
A Framework to Enable Runtime Programmable
P4-enabled FPGAs in the Open Cloud Testbed

Zhaoyang Han∗, Suranga Handagala‡, Kalyani Patle†, Michael Zink†, Miriam Leeser∗
Northeastern University ∗‡, University of Massachusetts Amherst †

Email: ∗zhhan,mel@coe.neu.edu, ‡s.handagala@northeastern.edu
†kpatle,mzink@umass.edu,

Abstract—This paper presents a framework for cloud users
who wish to specify their experiments in the P4 language and
map them to FPGAs in the Open Cloud Testbed (OCT). OCT
consists of P4-enabled FPGA nodes that are directly connected
to the network via 100 gigabit Ethernet connections, and which
support runtime reconfiguration. Cloud users can quickly pro-
totype and deploy their P4 applications through our framework,
which provides the necessary infrastructure including a network
interface shell for the P4 logic.

We have provided several examples using this framework that
demonstrate designs running at the 100 GbE line rate with
the support of runtime reconfiguration for P4 functions. By
combining an existing network interface shell and P4 toolchain
on FPGAs, we offer a framework that enables users to rapidly
execute their P4 experiments in real time on FPGAs.

Index Terms—FPGA, Partial Reconfiguration, P4, Networks
Systems

I. INTRODUCTION

P4 is a rapidly developing language for network data plane
programming that had a large impact on recent networking
research. It allows programmers, as opposed to network de-
vice vendors, to define and program the network. Significant
progress on programmable networks has been made based on
the success of the P4 language.

To fully utilize the power of P4 and exploit its performance
in the data plane, network researchers need a hardware testbed
for P4 related experiments. FPGAs present an attractive hard-
ware solution for programmable network infrastructure as they
are highly programmable and relatively inexpensive. Enabling
P4 on FPGAs brings a lot of opportunities in different areas of
network research, such as in-band telemetry, security and in-
network computing. Moreover, enabling partial reconfiguration
on FPGAs supports runtime programmable networking, a
topic which has recently attracted the interest of network
researchers.

While several tool flows exist for enabling P4 on FP-
GAs, there is no unified framework and open testbed for
P4 on FPGAs. Network researchers who are unfamiliar with
hardware programming thus do not have an easy path to
hardware development. This paper introduces a P4-enabled
FPGA network testbed under the Open Cloud Testbed (OCT)
project. We present a small but evolving network testbed
with multiple nodes with FPGA as P4-enabled SmartNICs.

This work is supported in part by NSF grant CNS-2130891, CNS-2130907,
CNS-1925658, and CNS-1925464.

To enable P4 in the OCT testbed, a runtime-reconfigurable
framework and toolchain have been explored and tested.

The contributions of the work presented in this paper are:

• Building FPGA-enabled nodes with network connections
in OCT for a P4-enabled testbed;

• Exploring and creating FPGA designs for P4-enabled
FPGA SmartNICs;

• Using FPGA Partial Reconfiguration for runtime-
reconfigurable P4 functions;

• Providing multiple examples as tutorials and demonstra-
tions for the cloud and networking research community.

II. BACKGROUND AND RELATED WORK

A. Open Cloud Testbed

Fig. 1. Overview of OCT FPGA development and test flow [28]

The Open Cloud Testbed [28] provides a research-oriented
experimentation testbed for systems researchers who focus on
cloud platforms. Testbeds like OCT deliver the necessary hard-
ware and software with cloud and HPC services to researchers
in both the cloud and system communities, enabling more
experimental-based research opportunities and directions.

OCT currently consists of a total of 5,172 cores and 63TB
of RAM distributed over 237 servers, thanks to the generous
donations by industry partner Two Sigma among others. 16
FPGAs, namely AMD/Xilinx’s Alveo U280 data center cards
with High Bandwidth Memory to support data-heavy tasks,



are currently provided in OCT along with a toolchain that
supports the development of bitstreams [14].

