Metamodeling Facilities

Kenneth Baclawski* kenb@ccs.neu.edu
Mieczysław Koka† kokar@coe.neu.edu
Jeffrey Smith‡ jsmith@mc.com

Abstract

The Meta Object Facility (MOF) standard is used to “define and manipulate interoperability between metamodels and their corresponding models” [4]. A requirement of the next MOF generation is to provide support for mapping between models using a more general purpose framework for transformations between metamodels. Our initial contribution was to formally describe this framework to show consistency of these model transformations. Additionally, our hope that this formal framework and transformation process will serve as a foundation that may be used for the UML Infrastructure to provide horizontal transformations between families of UML languages. Our goal of manageably achieving a mathematical formalization for the MOF is accomplished by (1) formalizing a simpler Core Modeling Facility (CMF) and (2) specifying the MOF within the CMF. Our intent is to formalize the MOF, not to replace it. Sequels to this paper will add the necessary detail to this math framework such that consistency checking implementations of model transformation can be demonstrated.

Keywords: formal methods, modeling language.

1 Introduction

A modeling language is a means of expressing models of data and behavior. A modeling language is typically introduced to fulfill a particular purpose, and as a result, a great variety of modeling languages have been developed. Examples include the Unified Modeling Language (UML) [1], the Common Warehouse Metamodel (CWM) [2], the Interface Definition Language (IDL) of the Common Object Request Broker Architecture (CORBA) [3] and SQL, the standard relational database modeling and query language. Because of this diversity, it is useful to have a single framework that can express every modeling language. A framework that can do this is called a metamodeling facility. A metamodeling facility is a four-layer framework as shown in Figure 1.

*College of Computer Science, Northeastern University, Boston, Massachusetts 02115
†Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115
‡Mercury Computer Systems Inc.
<table>
<thead>
<tr>
<th>Layer</th>
<th>Activity supported</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>M3: Meta-Metamodel</td>
<td>Metamodelling. Specifying Modeling languages.</td>
<td>MOF</td>
</tr>
<tr>
<td>M2: Metamodel</td>
<td>Modeling. Specifying models.</td>
<td>UML, CWM, SQL, IDL, MOF and CMF</td>
</tr>
<tr>
<td>M1: Model</td>
<td>Storing objects and other data.</td>
<td>Particular models, schemas and interface definitions</td>
</tr>
<tr>
<td>M0: System State</td>
<td>General applications.</td>
<td>Particular instances of classes, tuples of tables and remotely accessible objects</td>
</tr>
</tbody>
</table>

Figure 1: Metamodelling Facility Layers

There is now a standard metamodelling facility called the Meta Object Facility (MOF) [4]. The MOF itself (as well as any other metamodelling facility) may be regarded as a modeling language as well as a metamodelling facility. MOF is a specialized kind of modeling language. The models of MOF are modeling languages such as UML and SQL. This allows MOF to be expressed in its own terms as well as to map it to other modeling languages. However, the MOF does have a privileged role within the overall framework for it is the singular modeling language at the meta-metamodelling layer.

In this paper, we introduce a mathematical framework for metamodelling facilities. The two fundamental features of a metamodelling facility are: (1) It has the four layers shown in Figure 1, and (2) The metamodelling facility is expressed in itself. Our goal is to achieve a mathematical formalization for the MOF. Because of the size and complexity of the full MOF, we use a “bootstrap” technique in which a simpler Core Metamodelling Facility (CMF) is introduced and the full MOF is specified within the core facility. This prevents the mathematics from becoming unwieldy while still achieving the goal of a mathematical formalization of the MOF.

We begin by discussing the mathematical background required in our treatment (section 2). Each layer of the CMF, as shown in Figure 1, is then introduced and discussed in its own section: metamodels in section 4, models in section 5, and system states in section 6. The CMF is then used as the mathematical framework for expressing the MOF in section 7.

Subscripts will be used to denote the layer at which a concept is being interpreted. If a concept appears without a subscript, then that concept only occurs on one of the layers. Superscripts will be used to distinguish a particular example of a concept.

2 Prerequisites

We assume a knowledge of the basic mathematical structures such as product and sum (disjoint union) of sets, and the product and sum of functions. The set of boolean values \{true, false\} is denoted Boolean. We abuse notation somewhat and regard each summand \(S_i\) of a direct sum (disjoint union) \(S_1 + S_2 + \cdots + S_n\), as being a subset of the direct sum.
We will assume a knowledge of partially ordered sets and order-preserving functions. In addition to the usual notion of a commutative diagram, we will also make use of a somewhat weaker condition. A diagram of sets

```
\[
\begin{array}{ccc}
A & \xrightarrow{a} & B \\
\downarrow{c} & & \downarrow{b} \\
C & \xrightarrow{d} & D
\end{array}
\]
```

for which B is a partially ordered set is said to be a partially (ordered) commutative diagram when for every $x \in C$, the inequality $a(c(x)) \geq b(d(x))$. When a diagram satisfies this condition we will denote it by:

```
\[
\begin{array}{ccc}
A & \xrightarrow{a} & B \\
\downarrow{c} & \geq & \downarrow{b} \\
C & \xrightarrow{d} & D
\end{array}
\]
```

3 Literals

As in most programming languages, a metamodelling facility begins with a collection of built-in types, also called basic sorts or literal sorts. Typical examples of literal sorts include **String**, **Boolean**, **Integer** and **Real**. The elements of a literal sort are called simply literals. Because one literal sort can be contained in another, such as **Integer** in **Real**, the literal sorts form a partially ordered set. It is convenient to combine the literal sorts with the literals in a single partially ordered set in which a literal lies below the literal sorts to which it belongs. We formalize this as follows:

Definition 3.1 A literal type structure is an ordered pair (Literal, l) such that

1. Literal is a partially ordered set.

2. \(l: \text{Literal} \rightarrow \{s, v\} \) is an order-preserving function to the two-element partially ordered set \(\{s, v\} \) in which \(s > v \).

3. For every \(x \in \text{Literal} \) such that \(l(x) = v \), there exists \(y \in \text{Literal} \) such that \(y > x \) and \(l(y) = s \).

We will write \(\text{Literal}_s \) for \(l^{-1}(s) \). The elements of \(\text{Literal}_s \) are the literal sorts of the literal structure. The literals form the set \(\text{Literal}_v = l^{-1}(v) \). We write \(\text{type} \subseteq \text{Literal}_v \times \text{Literal}_s \) for the binary relation \(<\), i.e., \(\text{type}(x, y) \) if and only if \(x < y \). The set of literals having type \(y \) will be written \(I(y) \). This set is called the interpretation of the type \(y \). We will generally write just \(\text{Literal} \) when referring to a literal type structure, and the order-preserving function \(l \) will be implicit.

3
4 Metamodels

In this section we define the concept of a metamodel in the CMF. These are the entities that form the M2 Layer, so we will write M_2 for the collection of all metamodels.

Definition 4.1 A metamodel is an ordered 5-tuple

$$\Omega = (\text{Element}_2, \text{Literal}, \text{Property}_2, \text{domain}_2, \text{range}_2)$$

such that:

1. Element_2 and Property_2 are partially ordered sets,
2. Literal is a literal type structure,
3. domain_2 is a function $\text{domain}_2: \text{Property}_2 \to \text{Element}_2$, and
4. range_2 is a function $\text{range}_2: \text{Property}_2 \to \text{Element}_2 + \text{Literal}$.

The elements of Element_2 are called metamodel sorts or metasorts for short. In the UML Specification [1], a metasort is called a *meta model element*. Typical examples of metasorts are Class, Method, Package, etc. The elements of Literal are the literal sorts and literals of the metamodel.

