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Abstract—We present a real-time adaptive Digital PreDis-
tortion (DPD) system developed on a System-on-Chip (SoC)
platform with integrated RF front end, namely the AMD/Xilinx
RFSoC. The design utilizes the heterogeneity of the RFSoC and
is carefully partitioned. The control logic and training algorithm
are implemented on the embedded ARM processor, while the
predistorter module is placed on the FPGA fabric. To better
coordinate both the hardware and software implementations, the
training algorithm has been optimized for a shorter training time
which results in a system that adapts to current environmental
conditions with a shorter latency. Specifically, the number of
signal samples used in training are reduced by applying the prob-
ability distribution information from the input signal in order
to reduce the training time while retaining the important data
samples. Results show that this reduced training set maintains the
accuracy of the full data set. The implemented design balances the
processing on the ARM processor and FPGA fabric resulting in
a computationally efficient solution which makes good use of the
different resources available. It has been experimentally validated
on an AMD/Xilinx Gen3 RFSoC board with an exsternal GaN
Power Amplifier (PA).

Index Terms—Digital pre-distortion, power amplifiers, FPGA.

I. INTRODUCTION

Wireless implementations for 5G and beyond require pro-
cessing with low latency, hence much of this processing needs
to happen on the edge. As the number of transmitter paths in
base stations increase, a growing demand is placed on the
baseband resources needed to implement digital correction
techniques. More computationally efficient solutions that are
demonstrated to work in practice on embedded hardware
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are needed. In this research we target a specific wireless
application, namely Digital PreDistortion (DPD).

As with most cellular standards, the primary requirement
is that the RF front-ends do not generate any unintended fre-
quency components which would interfere with other users of
the frequency spectrum. However, the desire for lower carbon
footprints requires the use of more power efficient hardware,
which in turn requires the use of non-linear devices that are
more likely to generate unwanted frequency components. In
order to remove these, digital signal processing can be applied
to pre-distort the signal at baseband. The net effect results
in the RF output signal being linear and not containing any
unwanted frequency components.

The evolution of cellular wireless communications has seen
its largest changes proposed for 5G. Multiple competing
objectives are set for the wireless communication hardware
for these systems. Higher data-rates, higher capacity and ultra-
reliable low latency are simultaneously desired. Low latency
of the signal through the hardware has in the past focused
research on minimizing the total number of computations in
the DPD hardware block. However, as the number of trans-
mitter hardware paths increases more sophisticated designs are
required, and a growing demand is placed on the baseband
resources needed to implement digital correction techniques.
Thus, computationally efficient solutions that are demonstrated
to work in practice on embedded hardware are needed. The
focus of our research is to identify how best to implement DPD
such that it reacts rapidly to the current wireless environment.

Power Amplifiers (PAs) are one of the most important
devices in modern wireless communication systems. They
draw a great deal of power and also suffer from non-linearities
when transmitting signals. DPD has been widely studied to
alleviate the non-linearities introduced by the PA. We target an



AMD/Xilinx System on Chip (SoC); specifically the RFSoC,
which integrates RF frontend, FPGA fabric, and embedded
ARM cores all on the same package [1]; to implement DPD
in real time. The challenge is how best to use the available
resources. In particular, which portions of the implementation
should be mapped to the embedded processor, and which
belong on the FPGA fabric? This paper addresses these issues
as well as balancing the processing on each type of resource.

Implementation of digital pre-distortion (DPD) can be
achieved by forming a series of basis functions using permu-
tations of input signal samples, which are then multiplied by
a set of weights and summed. The resulting signal, now pre-
distorted, can be applied as the updated stimulus to the PA. The
basis functions are commonly a subset of the Volterra series
and are capable of linearizing a nonlinear dynamic system
such as an RF power amplifier. Training the values for the
weights in DPD is an iterative process, where in each iteration
a calculated error is aimed to be progressively minimised until
convergence is achieved [2]. Least squares has been employed
successfully to calculate these weights for the DPD block.
To minimize the total computational effort to calculate the
weights on each iteration, a suitable strategy should be adopted
to minimize the dimensions of the arrays and matrices used.