Fig. 1 illustrates the development and the target platforms
we have created in OCT. For the development platform,
AMD/Xilinx development tools are instantiated as part of
a virtual machine image in the Massachusetts Open Cloud
(MoC). An experimenter specifies their design and uses the
provided tools to generate an FPGA bitstream; the output
corresponds to the hardware logic along with necessary run-
time drivers. This FPGA bitstream with drivers is copied to
OCT nodes and loaded onto the FPGAs. The final results are
computed on the FPGA nodes and may be sent back to the
development nodes. A detailed description of the development
workflow and step-by-step tutorials are available [18], [28].

In 2022, support for direct network connections from the
FPGAs was added [12]. Traditionally, an FPGA connects to a
host processor via PCIe buses. In the network attached con-
figuration, the FPGA is also directly connected to the network
through two independent 100GbE ports. Several applications
with direct FPGA-to-FPGA communications via TCP and
UDP FPGA stacks have been demonstrated [12]. In this paper,
we explore the potential research opportunities in providing
more complex and flexible network services by enabling P4
specification of designs for the OCT FPGAs.

B. FPGAs in Runtime Programmable Networks

With the development of the P4 language [5] and pro-
grammable network devices, progress has been made in
granting users direct access to the control and data planes.
Various data plane programming researches like data plane
disaggregation, cryptography and data plane machine learning
have been conducted using FPGAs [19], [20], [26]. Recently,
the network research community has begun to explore not only
programmable networking, but runtime programmable net-
working as well [24]. As summarized by Xing et al., runtime
programmable networks can create multiple novel use cases:
dynamic applications, real-time security, live infrastructure
customization, and tenant extensions. Enabling reconfigurable
P4 programming on FPGAs in OCT encourages this current
trend in network research.

Compared to a dedicated P4 SmartNIC, an FPGA is highly
programmable and can be more easily customized and scaled.
For example, a dedicated P4 SmartNIC with rigid data flow,
like AMD’s Pensando Distributed Services Card (DSC-200)
does not provide the ability for data path customization. In
contrast, Firestone et al. [11] developed and deployed FPGA-
based SmartNIC on Azure for offloading network functions.
They found that FPGAs are well suited for the dynamic
handling of network traffic and can reduce the main CPU’s
compute load. Through partial reconfiguration [22], FPGAs
are capable of replacing part of their hardware logic during
runtime while the remaining design continues to run. With
this technology, FPGAs are suitable for advanced network
research topics including multi-tenant networking [17] and
runtime programmable networking [10].

C. Related Work

Since the first release of the P4 language, there have
been several efforts to enable P4 on FPGAs and achieve
programmable networking. Several different approaches to
solving this problem exist. P4FPGA [23] is an open-source
P4 compiler extending the original P4 compiler with a custom
Verilog generator. It can translate high-level P4 into hardware
logic. NetFPGA [27] provides an open-source modular-based
platform for rapid prototyping of network devices on FP-
GAs. VitisNetP4 (SDNet) [2] is a vendor-specific toolchain
to convert P4 into bitstreams for AMD/Xilinx FPGAs. In
more recent work [13], they provide P4 support for their
NetFPGA platform. Yan [25] implemented an inter-data center
communication solution that uses a vendor specific (Raymax),
P4-enabled SmartNIC. In our design, we utilize VitisNetP4 as
our P4 to hardware tool, as the FPGAs in OCT are from Xilinx.
The VitisNetP4 toolchain provides a user-friendly environment
for development and simulation. Our first example enabling P4
on an FPGA starts with AMD/Xilinx VitisNetP4 example. We
gained insights from the Xilinx example that combines a P4
block with a network interface shell (OpenNIC shell [1]) and
integrated the toolchain into our OCT network testbed. Our
toolchain is able to map different P4 logic onto the FPGAs and
provide several custom features. The details of such integration
are described in Sect. IV.