The elements of Property_2 are the property sorts. Each property sort has a domain and a range, given by the functions domain_2 and range_2, respectively. The domain of a property sort is always a metamodel sort, while the range can be either a metamodel sort or a literal sort. If the range of a property sort is a metamodel sort, then the property sort is called a *meta-association*. If the range of a property sort is a literal sort, then the property sort is called a *meta-attribute*. For example, to specify that each class has a name, one introduces an element $\text{class-name} \in \text{Property}_2$ such that $\text{domain}_2(\text{class-name})$ is Class and $\text{range}_2(\text{class-name})$ is String. The meta-attributes are of two kinds depending on whether the value is in Literal_l or Literal_r. In the former case, the meta-attribute specifies a “template” that will be instantiated (or restricted) at the M1 layer. In the latter case, the meta-attribute is already instantiated, and it can only be copied to the M1 layer.

Another notation that is popular for functions is the “dot” notation. Instead of writing $\text{domain}_2(\text{class-name})$ as above, one can write it $\text{class-name}.\text{domain}_2$. To avoid confusion we will use only the functional notation in this paper.

The partial orders on Element_2 and Property_2 determine specialization and generalization relationships. For example, if $t \leq u$ in Property_2, then we say that t is a sub-property sort of u. The requirement that domain_2 and range_2 be order-preserving ensures that the domain and range of the property sort t be specializations of the domain and range, respectively, of the property sort u.

As mentioned in the Introduction above, metamodeling facilities can be represented as specialized modeling languages (i.e., as a metamodel). Representing metamodeling is a key step in the processing of bootstrapping from the CMF to the full MOF. We now define the
CMF and the MOF as metamodels. To distinguish a metamodeling facility (on layer M3) from its corresponding modeling language (on layer M2), we will write the name in italics when it is on layer M2 and unitalicized when it is on layer M3. In addition, the components of the metamodel that represents CMF will be distinguished by appending a superscript C.

Example 4.2 The CMF is representable as the metamodel

$$CMF = (Element_2^C, Literal^C, Property_2^C, domain_2^C, range_2^C)$$

for which:

1. $Element_2^C$ is the 4-element set \{m,s,ms,v\} with the partial order as shown in the following diagram:

```
   ms
  /   \
 m     s
   \   /
    v
```

2. $Literal^C$ is the empty set.

3. $Property_2^C$ is the 1-element set \{p\} The significance of the elements in $Element_2^C$ and $Property_2^C$ will be made clear in Proposition 5.2. Their names were inspired as follows:

 m meta model element s literal sort
 p property sort v literal value

4. $domain_2^C(p) = m$ and $range_2^C(p) = ms$.

We now express the MOF as a metamodel which will be the basis for formalizing the MOF framework.

Example 4.3 The Meta Object Facility is representable as the metamodel

$$MOF = (Element_2^M, Literal^M, Property_2^M, domain_2^M, range_2^M)$$

for which

1. $Element_2^M$ is the following 27-element partially ordered set:
The full names of the elements of Element_2^M are in the following table:

<table>
<thead>
<tr>
<th>As</th>
<th>Association</th>
<th>GE</th>
<th>GeneralizableElement</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>AssociationEnd</td>
<td>G</td>
<td>Generalizes</td>
</tr>
<tr>
<td>AT</td>
<td>AttachesTo</td>
<td>I</td>
<td>Import</td>
</tr>
<tr>
<td>At</td>
<td>Attribute</td>
<td>ME</td>
<td>ModelElement</td>
</tr>
<tr>
<td>BF</td>
<td>BehavioralFeature</td>
<td>N</td>
<td>Namespace</td>
</tr>
<tr>
<td>CR</td>
<td>CanRaise</td>
<td>O</td>
<td>Operation</td>
</tr>
<tr>
<td>C</td>
<td>Class</td>
<td>P</td>
<td>Package</td>
</tr>
<tr>
<td>Cr</td>
<td>Classifier</td>
<td>Par</td>
<td>Parameter</td>
</tr>
<tr>
<td>Cn</td>
<td>Constant</td>
<td>R</td>
<td>Reference</td>
</tr>
<tr>
<td>Ct</td>
<td>Constraint</td>
<td>SF</td>
<td>StructuralFeature</td>
</tr>
<tr>
<td>Co</td>
<td>Contains</td>
<td>T</td>
<td>Tag</td>
</tr>
<tr>
<td>DT</td>
<td>DataType</td>
<td>TA</td>
<td>TypeAlias</td>
</tr>
<tr>
<td>E</td>
<td>Exception</td>
<td>TE</td>
<td>TypedElement</td>
</tr>
<tr>
<td>F</td>
<td>Feature</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MOF Meta-Metamodel Elements

2. Literal_s^M is the 23-element partially ordered set shown below:
The `enum` and `struct` sorts are not part of the MOF. They were introduced by Richters and Gogolla [5] as abstract supersorts to simplify the definition of operations on MOF literal sorts. The full names of the elements of `Literal^M` are given in the following table:

<table>
<thead>
<tr>
<th>AK</th>
<th>AggregationKind</th>
<th>VRK</th>
<th>VerifyResultKind</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>AnnotationType</td>
<td>VT</td>
<td>ViolationType</td>
</tr>
<tr>
<td>DK</td>
<td>DependencyKind</td>
<td>VK</td>
<td>VisibilityKind</td>
</tr>
<tr>
<td>DeK</td>
<td>DepthKind</td>
<td>TC</td>
<td>TypeCode</td>
</tr>
<tr>
<td>DiK</td>
<td>DirectionKind</td>
<td>any</td>
<td>any</td>
</tr>
<tr>
<td>EK</td>
<td>EvaluationKind</td>
<td>long</td>
<td>(signed) long</td>
</tr>
<tr>
<td>FT</td>
<td>FormatType</td>
<td>ulong</td>
<td>unsigned long</td>
</tr>
<tr>
<td>LT</td>
<td>LiteralType</td>
<td>enum</td>
<td>enumeration</td>
</tr>
<tr>
<td>MT</td>
<td>MultiplicityType</td>
<td>string</td>
<td>String</td>
</tr>
<tr>
<td>NT</td>
<td>NameType</td>
<td>struct</td>
<td>structure</td>
</tr>
<tr>
<td>SK</td>
<td>ScopeKind</td>
<td>bool</td>
<td>Boolean</td>
</tr>
<tr>
<td>TD</td>
<td>TypeDescriptor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. `Property^M_2` consists of 35 elements. Of these, 16 are meta-associations, and 29 are meta-attributes. Derived meta-associations (Exposes (3.5.4) and DependsOn (3.5.9)) and derived meta-attributes are operations, and therefore not included in this partially ordered set. There are no non-trivial order relations between any of the elements of `Property^M_2`. The set `Property^M_2` and the values of `domain^M_2` and `range^M_2` are defined together in the following tables:
<table>
<thead>
<tr>
<th>Member of Property_2^M</th>
<th>domain_2^M</th>
<th>range_2^M</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregation</td>
<td>AE</td>
<td>AggregationKind</td>
</tr>
<tr>
<td>annotation</td>
<td>ME</td>
<td>AnnotationType</td>
</tr>
<tr>
<td>direction</td>
<td>Par</td>
<td>DirectionKind</td>
</tr>
<tr>
<td>evaluationPolicy</td>
<td>Ct</td>
<td>EvaluationKind</td>
</tr>
<tr>
<td>expression</td>
<td>Ct</td>
<td>any</td>
</tr>
<tr>
<td>isAbstract</td>
<td>GE</td>
<td>Boolean</td>
</tr>
<tr>
<td>isChangeable$_{AE}$</td>
<td>AE</td>
<td>Boolean</td>
</tr>
<tr>
<td>isChangeable$_{SF}$</td>
<td>SF</td>
<td>Boolean</td>
</tr>
<tr>
<td>isClustered</td>
<td>I</td>
<td>Boolean</td>
</tr>
<tr>
<td>isDerived$_{As}$</td>
<td>As</td>
<td>Boolean</td>
</tr>
<tr>
<td>isDerived$_{At}$</td>
<td>At</td>
<td>Boolean</td>
</tr>
<tr>
<td>isLeaf</td>
<td>GE</td>
<td>Boolean</td>
</tr>
<tr>
<td>isNavigable</td>
<td>AE</td>
<td>Boolean</td>
</tr>
<tr>
<td>isQuery</td>
<td>O</td>
<td>Boolean</td>
</tr>
<tr>
<td>isRoot</td>
<td>GE</td>
<td>Boolean</td>
</tr>
<tr>
<td>isSingleton</td>
<td>C</td>
<td>Boolean</td>
</tr>
<tr>
<td>language</td>
<td>Ct</td>
<td>String</td>
</tr>
<tr>
<td>multiplicity$_{AE}$</td>
<td>AE</td>
<td>MultiplicityType</td>
</tr>
<tr>
<td>multiplicity$_{Par}$</td>
<td>Par</td>
<td>MultiplicityType</td>
</tr>
<tr>
<td>multiplicity$_{SF}$</td>
<td>SF</td>
<td>MultiplicityType</td>
</tr>
<tr>
<td>name</td>
<td>ME</td>
<td>NameType</td>
</tr>
<tr>
<td>scope</td>
<td>F</td>
<td>ScopeKind</td>
</tr>
<tr>
<td>tagID</td>
<td>T</td>
<td>String</td>
</tr>
<tr>
<td>typeCode</td>
<td>DT</td>
<td>TypeDescriptor</td>
</tr>
<tr>
<td>value</td>
<td>Cn</td>
<td>LiteralType</td>
</tr>
<tr>
<td>values</td>
<td>T</td>
<td>any</td>
</tr>
<tr>
<td>visibility$_F$</td>
<td>F</td>
<td>VisibilityKind</td>
</tr>
<tr>
<td>visibility$_{GE}$</td>
<td>GE</td>
<td>VisibilityKind</td>
</tr>
<tr>
<td>visibility$_I$</td>
<td>I</td>
<td>VisibilityKind</td>
</tr>
<tr>
<td>Member of Property\textsubscript{2}</td>
<td>domain\textsubscript{2}</td>
<td>range\textsubscript{2}</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>aliases</td>
<td>I</td>
<td>N</td>
</tr>
<tr>
<td>constrains</td>
<td>Ct</td>
<td>ME</td>
</tr>
<tr>
<td>containedElement</td>
<td>Co</td>
<td>ME</td>
</tr>
<tr>
<td>container</td>
<td>Co</td>
<td>N</td>
</tr>
<tr>
<td>except</td>
<td>CR</td>
<td>E</td>
</tr>
<tr>
<td>isOftype</td>
<td>TE</td>
<td>Cr</td>
</tr>
<tr>
<td>model</td>
<td>AT</td>
<td>ME</td>
</tr>
<tr>
<td>nextContainedElement</td>
<td>Co</td>
<td>Co</td>
</tr>
<tr>
<td>nextExcept</td>
<td>CR</td>
<td>CR</td>
</tr>
<tr>
<td>nextSupertype</td>
<td>G</td>
<td>G</td>
</tr>
<tr>
<td>nextTag</td>
<td>AT</td>
<td>AT</td>
</tr>
<tr>
<td>operation</td>
<td>CR</td>
<td>O</td>
</tr>
<tr>
<td>refersTo</td>
<td>R</td>
<td>AE</td>
</tr>
<tr>
<td>subtype</td>
<td>G</td>
<td>GE</td>
</tr>
<tr>
<td>supertype</td>
<td>G</td>
<td>GE</td>
</tr>
<tr>
<td>tag</td>
<td>AT</td>
<td>T</td>
</tr>
</tbody>
</table>

5 Models

The next layer in the metamodeling facility is the Model (M1) Layer. Each model is based on a metamodel. One can think of a model either as an instance of its metamodel or as a specification of instances at the System State (M0) Layer. The collection of all models is written \mathbb{M}_{1}.

Definition 5.1 A model Σ based on a metamodel Ω (or more briefly, a model Σ of Ω) is an ordered 6-tuple

$$(\Omega, Element_{1}, Property_{1}, sort_{12}, domain_{1}, range_{1})$$

such that:

1. Ω is a metamodel,
2. $Element_{1}$ and $Property_{1}$ are partially ordered sets,
3. $sort_{12}: Element_{1} + Property_{1} \rightarrow Element_{2} + Property_{2}$ is order-preserving,
4. $sort_{12}(Element_{1}) \subseteq Element_{2}$ and $sort_{12}(Property_{1}) \subseteq Property_{2}$,
5. $domain_{1}: Property_{1} \rightarrow Element_{1}$,
6. $range_{1}: Property_{1} \rightarrow Element_{1} + Literal$, and
7. (Sort Compatibility Conditions) The following diagrams are partially commutative:

\[
\begin{array}{ccc}
\text{Property}_2 \xrightarrow{\text{domain}_2} \text{Element}_2 \\
\text{sort}_{t_2} \geq \text{sort}_{t_2} \\
\text{Property}_1 \xrightarrow{\text{domain}_1} \text{Element}_1 \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{Property}_2 \xrightarrow{\text{range}_2} \text{Element}_2 + \text{Literal} \\
\text{sort}_{t_3} \geq \text{sort}_{t_2+1}^{\text{Literal}} \\
\text{Property}_1 \xrightarrow{\text{range}_1} \text{Element}_1 + \text{Literal} \\
\end{array}
\]

The elements of \(\text{Element}_1 \) are called model sorts, and the elements of \(\text{Property}_1 \) are called the model properties. The function \(\text{sort}_{t_2} \) maps a model sort or model property to its corresponding metasort.

For example, a data model for company personnel might have a Person class which is an instance of \textbf{Class}. This is expressed by the fact that \(\text{sort}_{t_2} \) takes the value \textbf{Class} on the Person class.

The functions \(\text{domain}_1 \) and \(\text{range}_1 \) determine two characteristics of a model property in the same way that the functions \(\text{domain}_2 \) and \(\text{range}_2 \) determine two characteristics of a property metasort. For example, to specify that \textbf{Person} is the name of the Person class, one introduces an element \(n \in \text{Property}_1 \) such that \(\text{sort}_{t_2}(n) \) is \textbf{class-name} \(\in \text{Property}_2 \), \(\text{domain}_1(n) \) is the Person class, and \(\text{range}_1(n) \) is the string \textbf{“Person”}. In other words, these three maps determine the triple (\textbf{class-name}, Person, \textbf{“Person”}). For this reason, model properties are also called model triples.

Each property sort (at any layer of the facility), defines a relation from the instances of the domain to the instances of the range (at the next lower layer of the facility). For a property sort \(P \in \text{Property}_2 \), we will write \(P(x, y) \) to mean \(\exists p(\text{sort}_{t_2} \leq P \& \text{domain}_1(p) = x \& \text{range}_1(p) = y) \). The transpose or inverse relation is written \(P^t \). It is defined by \(P^t(x, y) \iff P(y, x) \). Given two property sorts, \(P \) and \(Q \), their composition is a relation written \(P; Q \) and defined by \((P; Q)(x, y) \iff \exists z(P(x, z) \& Q(z, y)) \).