The output signal from the power amplifier is measured to
identify how close it is to a linear output. Researchers [3], [4]
have investigated the viability of using a bandlimited or low-
rate ADC solution. Limiting the performance of the analog or
mixed-signal components can save money and enable the use
of lower frequency hardware, but requires the implementation
of additional signal processing techniques such as compressive
sampling [5] to reduce the number of signal samples used in
the DPD weight calculation.

One approach targets the reduction of the total number of
weights used in the pre-distortion function, to reduce the size
of the matrix used in the least squares calculation in one
dimension [6]. The second dimension depends on the number
of time domain training signal samples used. Traditionally, a
bandwidth which is a multiple of the original input signal is
used, and the output signal is sampled at a rate equivalent
to the rate of the original input signal. A large set of data
points at this high sample rate need to be recorded to collect a
training dataset covering a broad range of input signal levels
and transitions between levels. By removing the unnecessary
samples, a suitable sample rate can be chosen to minimize the
mutual information between these consecutive time domain
data points [7]. While this improves the accuracy of DPD,
it requires a large number of consecutive sample points.
An alternative is to take advantage of a-priori knowledge
about the signal levels that will be most or least commonly
experienced by the power amplifier. By only recording a
predetermined smaller number of sample points at the various
signal levels, enough information can be gathered on the
relative performance of the PA, and the dimension of the
matrix used in the least squares calculation of the DPD weights
can be greatly reduced. Previous attempts [8] have used the
probability density function of the signal sample values as a

guide for how many samples at the various levels should be
used. However, the solutions presented do not provide detail
on how this can be realised in practice in an embedded system.

In this work, the complete DPD solution is demonstrated
using only a Xilinx RFSoC FPGA and a high power RF
GaN power amplifier. Using the FPGA programmable logic
resources and embedded ARM processor on the RFSoC, a
DPD solution is successfully validated through experimental
measurement. Novel dimension reduction strategies are em-
ployed in the construction of the matrix used to calculate
DPD weights to more heavily weight samples in non-linear
regions. Removal of training sample points in this way results
in improved DPD performance, which is quantified using
Normalized Mean Squared Error (NMSE).

The contributions of this research are:

• Targeting the Xilinx RFSoC for a complete DPD solution
which uses FPGA fabric, embedded ARM processor, and
RF front end.

• Reducing the number of input samples used for training to
accelerate training time without sacrificing performance.
The algorithm selects the training samples according to
the probability characteristics of the input signal in a
manner that can efficiently be implemented in FPGA
hardware.

• Experimentally validating DPD on the Xilinx RFSoC
with training implemented on the ARM processor and
DPD on the FPGA hardware making use of the reduced
training dataset.

II. BACKGROUND

A. Memory Polynomial Model

The Memory Polynomial (MP) model is a simplified form of
Volterra series which is used to model a non-linear system. It
consists only of products with the same time shift, see Eq. (1),
and thus requires fewer coefficients compared with alternative
models such as the Volterra Series.

yMP (n) =

P∑
p=0

M∑
m=0

apmx(n−m)|x(n−m)|p (1)

Here apm are the model coefficients and n is the time index.
P and M represent the degree of PA non-linearity and the
memory depth of the model, respectively. x and y represent
the input and output signals respectively.

B. DPD Coefficient Estimation

A commonly used architecture for training the coefficients
of the digital predistortion model is the indirect learning
architecture (ILA) using the theory in [9], shown in Fig. 1.
The predistorter is an inverse model of the memory polynomial
(Eq. 1), expressed by Eq. 2.

x̃(n) =

P∑
p=0

M∑
m=0

dpmx(n−m)|x(n−m)|p (2)



The post-distorter is an exact copy of the predistorter. In other
words, the x̃(n) and x(n) are swapped by s(n) and y(n) as
shown in Eq. 3 in matrix form.