The StaRR-NIC has applied partial reconfiguration on the
openNIC shell [3], [4]. It demonstrated the potentiality of hav-
ing interchangeable user functions in the openNIC shell. Our
framework allows users to swap between different P4-spcific
functions during runtime and provides research opportunities.
ESNet [9], collaborating with AMD/Xilinx, recently published
their toolchain of combining VitisNetP4 with OpenNIC shell,
which provides a similar tool flow to our work. Their approach
supports full automation at the cost of flexibility. In contrast,
our work focuses on a P4-enabled testbed that allows fast
prototyping from P4 to FPGA and focuses on flexibility. We
provide a set of examples that teach experimenters how to
use the toolchain and the testbed. While our approach is less
automated than the one provided by ESNet, it offers more
flexibility in terms of functionality that can be implemented
via P4.

III. P4 TESTBED IN OCT

This section discusses a sub-testbed built in OCT using the
P4-enabled SmartNIC for programmable network research. As
shown in Fig. 2, there are currently four FPGA nodes allocated
for the P4-enabled SmartNIC testbed. The number of nodes
can be increased for larger experiments. These FPGAs connect
through a Dell 100GbE switch with two 100GbE links each.

Similar to the nodes in Fig. 1, each node is made up of a
host processor and FPGA connected through the PCIe bus.
On the host processor, the P4 runtime driver controls the
P4 IP block on the FPGA. Like normal network interfaces,
our FPGA SmartNIC supports both DPDK and kernel-level
network drivers. We designed the P4 overlay specifically for



Fig. 2. OCT P4 Testbed

P4 functions, as our shell on the FPGAs. Details of this overlay
will be described in Sec. IV.

In addition to the FPGA nodes, a single host node with
40GbE NIC is also part of the testbed for basic loopback
tests and verification. In addition, this host-only node can be
network programmable and allow user customization via the
eBPF framework [7]. eBPF extends kernel abilities by adding
C functions into the network stack. Enabling eBPF in the OCT
testbed is one of our future research directions. The OCT
P4 network testbed consisting of different classes of network
endpoints satisfies various network research needs. Although
the switch is not programmable, it is possible to re-arrange the
topology and substitute it with another FPGA node as a two-
port switch. Note that each FPGA supports two ports directly
connected to the network.

IV. P4 OVERLAY ON FPGA

To enable P4 on the OCT FPGAs, we have used an
overlay design as a P4 function container. While serving as
a standard 100G network interface for the host processor,
this overlay design allows cloud users to insert additional
functionality into their network by plugging in custom P4
functions. Additionally, this design is partial-reconfigurable so
that the P4 logic can be re-programmed during runtime. In this
section, we will describe the design of this overlay and its
features. In Sec. IV-C, we will discuss the design verification
and simulation process.

A. Framework Design

This overlay uses AMD/Xilinx’s OpenNIC shell [1], an
open-source FPGA-based 100G NIC platform, as the backbone
design, Fig. 3(a). The OpenNIC shell includes a Queue-
based Direct Memory Access (QDMA) for transferring pack-
ets between the NIC shell and host CPU through the PCIe
bus, and a 100G MAC block (CMAC) for Ethernet support.
The user plugin is a single pipe that connects QDMA and
CMAC. As illustrated in Fig. 3(b), we fill the block User
Plugin@250Mhz with the P4 hardware IP block generated
by AMD/Xilinx’s Vitis Networking P4 (VitisNetP4) [2]. The
VitisNetP4 toolchain will generate hardware IP from P4 source
code. The OpenNIC shell provides NIC functions for support-
ing 100Gb/s throughput. Our framework creates the necessary

packets and control logic paths between the OpenNIC shell
and VitisNetP4 outputs.

With this approach, a user only needs to provide P4 code as
input, and can quickly generate a P4-enabled NIC and achieve
fast deployment on the OCT using this tool flow. It provides
an easy way for network researchers unfamiliar with FPGA
or hardware design to conduct their own research on OCT.

To enable a runtime programmable network, we have also
utilized Partial Reconfiguration (PR) as described in Sec. II
to divide the design into two parts: the static region and
the dynamic region, as shown in Fig. 3(c). Cloud users only
need to feed P4 code as input and generate P4 hardware IP
with particular interfaces using VitisNetP4. A partial bitstream
rather than a complete design bitstream is produced by using
the partial configuration script provided.