For metamodel, there were two kinds of property: meta-association and meta-attribute. For a model, there are three kinds of property depending on whether the value of \(\text{range}_1 \) is in \text{Element}_1, is a literal sort or is a literal. The first kind of property is called a model association. It relates two model sorts. The second kind will be called a data attribute, and the third will be called a model attribute. The example given above is a model attribute. It gives a feature of the Person class at the model layer only. One might also refer to such a property as a static attribute (by analogy with static variables in programming languages).

The second kind of attribute is a template for attributes at the system state layer. For example, to specify that a person has an address, one might model this with a property \(a \in \text{Property}_1 \) whose corresponding “triple” is (\textbf{address}, Person, \textbf{String}). In practice, it would not be reasonable to be defining an \textbf{address} meta-attribute at the metamodel layer.

10
A more reasonable way to deal with this is to define an Attribute metamodel sort that has a \texttt{datatype} meta-attribute whose \texttt{range} is the most general literal type that is allowed for any attribute. To specify that a person has an address, one introduces an instance \texttt{address} of the Attribute metamodel sort and an instance \texttt{a} of the \texttt{datatype} meta-attribute. The corresponding “triple” for \texttt{a} would then be \texttt{(datatype, address, String)}, The \texttt{address} model sort is linked to the Person class by an instance of a meta-association linking the Attribute metasort to the \texttt{Class} metasort.

Note that a meta-attribute can have both model attributes and data attributes as instances. In practice, one would constrain a given meta-attribute to allow only one or the other.

In a graphic user interface, model sorts are typically represented by a graphical shape. The type of graphical shape is often used to suggest the sort of the model element. For example, a simple rectangle would be used for a class, while a rectangle with a tab on top (suggesting a file folder) would be used for a package.

Model properties are the “glue” that links together the otherwise disparate elements of a model. Model properties are not typically shown explicitly in a graphic user interface. Their existence is usually indicated by juxtaposition or proximity. For example, the name of the Person class would be shown by placing the string “Person” near the top of the rectangle used for representing the Person class in the data model.

There are two alternative notations that one can use for the function \texttt{sort}_{12}. One of them is the “dot” notation already mentioned. Another one that is frequently employed in the literature on multi-sorted logical systems is the \textit{indexed collection} notation. For example, the function \texttt{sort}_{12}: \texttt{Element}_{1} \rightarrow \texttt{Element}_{2} defines an indexed collection of sets \{\texttt{E}_{m} \mid m \in \texttt{Element}_{2}\}, where \texttt{E}_{m} = \{e \in \texttt{Element}_{1} \mid \texttt{sort}_{12}(e) = m\}. The function notation was used in this paper in preference to the indexed collection notation in order to make the formulas and constructions simpler to state.

The first Sort Compatibility Conditions in Definition 5.1 for an element \texttt{n} \in \texttt{Property}_{1} can be stated as follows:

\[
\text{domain}_{2}(\text{sort}_{12}(\texttt{n})) \geq \text{sort}_{12}(\text{domain}_{1}(\texttt{n}))
\]

\[
\text{range}_{2}(\text{sort}_{12}(\texttt{n})) \geq (\text{sort}_{12} + 1_{\text{local}})(\text{range}_{1}(\texttt{n})).
\]

The element \texttt{n} links \texttt{domain}_{1}(\texttt{n}) to \texttt{range}_{1}(\texttt{n}). This link must conform to the domain and range conditions for the property sort \texttt{sort}_{12}(\texttt{n}). The first inequality requires that \texttt{domain}_{1}(\texttt{n}) be in the domain of the property sort of \texttt{n}.

The second Sort Compatibility Condition is similar to the first one for model associations and model attributes: \texttt{range}_{1}(\texttt{n}) must be in the range of the property sort of \texttt{n} or in a subsort of the range. For data attributes, the condition is somewhat different. In this case, the function \texttt{f} is the identity, so it requires that the \texttt{range}_{1}(\texttt{n}) be equal to the range of the property sort of \texttt{n} or to a subsort of the range, rather than a member of as in the case of the other two kinds of property. In effect, a meta-attribute determines the most general literal sort that is allowed, while particular data attributes can restrict to a literal sort that
is more specific. At the system state layer, an instance of a data attribute further restricts
the possibilities by choosing a specific value.

As an example of the Sort Compatibility Conditions, consider the model property \(n \in \text{Property}_1 \) introduced above, which specifies that the Person class has the name “Person”. The metasort of this model property is \(\text{sort}_{12}(n) = \text{class-name} \in \text{Property}_2 \), whose domain is \text{Class} and whose range is \text{String}. Now \(\text{domain}_1(n) \) is the Person class, so its metasort is the class metamodel element \text{Class} \in \text{Element}_2. Similarly, \(\text{range}_1(n) \) is “Person”, whose metasort is the \text{String} literal sort, and the Sort Compatibility Conditions are satisfied in this case.

We now return to Example 4.2 and show that every metamodel is representable as a model of CMF.

Proposition 5.2 For every metamodel \(\Omega = (\text{Element}_p, \text{Literal}, \text{Property}_2, \text{domain}_2, \text{range}_2) \), one can define a model \(C_{21}(\Omega) = (\text{CMF}, \text{Element}_1^C, \text{Property}_1^C, \text{sort}_{12}^C, \text{domain}_1^C, \text{range}_1^C) \) as follows:

1. \(\text{Element}_1^C \) is the disjoint union \(\text{Element}_2 + \text{Literal} \).
2. \(\text{Property}_1^C = \text{Property}_2 \).
3. \(\text{sort}_{12}^C : \text{Element}_1^C \to \text{Element}_2^C \) is defined as follows:

 (a) For \(x \in \text{Element}_1^C \),

 \[
 \text{sort}_{12}^C(x) = \begin{cases}
 m, & \text{if } x \in \text{Element}_2; \\
 s, & \text{if } x \in \text{Literal}_s; \text{ and} \\
 v, & \text{if } x \in \text{Literal}_v.
 \end{cases}
 \]

 (b) For \(x \in \text{Property}_1^C \), \(\text{sort}_{12}^C(x) = x \).
4. \(\text{domain}_1^C = \text{domain}_2 \) and \(\text{range}_1^C = \text{range}_2 \).

Proof We must prove that \(C_{21}(\Omega) \) is a model based on CMF. By construction, we only need to show that the Sort Compatibility Conditions hold. Furthermore, by the remarks after the definitions of CMF and \(C_{21}(\Omega) \), it is only necessary to show that the diagrams

\[
\begin{array}{ccc}
\text{Property}_2^C & \xrightarrow{\text{domain}_2^C} & \text{Element}_2^C \\
\text{sort}_{12}^C & \geq & \text{sort}_{12}^C \\
\text{Property}_1^C & \xrightarrow{\text{domain}_1^C} & \text{Element}_1^C \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{Property}_2^C & \xrightarrow{\text{range}_2^C} & \text{Element}_2^C \\
\text{sort}_{12}^C & \geq & \text{sort}_{12}^C \\
\text{Property}_1^C & \xrightarrow{\text{range}_1^C} & \text{Element}_1^C \\
\end{array}
\]
are partially commutative. Let $x \in Property_1^C$.

1. To show that the first diagram is partially commutative, first compute $sort_{12}^C(domain_1^C(x))$. This is easily seen to be $sort_{12}^C(domain_2(x)) = m$, because $domain_2(x) \in Element_2$. In the other direction, $domain_2^C(sort_{12}^C(x)) = domain_2^C(p) = m$, so the first diagram commutes.

2. For the second diagram, first compute $sort_{12}^C(range_1^C(x)) = sort_{12}^C(range_2(x))$. Now $range_2(x) \in Element_2 + Literal$, so $sort_{12}^C(range_2(x))$ is either m, s or v. In the other direction, $range_2^C(sort_{12}^C(x)) = range_2^C(p) = ms$. Since m, s and v all lie below ms in $Element_2^C$, the second diagram is partially commutative.