S = Y d (3)

Therefore, using a linear estimator such as least squares, the
coefficients matrix d can be obtained by matching s(n) with
x̃(n) [10].

Fig. 1. Indirect Learning Architecture

The coefficients dpm of the DPD model can be estimated
through different methods. As there are many more observa-
tions of y and x than the number of coefficients, an over-
determined system can be formed. The optimal coefficients
can be found by direct matrix inversion. The Least Squares
algorithm is used to estimate the coefficients by minimizing
the squared error J below, where N is the number of obser-
vations and x is the input signal. The matrix Y represents
representations of the past output signal samples. The size of
the matrix is M by N.

J =
1

N

N∑
t=1

(x(t)− Ŷ T (t)d)2 (4)

C. RFSoC Architecture

To achieve real-time processing of the DPD, an FPGA based
System-on-Chip (SoC) board is used. It consists of three parts,
the FPGA Programmable Logic (PL) the Processing System
(PS) which is an embedded ARM processor, and a high-speed
integrated RF-front end with 16 pairs of 16-bit DACs and 14-
bit ADCs. The PL is used for high throughput, computationally
expensive algorithms. The ARM processor is good at control
processing such as task scheduling and can deal with high-
precision floating point calculations, although at a relative low
speed. To effectively make use of the PL and PS, a proper
hardware-software co-design scheme is required as presented
in Sec. III.

D. Related Work

The FPGA based SoC chip and boards containing such
chips have been used for several implementations of DPD
designs [11]–[14]. None of this prior research, however, imple-
ments real-time processing on the chip. Previous work makes
use of offline processing on a host computer to run MATLAB
scripts for modelling the power amplifiers (PAs). In [15],
the author proposes an improved LUT-based DPD design on
FPGA and also implements an estimation block for coefficient

updating. However, details of the estimation block are not
presented. In addition, the training block is implemented on
the FPGA fabric; however, the training algorithm includes
floating-point division which slows down the FPGA clock rate.

Recent research [16], [17] proposes parallel processing
architectures for the predistorter model on an FPGA in order to
meet the requirements of current high sampling rate RF front
ends. In [16], the coefficients are computed externally instead
of on the board. In [17], the ARM processor on the ZCU102
is mentioned for coefficient training and updating. However,
the main focus of the paper is the novel architecture of the
predistorter, and the implementation of the training algorithm
is not described.

Others [18] propose a complete real-time, FPGA-based
digital predistortion design and implementation on Xilinx’s
ZC706 SoC which also utilizes the embedded ARM processor
for model training. However, due to the processing limitations
and memory bandwidth of the ARM processor, the coefficients
are only updated when the feedback signal’s Normalized Mean
Squared Error (NMSE) does not meet a required target.

In contrast, this work describes and implements a real-
time DPD design. Our implementation focuses on both the
training and DPD. Specifically, we examine the design choices
of the training algorithm and the effect of the number of
training signal samples used. An improved DPD design with
compressed training sets for the adaptation algorithm is built
completely on the Xilinx RFSoC.

III. ARCHITECTURE

Fig. 2. DPD on RFSoC ZCU216

In this research all aspects of processing of a DPD algorithm
are mapped onto a Xilinx RFSoC, which includes FPGA
fabric, an embedded ARM processor and an RF frontend. Our
architecture is flexible enough to support loading the signal
to be transmitted from any protocol. It also can support many
different DPD algorithms; in this research we use the memory
polynomial as described above. The DPD system developed is



partitioned into two parts. The memory polynomial, as shown
in Eq. (1) consists of hardware-friendly multiplications and ac-
cumulations that can be easily implemented in parallel and are
mapped to FPGA fabric. The training algorithm, as described
by Eq. (4), involves matrix inversion and control conditions.
Therefore, the training algorithm and corresponding control
logic are placed on the ARM processor.

A. Design Blocks

The implementation, including the division of processing
blocks between the FPGA fabric and the ARM processor is
shown in Fig. 2.