B. Features

1) Fast and Secure FPGA Programming: The common way
to program Xilinx’s Alveo U280 is to load the bitstream via
JTAG or program the flash-based configuration memory device
via JTAG. However, as a low-level hardware access tool, JTAG
is also exposed to potential attacks. The FPGA and host PC
are both vulnerable in this case [8]. To prevent this, we use
the PCIe Base Address Register (BAR) instead of JTAG to
program the FPGA. As the PCIe bus is faster than JTAG, it
will reduce the time to load a bitstream.

The PR design is also helpful for fast and secure program-
ming. A study on Amazon’s commercial cloud (AWS) FPGA
nodes, AWS F1 instances, that use an AWS shell to wrap
users’ accelerators using partial reconfiguration shows that
static region provides an extra layer of protection to the device
[21]. Instead of giving full control of the hardware to the cloud
user, this separation provides more control over FPGA devices
and helps protect FPGA resources from malicious users. In
addition, the partial bitstream has a relatively smaller size
compared to programming the entire FPGA, which will reduce
programming time. A detailed programming time comparison
is provided in Sec. V.

2) Runtime Reconfigurability: With FPGA partial recon-
figuration, the FPGA NIC is runtime reconfigurable. This
enriches the features of this network testbed and allows
dynamic P4 application switching. For example, a cloud user
can change the network application from telemetry to a firewall
without shutting down nodes for reconfiguration. Also, having
more dynamic regions can accommodate multiple tenants,
making network virtualization possible in the testbed.

3) User Externs: P4 externs are objects manipulated by P4
programs, which provide extra functionality to P4 programs.
These externs are defined and provided by P4 architectures.
Since VitisNetP4 uses a narrowly-defined P4 architectural
model Xilinx Switch Architecture (XSA) that only supports
limited functionaility, extern objects are big components for
XSA. It is important to support user externs on our testbed to
provide more flexibility. In our P4 framework, user externs are
available and examples are provided. Arbitrary extern logic
can be generated from a hardware description language or



QDMA CMACUser Plugin
@250Mhz

Control Logic

QDMA CMAC
Cloud User

P4 IP
(by VitisNetP4)

Control Logic

QDMA CMAC

Control Logic

(a) (b)

Dynamic P4 
IP

Dynamic P4 
IP

Dynamic P4 
IP

(c)

Fig. 3. OCT P4 Framework (a): OpenNIC Shell; (b): OpenNIC Shell with P4 Logic; (c): Partial Reconfigurable P4 Framework

created from C using high-level synthesis. These logic blocks
connect with P4 IP through pre-defined interfaces.

C. Design Simulation and Verification

Fig. 4. Design Simulation and Verification

To simulate the design and verify its correctness, we per-
formed several levels of simulation and verification as shown
in Fig. 4. There are three block-level simulations for verifying
the P4 logic itself. The two lower levels are for system-level
verification. To start, cloud users may have their P4 program
running in MiniNet on BMv2, such as the examples provided
with the P4 tutorials [15]. VitisNetP4 will take P4 programs
and then generate corresponding hardware P4 IPs. There are
two levels of verification for the P4 IP. One is p4bm-vitisnet,
which is similar to BMv2, serving as Xilinx’s behavioral
model for the P4 program. The lower level is Register Transfer
Level (RTL) simulation. At this level, the hardware logic of
the source code is verified by comparing the RTL simulation
results with Xilinx’s behavior results. This is used to verify
the P4 hardware logic generated by VitisNetP4.

Another process is RTL simulation for the entire system.
Such a simulation testbench can be created using cocotb [6],
a Python-based verification framework. Once the system is
programmed onto FPGAs, an end-to-end test can be run on the
testbed nodes. Packets are sent and received between nodes.

The design is verified by comparing the received packets with
standard output packets from the behavioural model in the
previous step.