The converse of Proposition 5.2 does not hold: there are models of CMF that do not correspond to a metamodel. We now give necessary and sufficient conditions for a model of CMF to correspond to a metamodel.

Theorem 5.3 Let $\Sigma = (CMF, \text{Element}_1, Property_1, sort_{12}, domain_1, range_1)$ be a model based on CMF. There exists a metamodel Ω such that $C_{21}(\Omega) = \Sigma$ if and only if the following conditions hold:

1. $\forall x \in \text{Element}_1(sort_{12}(x) \neq ms)$.
2. $\forall x \in \text{Element}_1(sort_{12}(x) = v \Rightarrow \exists y \in \text{Element}_1(sort_{12}(y) = s \& x \leq y))$.

Proof It is straightforward to check that for any metamodel Ω, the model $C_{21}(\Omega)$ satisfies all of the conditions. Conversely, suppose that Σ satisfies all of the conditions. Define sets as follows:

$$
E = sort_{12}^{-1}(m) \quad S = sort_{12}^{-1}(s) \\
V = sort_{12}^{-1}(v) \quad P = sort_{12}^{-1}(p)
$$

By Condition 1, $\text{Element}_1 = E \cup S \cup V$. By the Sort Compatibility Conditions for Σ, the following hold:

$$
domain_1(P) \subseteq E \quad range_1(P) \subseteq E \cup S \cup V
$$

The partially ordered set $L = S \cup V$ defines the literal sorts and literals as in Definition 3.1. Condition 2 implies that every element of V has at least one sort in S.

Putting all of the above together, the 5-tuple $(E, L, P, domain_1, range_1)$ satisfies all of the conditions for a metamodel. It remains to show that $C_{21}(E, L, P, domain_1, range_1) = \Sigma$.

1. $Element_1^C = E + L$, and $Element_1 = E \cup L$. By construction, the sets E and L are disjoint so $Element_1^C = Element_1$.
2. $Property_1^C = Property_1$ by definition.
3. $sort_{12}^C$ and $sort_{12}$ coincide by the construction of the sets E, L, P, and by Condition 1.
4. The functions $domain_1^C$ and $domain_1$ coincide by construction, and the same is true of the functions $range_1^C$ and $range_1$.
6 System States

The System State layer is concerned with instances that conform to a specification at the Model layer in almost exactly the same way that a model conforms to a metamodel. The System State layer is normally the lowest layer, and for this reason its instances are generally regarded as being “concrete”. However, this is by no means required, and there can be still lower layers than the System State layer if desired. The collection of all system states is written M_0.

Definition 6.1 Let Σ be a model. A system state or data instance conforming to Σ (or more briefly, a Σ-state) is an ordered 6-tuple

$$(\Sigma, \text{Element}_0, \text{Property}_0, \text{sort}_{01}, \text{domain}_0, \text{range}_0)$$

such that:

1. Σ is a model,
2. Element_0 and Property_0 are partially ordered sets,
3. $\text{sort}_{01}: \text{Element}_0 + \text{Property}_0 \rightarrow \text{Element}_1 + \text{Property}_1$ is order-preserving,
4. $\text{sort}_{01}(\text{Element}_0) \subseteq \text{Element}_1$ and $\text{sort}_{01}(\text{Property}_0) \subseteq \text{Property}_1$,
5. $\text{domain}_0; \text{Property}_0 \rightarrow \text{Element}_0$,
6. $\text{range}_0; \text{Property}_0 \rightarrow \text{Element}_0 + \text{Literal}$, and
7. (Sort Compatibility Conditions) The following diagrams are partially commutative:

\[
\begin{array}{c}
\text{Property}_1 \xrightarrow{\text{domain}_1} \text{Element}_1 \\
\text{sort}_{01} \geq \text{sort}_{01} \\
\text{Property}_0 \xrightarrow{\text{domain}_0} \text{Element}_0
\end{array}
\]

\[
\begin{array}{c}
\text{Property}_1 \xrightarrow{\text{range}_1} \text{Element}_1 + \text{Literal} \\
\text{sort}_{01} \geq \text{sort}_{01+\text{Literal}} \\
\text{Property}_0 \xrightarrow{\text{range}_0} \text{Element}_0 + \text{Literal}
\end{array}
\]

Note that the form of a system state is identical to that of a model. This is deliberate. The intention is to allow one to define as many layers in the metamodeling facility as one needs.
The Sort Compatibility Condition above has an interpretation that is essentially identical to that for Definition 5.1, and the relationship between the M1 and M0 layers is almost identical to that between the M2 and M1 layers.

One complication that is not shown in this definition (nor in the definition of a model) is the possibility that links (and model properties) could map to elements on a different layer. Although there is no provision for such links and model properties in the CMF, one can introduce them by reifying a higher layer at a lower layer. The mapping \(C \) in Proposition 5.2 is an example of such a reification.

The elements of \(\text{Element}_0 \) are called objects or instances, and the elements of \(\text{Property}_0 \) are called links. The function \(\text{sort}_0 \) maps an object or link to its corresponding model sort or model property. The functions \(\text{domain}_0 \) and \(\text{range}_0 \) determine the characteristics of a link exactly as on the M1 layer.

We now continue Example 4.2, showing that every model is representable as a system state. The construction of this system state is given in Proposition 6.2, and in Theorem 6.3 we give necessary and sufficient conditions for a system state to correspond to a model.

Proposition 6.2 For every model \(\Sigma = (\Omega, \text{Element}_1, \text{Property}_1, \text{sort}_{12}, \text{domain}_1, \text{range}_1) \), one can define a system state \(C_{10}(\Sigma) = (C_{21}(\Omega), \text{Element}_0^C, \text{Property}_0^C, \text{sort}_0^C, \text{domain}_0^C, \text{range}_0^C) \) as follows:

1. \(\text{Element}_0^C \) is the disjoint union \(\text{Element}_1 + \text{Literal} \).
2. \(\text{Property}_0^C \) is the disjoint union \(\text{Property}_1 \).
3. \(\text{sort}_0^C : \text{Element}_0^C \rightarrow \text{Element}_1^C \) is defined as follows:

 (a) For \(x \in \text{Element}_0^C \),
 \[
 \text{sort}_0^C(x) = \begin{cases}
 \text{sort}_{12}(x), & \text{if } x \in \text{Element}_1; \\
 x, & \text{if } x \in \text{Literal}.
 \end{cases}
 \]

 (b) For \(x \in \text{Property}_0^C \), \(\text{sort}_0^C(x) = \text{sort}_{12}(x) \).
4. \(\text{domain}_0^C = \text{domain}_1 \) and \(\text{range}_0^C = \text{range}_1 \).

Note that \(\text{Literal}^C \) is empty so that \(\text{range}_0^C : \text{Property}_0^C \rightarrow \text{Element}_0^C \).

The definition of \(C_{10}(\Sigma) \) is deliberately very similar to \(C_{21}(\Omega) \).

Proof We must prove that \(C_{10}(\Sigma) \) is a model based on \(C_{21}(\Omega) \). As in the proof of Proposition 5.2, it is only necessary to show that the diagrams

\[
\begin{array}{c}
\text{Property}_1^C \xrightarrow{\text{domain}_1^C} \text{Element}_1^C \\
\text{sort}_0^C \downarrow \quad \uparrow \text{sort}_0^C \\
\text{Property}_0^C \xrightarrow{\text{domain}_0^C} \text{Element}_0^C
\end{array}
\]
are partially commutative. Let $x \in Property_0^C$.