The RFSoC includes an embedded ARM processor, which is
also referred to as the Processor System (PS). We map various
tasks to the PS including training and handling of interfaces
between the FPGA and the host. The software running on the
ARM processor handles updating the coefficients used by the
DPD model.

The signal to be transmitted is first sent from a host
machine over Ethernet and stored on the processor side. The
signal is then loaded onto the external DDR4 memory on the
Programmable Logic (PL) side where it will be repeatedly sent
through the DAC on the RFSoC. On the receive path, when the
signal after going through the power amplifier is received, it
will be sent back to the PS and used to retrain the DPD model.
Revised coefficients are applied to the DPD processing on the
FPGA fabric. This provides a very tight loop and allows the
hardware to react to the environment with low latency.

At the embedded processor, the received signal is first
aligned with the original signal within the Signal Alignment
block and then the coefficients are determined for the DPD
block by making use of selected training data and using
a memory polynomial model. The ARM processor has two
processing cores. In our design, one is used for transmitting
the signal, while the other is used for receiving and post-
processing the feedback signal.

On the hardware side, a DPD block with memory polyno-
mial is implemented in the FPGA fabric along with memory
sink and capture blocks for handling the data transfer between
software and hardware. We currently process two samples
per clock cycle. The blocks are enabled to process multiple
input samples in parallel to meet the high RF-DAC sampling
rates [17], where up to eight samples per clock cycle can be
processed. Our design can easily be modified to handle this
case.

B. Trade-off when Choosing Training Data Sets

In post-processing, one of the parameters to be determined
is the size of the training set. While a larger training set
increases the accuracy of the DPD model, it also burdens the
processor and results in a longer training time. In addition,
the bandwidth of the interfaces between the FPGA hardware
and ARM processor is limited. In the interface generated by
the MathWorks SoC blockset, one 32 bit AXI stream forms
the connection between PS and PL. Note that Xilinx’s DMA
IP can support a maximum 300MB/s data rate for moving

data across this boundary. While there is room to improve
the implementation, this interface forms a bottleneck of the
design.

In our implementation, on the FPGA side, the logic runs
at 256 MHz while the ARM processor runs at 950 MHz, but
processes data serially. The FPGA side will generate two 16-
bit IQ samples in each clock cycle. However, since the training
algorithm is complex, the ARM processor can not match the
FPGA processing rate.

Instead of training with all the received signals, a subset of
the received signals is used. Under the control of the ARM
processor, only a small amount of the received signal samples
are sent across the hardware-software boundary for training.

To further alleviate the burden on the ARM processor, the
subset received by the ARM processor has been compressed
according to its probability information. Some of the samples
in the subset have been discarded in such a way as to ensure
that non-linear samples are preserved, as described in Sec. IV.

By using this two-step compression approach (subsetting
followed by intelligent compression), we show that a small
subset of the received signals can be used for training without
compromising accuracy.

C. Design Flow

The design is built using the SoC Blockset from Mathworks,
which supports the Xilinx RFSoc. we use this for implemen-
tation of DPD on the RFSoC. The flow has the advantage of
rapidly generating a solution and allows us to easily experi-
ment with different implementations and tradeoffs. The design
is entered as a Simulink model; the FPGA logic is generated
from that model using HDL Coder while Embeddedd Coder
produces the software implementation on the ARM processor.
The SoC Blockset provides a framework for controlling the
signal reads and writes and communication between hardware
and software through tunable parameters. These parameters
determine how frequently the training happens and how many
samples are processed during each training. Determining the
best parameters for our setup will be further investigated.

IV. COMPRESSED DATA SET FOR TRAINING

To reduce the amount of computation on the processor
without losing the nonlinear characteristics of the training
dataset, the probability information of the input signal is used
to guide the selection of a compressed training dataset [8].
Here we use a probability density function-based training data
compression method to reduce the amount of data, which
has several benefits. It better balances the processing speed
between the ARM processor and FPGA fabric and lowers the
requirement for data transfer between the two. Instead of using
consecutive samples, we select samples based on the training
signal’s power density probability.