V. EXAMPLES AND RESULTS

Fig. 5. Examples: (a) Forwarding; (b) Reconfigurable calculator; (c) Ad-
vanced calculator with externs

In this section, we present three examples that demonstrated
the features of our tools and the OCT testbed: forwarding,
a basic calculator that makes use of partial reconfiguration
and an advanced calculator that makes use of externs. These
examples are shown in Fig. 5. Forwarding and the basic
calculator are examples from the P4 tutorials [15]; forwarding,
the basic calculator and the advanced calculator are included
in the Xilinx VitisNetP4 toolchain demos. We have combined
them with NIC on FPGAs using our framework and tested
them in OCT, and added partial reconfiguration as a new
feature.



A. Forwarding

TABLE I
FPGA PROGRAMMING TIME COMPARISON BETWEEN BITSTREAMS

Size (Byte) Loading time Speed
Complete bitstream 40068175 23 seconds 1.66MB/s

Partial bitstream 5631808 3 seconds 1.79MB/s

Fig. 6. Forwarding Performance

This example achieves packet forwarding for packets with
specific source or destination IP addresses. All other packets
will be dropped. It is implemented as shown in Fig. 5(a).
For this example, we ran the forwarding application on one
FPGA node and set the other FPGA node as a pipe that
allows any packet to pass. We send packets from the pipe
node to the FPGA node with DPDK running on both hosts.
The performance is measured using pktgen [16]. The packet
size is varied from 64 to 1572 bytes, yielding the performance
results shown in Fig. 6. Note that the connection utilizes less
than 50% of the available bandwidth with a lower packet size.
The bandwidth saturates when the packet size is 600 bytes per
packet or higher.

B. Reconfigurable Calculator

In this example, Fig.5(b), we demonstrate how a design
is partially reconfigured. This example is the basic calculator
example from the P4 tutorial, and performs in-networking
computing in the data plane. This P4 application will execute
one 32-bit operation chosen from among addition, subtraction,
and multiplication; and three bitwise operations for packets
with specific headers. Based on the original calculator example
from the P4 tutorials, we create two different calculator
instances, calc 1 and calc 2. The two instances consist of two
different sets of the above six operations. For the same packets
and match action tables, the two calculators will perform
different operations and produce different result packets. We
thus have two different P4 source codes that provide different
functionality. These two P4 codes are sent to the toolchain
as input. After processing, two complete bitstreams with the
entire design are generated. Each complete bitstream contains
a different P4 calculator. These two bitstreams are similar to

the general bitstreams that can configure the entire FPGA. In
addition, two partial bitstreams only containing the Dynamic
P4 region are also generated by the framework. While loading
a general bitstream requires the entire system to be shut down,
loading the partial bitstream does not. In addition, the latency
for downloading the partial bitstream is significantly faster
than that for the general bitstream, as shown in Table I.

C. Advanced Calculator with Extern Functions

This example (Fig.5(c)) illustrates how extern functions
can be combined with the P4 logic in the framework. Two
nodes are connected via the switch. Both nodes are capable
of processing the packet with specific headers for all six basic
calculator operations. However, the left node provides extra
operations: division and square root. In addition to the func-
tions supported by the basic calculator, the advanced calculator
increases its operations with 32-bit division and 64-bit square
root functions. The division will return a 32-bit quotient and a
32-bit remainder. Both functions are not defined in the XSA.
Therefore, two extern functions are introduced into the design
to provide extra power in the calculations. These two hardware
blocks are generated from Xilinx’s arithmetic library and then
connect to the P4 harware block as shown in the figure. As
a result, with using extra 1% of the resources on FPGA for
extern functions compared to the original calculator design,
the FPGA provides two extra operations for the network
processing.

VI. DISCUSSION AND FUTURE WORK

In this section, we discuss some open issues with our testbed
and the potential for future improvements.

A. Floorplanning

Fig. 7. Floorplan: Illustration of Blocks’ Actual Positions on FPGA

Fig. 7 shows the floorplan of our overlay design on FPGA.
As shown in Table II, only a small portion of the entire FPGA
on-board resources are used. In addition, as shown in the
figure, only a small area has been allocated to the P4 dynamic
region. The static region of the design is larger than it needs
to be. This is a result of the OpenNIC shell from AMD/Xilinx
as well as partitioning decisions. While our initial design is a
proof-of-concept, better partitioning between regions is needed
to fully harness the power of the FPGA board.