1. In the first diagram, first compute $sort_{01}^C(domain_0^C(x)) = sort_{01}^C(domain_1(x))$. Since $domain_1(x) \in Element_2$, this is the same as $sort_{12}(domain_1(x))$. In the other direction, $domain_1^C(sort_{01}^C(x)) = domain_1^C(sort_{12}(x))$. Since $sort_{12}(x) \in Property_2$, this is the same as $domain_2(sort_{12}(x))$. So the first diagram partially commutes because of the first Sort Compatibility Condition for Σ.

2. Similarly, the second diagram is partially commutative because of the second Sort Compatibility Condition for Σ.

As in the case of Proposition 5.2, there are system states of $C_{21}(\Omega)$ that do not correspond to a model. We now give necessary and sufficient conditions for a system state of $C_{21}(\Omega)$ to correspond to a model.

Theorem 6.3 Let Ω be a metamodel, and let

$$\Delta = (C_{21}(\Omega), Element_0, Property_0, sort_{01}, domain_0, range_0)$$

be a system state based on $C_{21}(\Omega)$. There exists a model Σ such that $C_{10}(\Sigma) = \Delta$ if and only if the following conditions hold:

1. $\forall x, y \in Element_0(sort_{01}(x) = sort_{01}(x) \in L \Rightarrow x = y)$.
2. $\forall x \in L(\exists y \in Element_0(sort_{01}(y) = x))$.
3. $\forall x, y \in Element_0((sort_{01}(x) \in L \land sort_{01}(y) \in L \land sort_{01}(x) \leq sort_{01}(y)) \Rightarrow x \leq y)$.

Proof It is straightforward to check that for any model Σ, the system state $C_{10}(\Sigma)$ satisfies all of the conditions. Conversely, suppose that Δ satisfies all of the conditions. Define sets as follows:

$$E = sort_{01}^{-1}(Element_2) \quad L = sort_{01}^{-1}(Literal) \quad P = sort_{01}^{-1}(Property_2)$$

Conditions 1 and 2 imply that $sort_{01}$ maps L isomorphically onto $Literal$ as sets. Condition 3 implies that this is an isomorphism of partially ordered sets. Accordingly, one may identify the partially ordered sets L and $Literal$.

Putting all of the above together, the 5-tuple $(E, L, P, domain_0, range_0)$ satisfies all of the conditions for a model. It remains to show that $C_{10}(E, L, P, domain_0, range_0) = \Delta$.

16
1. $\text{Element}_0^C = E + L$, and $\text{Element}_0 = E \cup L$. By construction, the sets E and L are disjoint so $\text{Element}_0^C = \text{Element}_0$.

2. $\text{Property}_0^C = \text{Property}_0$ by definition.

3. sort_0^C and sort_0 coincide by the construction of the sets E, L, P.

4. The functions domain_0^C and domain_0 coincide by construction, and the same is true of the functions range_0^C and range_0.

7 Formalization of the MOF

The layers of the CMF have a natural relationship with each other, since each model is based on a specific metamodel and each system state is based on a specific model. Putting these together forms the following diagram:

```
M_3^C
 /    \
U_{23} /  \
M_2^C
 /     \
U_{12} /   \
M_1^C
 /     \
U_{61} /   \
M_0^C
```

At the M3 layer there is exactly one entity, so the mapping U_{23} maps every metamodel to this singular entity. The mapping U_{12} maps a model to the metamodel on which it is based, and the mapping U_{61} maps a system state to the model on which it is based.

The reification mappings C go in the other direction, mapping a metamodel to a model and a model to a system state. Furthermore, the metamodel CMF can be regarded as another example of such a mapping as it represents the singular entity of the M3 layer. This mapping will be written C_{32}. Combining all of these mappings yields the following diagram in which the two columns are the same as the diagram above:
The diagram above commutes. This diagram expresses the CMF in itself, one of the fundamental features of a metamodelling facility. Furthermore, Example 4.2 and Theorems 5.3, 6.3 characterize precisely how the CMF is embedded in itself. The next step is to characterize the MOF in the CMF, in much the same way. In other words, we construct the following commutative diagram and specify axioms that characterize those entities in the CMF that represent entities of the MOF:

Unlike the CMF, there is no mathematical formulation of the MOF such as the left column in the diagram above, so the functions M_{ij} can only be specified informally, but the conditions characterizing the MOF are expressed formally. The entities that satisfy these conditions are the formalized MOF entities, and the collections defined by these conditions formalize the MOF. We call these conditions the MOF axioms. These axioms are given in Appendix A.

8 Conclusion

9 Future Work

As mentioned in the Abstract, we plan to add the necessary detail to our formal framework such that consistency checking implementations of model transformation can be demon-
strated. This detail consists of completing the axioms and including the OCL that describe dynamic/evolving constraints outlined in the appendix and adding operations for these axioms. We will show transformations in terms of morphisms between formal presentations of models. We will also implement this framework in Specware, a Kestrel tool supporting category theory and algebraic logic and integrating a variety of theorem provers, to demonstrate model transformation consistency checking. We also plan to add semantic-level checking to the syntactic-level checking described in this paper. At every stage of progress, we will share our work with the OMG through presentations and the UML Infrastructure and MOF list servers and integrate comments in subsequent papers. Our plan is to make this contribution to MOF 2.0 (RFP and eventual proposal) and to contribute to any of the teams who are making UML Infrastructure submittals.

Acknowledgements

References

A MOF Axioms

Many of the MOF Axioms follow a similar pattern, differing only in the specific elements of PropertyM_2 or ElementM_2 that are being constrained. Accordingly, we begin by listing the patterns we will use.

1. **Relational**(P) is $\forall p, q \in \text{Property}^M_1 ((\text{sort}_{12}^M(p) = \text{sort}_{12}^M(q) = P \& \text{domain}^M_1(p) = \text{domain}^M_1(q) \& \text{range}^M_1(p) = \text{range}^M_1(q)) \Rightarrow p = q$).

2. **MandatoryDomain**(P) is $\forall x \in \text{Element}^M_1 (\text{sort}_{12}^M(x) \leq \text{domain}^M_2(P) \Rightarrow (\exists p \in \text{Property}^M_1(\text{sort}_{12}^M(p) \leq P \& \text{domain}^M_1(p) = x))$).

3. **MandatoryRange**(P) is $\forall x \in \text{Element}^M_1 (\text{sort}_{12}^M(x) \leq \text{range}^M_2(P) \Rightarrow (\exists p \in \text{Property}^M_1(\text{sort}_{12}^M(p) \leq P \& \text{range}^M_1(p) = x))$).

4. **UniqueDomain**(P) is $\forall p, q \in \text{Property}^M_1 ((\text{sort}_{12}^M(p) \leq P \& \text{sort}_{12}^M(q) \leq P \& \text{domain}^M_1(p) = \text{domain}^M_1(q)) \Rightarrow p = q$).

5. **UniqueRange**(P) is $\forall p, q \in \text{Property}^M_1 ((\text{sort}_{12}^M(p) \leq P \& \text{sort}_{12}^M(q) \leq P \& \text{range}^M_1(p) = \text{range}^M_1(q)) \Rightarrow p = q$).

6. **Functional**(P) is **MandatoryDomain**(P) & **UniqueDomain**(P).

7. **Contains**(P, Q) is $\forall p, q, r \in \text{Property}^M_1 ((\text{sort}_{12}^M(p) \leq P \& \text{sort}_{12}^M(q) \leq Q \& \text{sort}_{12}^M(r) \leq P \& \text{domain}^M_1(p) = \text{domain}^M_1(q) = \text{domain}^M_1) \Rightarrow \text{range}^M_1(p) = \text{range}^M_1(r)$).

8. **TransitiveClosure**(P, x, y) is $(\exists p \in \text{Property}^M_1(\text{sort}_{12}^M(p) \leq P \& \text{domain}^M_1(p) = x \& \text{range}^M_1(p) = y)) \text{ or } (\exists z \in \text{Element}^M_1(\text{TransitiveClosure}(P, x, z) \& \text{TransitiveClosure}(P, z, y)))$.