We choose the fraction of training signal samples for dataset
compression. Then we choose a resolution for the probability
density function and generate the histogram of the training
signal. We randomly select samples from each bin of the
histogram in proportion to the bin size and also keep the



previous samples according to the memory tap size. Finally, we
use the compressed training signal to calculate the coefficients
of the DPD. Using this pdf-based selection criteria, not only
are the nonlinear characteristics of the training signal fully
preserved, but the memory effects are also expressed, as shown
in Fig. 3. The compressed signal (the orange histogram) is
the output of the selected samples of the signal (the yellow
histogram) with their previous samples according to memory
depth, and it almost recovers the original signal (the blue
histogram) with a smaller sample size. In the experiment
presented here, the number of training samples is reduced from
40k to 16k with sample ratio of 0.1, which significantly lowers
the burden on the data buses between hardware and software
as well as speeding training.

Fig. 3. Histogram of original signal and compressed signal

V. HARDWARE IMPLEMENTATION AND EXPERIMENTAL
RESULTS

The experimental testbench setup, shown in Fig. 4, makes
use of a Xilinx RFSoC ZCU216 board. The test power
amplifier, an NXP AFSSC5G37D37 Doherty PA, is connected
with a linear driver stage power amplifier, NXP BGA7210.
The PA is connected back to the ADC receive path on the
RFSoC ZCU216 through a 40dB attenuation chain. The center
frequency for operating the PA is set to 3.7GHz, which is a
widely used band for 5G signals.

Without DPD the NMSE of the received signal is -10.92dB.
After DPD using training with 40,960 samples the NMSE im-
proves to -20.48dB. When using the compressed data training
set of 15,360 samples, the NMSE performance was essentially
unchanged from the full training set, achieving an NMSE of
-19.56dB. These results are illustrated in Figure.5.

These results are achieved for a training dataset that was
half the size of the original training set. As a result, this
compressed training set reduces the time to transmit data from
the FPGA to the ARM processor, as well as the time to
compute new coefficients using the least squares algorithm.
The time complexity of least squares is O(k2N), where k is
the total number of coefficients in the DPD model and N is
the number of samples. Since this is linear in the number of
training samples, by compressing the training data the time
for training is reduced by half. Note that the minor increase
in complexity for binning and selecting the data is O(N).
Therefore, when the number of coefficients k increases and

Fig. 4. DPD on RFSoC ZCU216

Fig. 5. Spectrum Analysis of Implemented DPD

thus the DPD model is more complex, the compressed data sets
will reduce the training time even further. In our experiments,
we reduced training data from 40,960 to 15,360 samples,
which in theory should result in an improvement of 62.5% in
training time. Our experimental results were very close to what
was predicted in theory, and show an 61.08% improvement in
training time.

VI. CONCLUSIONS

In this paper, a real-time adaptive digital pre-distortion ar-
chitecture is designed and implemented on the state-of-the-art
FPGA-based Gen3 Xilinx RFSoC. Our DPD implementation
takes advantage of having both FPGA and embedded ARM
processor on the same chip, and carefully partitions and places
different parts of the system on different processing units.
Specifically, a memory polynomial DPD is implemented on
the FPGA fabric while training is performed on the ARM pro-
cessor. The DPD training speed has been greatly improved by
reducing the number of training samples. By selecting specific
signal samples for the training set, the burden on the ARM
processor is reduced, and the DPD model can be updated more
frequently. The signals are selected in order to ensure that
the characteristics of the original signals are preserved. This
was achieved with minimum additional hardware resources



and achieves the same quality and improved performance as
using a larger set of training samples. The result is a DPD
implementation experimentally validated on the RFSoC that
can rapidly adapt to changing conditions in its environment.

In the future, additional trade-offs between hardware and
software implementations will be investigated, as well as
bottlenecks in the design, to further improve the performance
of the overall system.
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