The P4 dynamic region is under-utilized under the current
floorplanning scenario. We can easily increase the size of the
P4 region to allow more complicated designs with compute-
intensive or data-intensive user externs. It is also possible to
allow multiple P4 regions instead of one. With multiple P4



regions, it can achieve the virtualization of FPGA resources
for multiple tenants.

B. Partial Reconfiguration

We have created a framework for P4 that supports partial
reconfiguration, as demonstrated in Sec. V. With our current
implementation, the P4 region is empty during reconfiguration
and this leads to packet losses. We are investigating ways to
continue to receive packets during reconfiguration. Any such
solution would need to be incorporated as part of the static
region in the design.

TABLE II
UTILIZATION

LUTs(%) RAMs(%) FFs(%) DSPs(%)
Full design 7.46 4.08 5.04 0.03

static region 1 2.57 1.76 4.10 0
static region 2 18.01 0.89 9.53 0
dynamic region 3.79 0 3.25 0.39

[

VII. CONCLUSION

This paper introduces a P4-enabled network testbed in the
Open Cloud Testbed (OCT) for advanced network topics.
The main component provided in this testbed is runtime pro-
grammable P4-enabled FPGAs nodes. Based on the user de-
mand, a certain number of such nodes can be allocated for their
experiments in the OCT. Beyond the basic P4 programmabil-
ity, our framework is also capable of transferring user-defined
P4 externs into hardware logic and provides an option for
runtime reconfiguration. These features broadly extend the
coverage of different network-related experiments. We use
three examples to demonstrate these usages in our framework.
Analysis of these example evaluations shows that this frame-
work offers a new approach for conducting network research in
our testbed. The examples discussed in this paper are publicly
available from github.com/OCT-FPGA/P4OpenNIC Public.

REFERENCES

[1] AMD OpenNIC Project. https://github.com/Xilinx/open-nic, 2022. [On-
line; accessed 01-01-2023].

[2] Vitis Networking P4. https://www.xilinx.com/products/
intellectual-property/ef-di-vitisnetp4.html, 2022. [Online; accessed
01-01-2023].

[3] Agarwal Anup, Daehyeok Kim, and Srinivasan Seshan. StaRRNIC:
Enabling Runtime Reconfigurable FPGA NICs. Technical Report CMU-
CS-23-100, Carnegie Mellon University, 2023.

[4] StaRR-NIC. https://github.com/StaRR-NIC/starrnic-public, 2023. [On-
line; accessed 02-28-2023].

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. P4: programming protocol-independent
packet processors. ACM SIGCOMM Computer Communication Review,
44(3):87–95, July 2014.

[6] cocotb. https://www.cocotb.org, 2022. [Online; accessed 01-01-2023].
[7] eBPF - Introduction, Tutorials & Community Resources. https://ebpf.io,

2022. [Online; accessed 01-01-2023].
[8] Maik Ender, Amir Moradi, and Christof Paar. The Unpatchable Silicon:

A Full Break of the Bitstream Encryption of Xilinx 7-Series FPGAs. In
29th USENIX Security Symposium (USENIX Security 20), pages 1803–
1819, 2020.

[9] ESNet SmartNIC. https://github.com/esnet/esnet-smartnic-hw, 2022.
[Online; accessed 01-01-2023].

[10] Yong Feng, Zhikang Chen, Haoyu Song, Wenquan Xu, Jiahao Li,
Zijian Zhang, Tong Yun, Ying Wan, and Bin Liu. Enabling In-
situ Programmability in Network Data Plane: From Architecture to
Language. In 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), pages 635–649, 2022.

[11] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian
Caulfield, Eric Chung, et al. Azure Accelerated Networking:SmartNICs
in the Public Cloud. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), pages 51–66, 2018.