9. **Covers**(P, Q) is $\forall p, q \in \text{Property}^M_1 ((\text{sort}_{12}^M(p) \leq Q \& \text{sort}_{12}^M(q) \leq Q \& \text{range}^M_1(p) = \text{range}^M_1(q) \& p \neq q) \Rightarrow \text{TransitiveClosure}(P, \text{domain}^M_1(p), \text{domain}^M_1(q)))$.

The following are the MOF axioms:

1. The annotation meta-attribute of ModelElement is mandatory and unique (3.4.1). **Functional**(annotation).

2. The name meta-attribute of ModelElement is mandatory and unique (3.4.1). **Functional**(name).

3. The isAbstract meta-attribute of GeneralizableElement is mandatory and unique (3.4.3). **Functional**(isAbstract).

4. The isLeaf meta-attribute of GeneralizableElement is mandatory and unique (3.4.3). **Functional**(isLeaf).
5. The isRoot meta-attribute of GeneralizableElement is mandatory and unique (3.4.3).
 Functional(isRoot).

6. The visibility meta-attribute of GeneralizableElement is mandatory and unique (3.4.3).
 Functional(visibility).

7. The isSingleton meta-attribute of Class is mandatory and unique (3.4.6).
 Functional(isSingleton).

8. The typeCode meta-attribute of DataType is mandatory and unique (3.4.7).
 Functional(typeCode).

9. The scope meta-attribute of Feature is mandatory and unique (3.4.9).
 Functional(scope).

10. The visibility meta-attribute of Feature is mandatory and unique (3.4.9).
 Functional(visibility).

11. The isChangeable meta-attribute of StructuralFeature is mandatory and unique (3.4.10).
 Functional(isChangeable).

12. The multiplicity meta-attribute of StructuralFeature is mandatory and unique (3.4.10).
 Functional(multiplicity).

13. The isDerived meta-attribute of Attribute is mandatory and unique (3.4.11).
 Functional(isDerived).

14. The isQuery meta-attribute of Operation is mandatory and unique (3.4.14).
 Functional(isQuery).

15. The isDerived meta-attribute of Association is mandatory and unique (3.4.16).
 Functional(isDerived).

16. The aggregation meta-attribute of AssociationEnd is mandatory and unique (3.4.17).
 Functional(aggregation).

17. The isChangeable meta-attribute of AssociationEnd is mandatory and unique (3.4.17).
 Functional(isChangeable).

18. The isNavigable meta-attribute of AssociationEnd is mandatory and unique (3.4.17).
 Functional(isNavigable).

19. The multiplicity meta-attribute of AssociationEnd is mandatory and unique (3.4.17).
 Functional(multiplicity).

20. The isClustered meta-attribute of Import is mandatory and unique (3.4.19).
 Functional(isClustered).
21. The visibility meta-attribute of Import is mandatory and unique (3.4.19).
 Functional(visibility).

22. The direction meta-attribute of Parameter is mandatory and unique (3.4.20).
 Functional(direction).

23. The multiplicity meta-attribute of Parameter is mandatory and unique (3.4.20).
 Functional(multiplicity).

24. The evaluationPolicy meta-attribute of Constraint is mandatory and unique (3.4.21).
 Functional(evaluationPolicy).

25. The expression meta-attribute of Constraint is mandatory and unique (3.4.21).
 Functional(expression).

26. The language meta-attribute of Constraint is mandatory and unique (3.4.21).
 Functional(language).

27. The value meta-attribute of Constant is mandatory and unique (3.4.21).
 Functional(value).

28. The tagID meta-attribute of Tag is mandatory and unique (3.4.23).
 Functional(tagID).

29. The Contains meta-association was reified (3.5.1).
 Functional(container) & **Functional**(containedElement) &
 UniqueDomain(nextContainedElement).

30. The Contains meta-association is an aggregation (3.5.1).
 UniqueRange(containedElement).

31. The Contains meta-association is ordered (3.5.1).
 UniqueRange(nextContainedElement) &
 Covers(nextContainedElement, container) &
 Contains(container, nextContainedElement).

32. The Generalizes meta-association was reified (3.5.2).
 Functional(subtype) & **Functional**(supertype) & **UniqueDomain**(nextSupertype).

33. The Generalizes meta-association is ordered (3.5.2).
 UniqueRange(nextSupertype) &
 Covers(nextSupertype, subtype) &
 Contains(subtype, nextSupertype).

34. The RefersTo meta-association is unique and mandatory for Reference. (3.5.3).
 UniqueDomain(referent) &
 MandatoryDomain(referent).

22
35. The IsOfType meta-association is unique and mandatory for TypedElement (3.5.5).
 Functional(typedElement).

36. The CanRaise meta-association was reified (3.5.6).
 Functional(operation) &
 Functional(except) &
 UniqueDomain(nextExcept).

37. The CanRaise meta-association is ordered (3.5.6).
 UniqueRange(nextExcept) &
 Covers(nextExcept, operation) &
 Contains(operation, nextExcept).

38. The Aliases meta-association is unique and mandatory for Import (3.5.7).
 Functional(aliases).

39. The Constrains meta-association is relational (3.5.8).
 Relational(constrains).

40. The Constrains meta-association is mandatory for a Constraint (3.5.8).
 MandatoryDomain(constrains).

41. The AttachesTo meta-association is mandatory for a Tag (3.5.10).
 MandatoryRange(tag).

42. The AttachesTo meta-association was reified (3.5.10).
 Functional(model) &
 Functional(tag) &
 UniqueDomain(nextTag).

43. The AttachesTo meta-association is ordered (3.5.10).
 UniqueRange(nextTag) &
 Covers(nextTag, model) &
 Contains(model, nextTag).

44. A ModelElement that is not a Package must be in a container (3.9.4.C-1).
 \[\forall x \in \text{Element}^M_1((\text{sort}^M_{12}(x) \leq \text{ModelElement} \& \text{sort}^M_{12}(x) \not= \text{Package}) \Rightarrow
 (\exists p \in \text{Property}^M_1(\text{sort}^M_{12}(p) \leq \text{containedElement} \& \text{range}^M_1(p) = x))). \]

45. The names of the contents of a Namespace must not collide (3.9.4.C-5).
 \[\forall x, y, z \in \text{Element}^M_1, n \in \text{Literal}^M_1(((\text{container}^t_1; \text{containedElement})(x, y) \&
 (\text{container}^t_1; \text{containedElement})(x, z) \& \text{name}(y, n) \& \text{name}(z, n)) \Rightarrow y = z). \]

46. A GeneralizableElement cannot be its own direct or indirect supertype (3.9.4.C-6).
 \[\forall x \in \text{Element}^M_1(\text{not TransitiveClosure}(\text{subtype}^t; \text{subtype}, x, x)). \]
47. A subtype of a GeneralizableElement must be of the same kind as the GeneralizableElement itself (3.9.4.C-7).
 \(\forall p, q \in \text{Property}_1^M (\text{domain}_1^M (p) = \text{domain}_1^M (q) \Rightarrow \text{sort}_{12}^M (\text{range}_1^M (p)) = \text{sort}_{12}^M (\text{range}_1^M (q))) \).

48. The names of the contents of a GeneralizableElement should not collide with the names of the contents of any direct or indirect supertype (3.9.4.C-8).
 \(\forall x, y, z \in \text{Element}_1^M, n \in \text{Literal}_v^M (
 (\text{TransitiveClosure}(\text{subtype}^i; \text{supertype}); \text{container}^i; \text{containedElement})(x, y) \& \n (\text{TransitiveClosure}(\text{subtype}^i; \text{supertype}); \text{container}^i; \text{containedElement})(x, z) \& \n \text{name}(y, n) \& \text{name}(z, n)) \Rightarrow y = z \).

