Parallel Engines. (a) Pessimistic architecture; (b)
Optimistic architecture.

the network domain-specific language P4 block to describe
network behaviors of packet processing and HLS to achieve
high throughput processing units. This methodology also al-
lows us to orchestrate network flows among multiple HLS-
based compute blocks using P4. Another direction for future
work is to exploit and design more complicated network traffic
monitoring systems with the combination of P4 and HLS.

VII. CONCLUSION

In this paper we present HBRICK, a novel hardware ar-
chitecture for count-min sketch with variable width counters,
which allow for larger traffic flows to be handled by FPGAs
processing data traffic at the edge. The original design for
variable width counters ignored data hazards introduced by
its recursive update mechanism and inserted extra processing
overhead. In contrast, the HBRICK architecture solves this
problem by redesigning the counters and supporting hardware.
We implemented our design on FPGAs connected to 100Gb
Ethernet network connections. We combine a hardware imple-
mentation of the count-min sketch implementation, described
in HLS, with a P4 packet processing front end and demonstrate
the ability to keep up with the line rate on the network.

Our implementation and experiments demonstrate one ap-
plication of network-attached FPGAs with the combination
usage of the two high-level abstractions P4 and HLS. Our
design constitutes a case study of a potential framework where
network-attached FPGA can bypass the host CPU it attaches
to and directly extract the necessary information from the
network packets through P4 and process them using HLS.

In the future, we plan to improve the performance of our
sketch architecture by exploiting parallelism at several levels.
This parallelism will not be limited to a single FPGA, but will
be implemented across multiple network-connected FPGAs in
the data center to construct a complete networking monitoring
system.
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