[12] Suranga Handagala, Miriam Leeser, Kalyani Patle, and Michael Zink.
Network Attached FPGAs in the Open Cloud Testbed (OCT). In
IEEE INFOCOM 2022-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 1–6. IEEE, 2022.

[13] Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman.
The P4->NetFPGA workflow for line-rate packet processing. In Pro-
ceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 1–9, 2019.

[14] Miriam Leeser, Suranga Handagala, and Michael Zink. FPGAs in the
Cloud. Computing in Science & Engineering, 23(6):72–76, 2021.

[15] P4 Tutorial. https://github.com/p4lang/tutorials, 2022. [Online; accessed
01-01-2023].

[16] pktgen. https://pktgen-dpdk.readthedocs.io/en/latest/, 2022. [Online;
accessed 01-01-2023].

[17] Mateus Saquetti, Guilherme Bueno, Weverton Cordeiro, and Jose Ro-
drigo Azambuja. P4VBox: Enabling P4-based switch virtualization.
IEEE Communications Letters, 24(1):146–149, 2019.

[18] S.Handagala. OCT FPGA Tutorial. https://github.com/OCT-FPGA,
2021. [Online; accessed 01-01-2023].

[19] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich, Zhaoyang
Han, Nishanth Shyamkumar, Shivani Burad, André DeHon, and
Boon Thau Loo. Flightplan: Dataplane disaggregation and placement
for p4 programs. In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21), pages 571–592, 2021.

[20] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur,
and Kunle Olukotun. Taurus: a data plane architecture for per-packet
ml. In Proceedings of the 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 1099–1114, 2022.

[21] Steve Trimberger and Steve McNeil. Security of FPGAs in data centers.
In 2017 IEEE 2nd International Verification and Security Workshop
(IVSW), pages 117–122, 2017.

[22] Kizheppatt Vipin and Suhaib A Fahmy. FPGA dynamic and partial
reconfiguration: A survey of architectures, methods, and applications.
ACM Computing Surveys (CSUR), 51(4):1–39, 2018.

[23] Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shri-
vastav, Nate Foster, and Hakim Weatherspoon. P4FPGA: A Rapid
Prototyping Framework for P4. In Proceedings of the Symposium on
SDN Research, pages 122–135, Santa Clara CA USA, April 2017. ACM.

[24] Jiarong Xing, Yiming Qiu, Kuo-Feng Hsu, Hongyi Liu, Matty Kadosh,
Alan Lo, Aditya Akella, Thomas Anderson, Arvind Krishnamurthy,
T. S. Eugene Ng, and Ang Chen. A Vision for Runtime Programmable
Networks. In Proceedings of the Twentieth ACM Workshop on Hot
Topics in Networks, pages 91–98, Virtual Event United Kingdom,
November 2021. ACM.

[25] Yan Yan, Arash Farhadi Beldachi, Reza Nejabati, and Dimitra Sime-
onidou. P4-enabled Smart NIC: Enabling sliceable and service-driven
optical data centres. Journal of Lightwave Technology, 38(9):2688–2694,
2020.

[26] Abbas Yazdinejad, Reza M Parizi, Ali Dehghantanha, and Kim-
Kwang Raymond Choo. P4-to-blockchain: A secure blockchain-enabled
packet parser for software defined networking. Computers & Security,
88:101629, 2020.

[27] Noa Zilberman, Yury Audzevich, Georgina Kalogeridou, Neelakandan
Manihatty-Bojan, Jingyun Zhang, and Andrew Moore. NetFPGA: Rapid
prototyping of networking devices in open source. ACM SIGCOMM
Computer Communication Review, 45(4):363–364, 2015.

[28] Michael Zink, David Irwin, Emmanuel Cecchet, Hakan Saplakoglu,
Orran Krieger, Martin Herbordt, Michael Daitzman, Peter Desnoyers,
Miriam Leeser, and Suranga Handagala. The Open Cloud Testbed
(OCT): A platform for research into new cloud technologies. In 2021
IEEE 10th International Conference on Cloud Networking (CloudNet),
pages 140–147. IEEE, 2021.