49. If a GeneralizableElement is marked as a “root,” then it cannot have any supertypes (3.9.4.C-10).
 \(\forall x, y \in \text{Element}_1^M (\text{subtype}^i; \text{supertype})(x, y) \Rightarrow \text{isRoot}(x, false)). \)

50. A GeneralizableElement cannot inherit from a GeneralizableElement defined as a “leaf” (3.9.4.C-12).
 \(\forall x, y \in \text{Element}_1^M (\text{subtype}^i; \text{supertype})(x, y) \Rightarrow \text{isLeaf}(y, false)). \)

51. An Association cannot be the type of a TypedElement (3.9.4.C-13).
 \(\forall x, y \in \text{Element}_1^M (\text{sort}_{12}^M (x) \leq \text{As} \& \text{sort}_{12}^M (y) \leq \text{TE} \Rightarrow \not \text{isOfType}(x, y)). \)

52. A Class may contain only Classes, DataTypes, Attributes, References, Operations, Exceptions, Constraints and Tags (3.9.4.C-15).
 \(\forall x, y \in \text{Element}_1^M (\text{sort}_{12}^M (x) \leq \text{C} \& \text{container}^i; \text{containedElement})(x, y) \Rightarrow \text{sort}_{12}^M (y) \leq \{\text{C, DT, At, R, O, E, Ct, T})\). \)

53. A Class that is marked as abstract cannot also be marked as singleton (3.9.4.C-16).
 \(\forall x \in \text{Element}_1^M (\text{sort}_{12}^M (x) \leq \text{C} \& \text{isAbstract}(x, true) \Rightarrow \not \text{isSingleton}(x, false)). \)

54. A DataType may contain only TypeAliases, Constraints and Tags (3.9.4.C-17).
 \(\forall x, y \in \text{Element}_1^M (\text{sort}_{12}^M (x) \leq \text{DT} \& \text{container}^i; \text{containedElement})(x, y) \Rightarrow \text{sort}_{12}^M (y) \leq \{\text{TA, Ct, T})\). \)

55. The typeCode of a DataType must denote a CORBA 2.2 compliant object type or data type (3.9.4.C-18).
 \(\forall x \in \text{Element}_1^M, y \in \text{Literal}_v^M (\text{sort}_{12}^M (x) \leq \text{DT} \& \text{typeCode}(x, y) \Rightarrow y \not \in \{\#\text{tk_void,}
 \#\text{tk_principal,}\#\text{tk_null,}\#\text{tk_except,}\#\text{tk_value,}\#\text{tk_value_box,}\#\text{tk_native,}
 \#\text{tk_abstract_interface}\}). \)

56. Inheritance / generalization is not applicable to DataTypes (3.9.4.C-19).
 \(\forall x, y \in \text{Element}_1^M ((\text{subtype}^i; \text{supertype})(x, y) \Rightarrow \not \text{sort}_{12}^M (x) \leq \text{DT}). \)

57. A DataType cannot be abstract (3.9.4.C-20).
 \(\forall x \in \text{Element}_1^M (\text{sort}_{12}^M (x) \leq \text{DT} \Rightarrow \text{isAbstract}(x, false)). \)
58. The multiplicity for a Reference must be the same as the multiplicity for the referenced AssociationEnd (3.9.4.C-21).
\[\forall x, y \in \text{Element}_1^M, m, n \in \text{Literal}^M(\text{sort}_{12}^M(x) \leq \text{R} \& \text{refersTo}(x, y) \& \text{multiplicity}_{AE}(x, m) \& \text{multiplicity}_{SF}(y, n) \Rightarrow m = n) \].

59. Classifier scoped References are not meaningful in the current M1 level computational model (3.9.4.C-22).
\[\forall x \in \text{Element}_1^M(\text{sort}_{12}^M(x) \leq \text{R} \Rightarrow \text{scope}(x, \# \text{instance level})) \].

60. A Reference can be changeable only if the referenced AssociationEnd is also changeable (3.9.4.C-23).
\[\forall x, y \in \text{Element}_1^M, m, n \in \text{Literal}^M(\text{sort}_{12}^M(x) \leq \text{R} \& \text{refersTo}(x, y) \& \text{isChangeable}_{AE}(x, m) \& \text{isChangeable}_{SF}(y, n) \Rightarrow m = n) \].

61. The type attribute of a Reference and its referenced AssociationEnd must be the same (3.9.4.C-24).
\[\forall x, y, z, w \in \text{Element}_1^M(\text{sort}_{12}^M(x) \leq \text{R} \& \text{refersTo}(x, y) \& \text{isOfType}(x, z) \& \text{isOfType}(y, w) \Rightarrow z = w) \].

62. A Reference is only allowed for a navigable AssociationEnd (3.9.4.C-25).
\[\forall x, y \in \text{Element}_1^M, m, n \in \text{Literal}^M(\text{sort}_{12}^M(x) \leq \text{R} \& \text{refersTo}(x, y) \Rightarrow \text{isNavigable}(y, \text{true})) \].

63. The containing Class for a Reference must be equal to or a subtype of the type of the Reference’s exposed AssociationEnd (3.9.4.C-26).

64. An Operation may only contain Parameters, Constraints and Tags (3.9.4.C-28).

65. An Operation may have at most one Parameter whose direction is “return” (3.9.4.C-29).

66. An Exception may only contain Parameters and Tags (3.9.4.C-31).

67. An Exception’s Parameters must all have the direction “out” (3.9.4.C-32).

68. An Association may only contain AssociationEnds, Constraints and Tags (3.9.4.C-33).

69. Inheritance / generalization is not applicable to Associations (3.9.4.C-34).

70. The values for “isLeaf” and “isRoot” on an Association must be true (3.9.4.C-35).
71. An Association cannot be abstract (3.9.4.C-36).

72. Associations must have visibility of “public” (3.9.4.C-38).

73. The type of an AssociationEnd must be Class (3.9.4.C-39).

74. The “isUnique” flag in an AssociationEnd’s multiplicity must be true (3.9.4.C-40).

75. An Association cannot have an aggregation semantic specified for both AssociationEnds (3.9.4.C-42).

76. A Package may only contain Packages, Classes, DataTypes, Associations, Exceptions, Constraints, Imports and Tags (3.9.4.C-43).

77. Packages cannot be declared as abstract (3.9.4.C-44).

78. It is only legal for a Package to import or cluster Packages or Classes (3.9.4.C-46).

79. Packages cannot import or cluster themselves (3.9.4.C-47).

80. Packages cannot import or cluster Packages or Classes that they contain (3.9.4.C-48).

81. Nested Packages cannot import or cluster other Packages or Classes (3.9.4.C-49).

82. Constraints, Tags, Imports, TypeAliases and Constraints cannot be constrained (3.9.4.C-50).

83. A Constraint can only constrain ModelElements that are defined by or inherited by its immediate container (3.9.4.C-51).

84. The type of a Constant and the type of its value must be the same (3.9.4.C-52).
85. The type of a Constant must be a CORBA data type that is legal for a CORBA 2.3 constant declaration (3.9.4.C-53).

86. The “lower” bound of a MultiplicityType cannot be negative “Unbounded” (3.9.4.C-54).

87. The “lower” bound of a MultiplicityType cannot exceed the “upper” (3.9.4.C-55).

88. The “upper” bound of a MultiplicityType cannot be less than 1 (3.9.4.C-56).

89. If a MultiplicityType specifies bounds of [0..1] or [1..1], the “is_ordered” and “is_unique” values must be false (3.9.4.C-57).