Environmentally Conscious Manufacturing III

Surendra M. Gupta
Chair/Editor

29-30 October 2003
Providence, Rhode Island, USA

Sponsored and Published by
SPIE—The International Society for Optical Engineering

Volume 5262

SPIE is an international technical society dedicated to advancing engineering and scientific applications of optical, photonic, imaging, electronic, and optoelectronic technologies.
Contents

vii Conference Committee
ix Introduction

SESSION 1 PRODUCT RECOVERY

1 Reusing single use devices in hospitals: a case study [5262-02]
 R. Srivastava, Florida Gulf Coast Univ. (USA)

6 Evaluation of trade-offs in costs and environmental impacts for returnable packaging implementation [5262-03]
 L. Jarupan, S. V. Kamarthi, S. M. Gupta, Northeastern Univ. (USA)

15 Optimal control of a remanufacturing system with consideration for product life cycle [5262-07]
 K. Nakashima, Osaka Institute of Technology (Japan); S. M. Gupta, Northeastern Univ. (USA)

SESSION 2 PRODUCT RECOVERY AND END OF LIFE MANAGEMENT

20 Fuzzy cost-benefit function to select economical products for processing in a closed-loop supply chain [5262-05]
 K. K. Pochampally, S. M. Gupta, T. P. Cullinane, Northeastern Univ. (USA)

30 Second-hand market as an alternative in reverse logistics [5262-34]
 K. K. Pochampally, S. M. Gupta, Northeastern Univ. (USA)

40 Optimizing decision making at the end-of-life of a product [5262-08]
 B. González-Torre, ThyssenKrupp (Spain); B. Adenso-Díaz, Univ. de Oviedo (Spain)

51 Disassembly analysis before assembly [5262-09]
 K. Banda, I. Zeid, Northeastern Univ. (USA)

SESSION 3 DISASSEMBLY

59 Disassembly line balancing with limited supply and subassembly availability [5262-11]
 F. T. Altekin, L. Kandiller, N. E. Özdemirel, Middle East Technical Univ. (Turkey)

71 2-opt heuristic for the disassembly line balancing problem [5262-12]
 S. M. McGovern, S. M. Gupta, Northeastern Univ. (USA)

85 Multikanban model for disassembly line with demand fluctuation [5262-13]
 G. Udomsawat, S. M. Gupta, Northeastern Univ. (USA); Y. A. Y. Al-Turki, King Abdulaziz City for Science and Technology (Saudi Arabia)
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Session</th>
<th>Authors and Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>94</td>
<td>Simulation-based disassembly systems design</td>
<td>SESSION 4 SUPPLY CHAIN</td>
<td>M. Ohlendorf, C. Herrmann, J. Hesselbach, Technische Univ. Carolo-Wilhelmina zu Braunschweig (Germany)</td>
</tr>
<tr>
<td>103</td>
<td>Policy design in closed-loop supply chains for the integrated management of component recycling and spare parts supply in the electronics industry</td>
<td></td>
<td>M. Schröter, T. Spengler, Technische Univ. Carolo-Wilhelmina zu Braunschweig (Germany)</td>
</tr>
<tr>
<td>115</td>
<td>Integration of service providers into supply chain services and waste disposal transports</td>
<td></td>
<td>S. Wedekind, H.-D. Haasis, Institute of Shipping Economics and Logistics (Germany)</td>
</tr>
<tr>
<td>125</td>
<td>Evaluation of production facilities in a closed-loop supply chain: a fuzzy TOPSIS approach</td>
<td></td>
<td>K. K. Pochampally, S. M. Gupta, S. V. Kamarthi, Northeastern Univ. (USA)</td>
</tr>
<tr>
<td>139</td>
<td>Identification of potential recovery facilities for designing a reverse supply chain network using physical programming</td>
<td></td>
<td>K. K. Pochampally, S. M. Gupta, S. V. Kamarthi, Northeastern Univ. (USA)</td>
</tr>
<tr>
<td>147</td>
<td>Green supply chain management in China</td>
<td></td>
<td>Q. Zhu, Dalian Univ. of Technology (China); J. Sarkis, Clark Univ. (USA)</td>
</tr>
<tr>
<td>155</td>
<td>Innovative practices in environmental management</td>
<td>SESSION 5 GREEN MANUFACTURING</td>
<td>W. L. Tate, L. M. Ellram, Arizona State Univ. (USA)</td>
</tr>
<tr>
<td>165</td>
<td>Environmentally conscious patent histories</td>
<td></td>
<td>D. D. Crouch, McDonnell Boehnen Hulbert and Berghoff (USA); H. L. Crouch, Pittsburg State Univ. (USA)</td>
</tr>
<tr>
<td>174</td>
<td>Improving environmental impact and cost assessment for supplier evaluation</td>
<td>SESSION 6 ENVIRONMENTAL ISSUES</td>
<td>S. Beucker, C. Lang, Univ. Stuttgart (Germany)</td>
</tr>
<tr>
<td>182</td>
<td>Environmental benchmarking the largest fossil-fueled electricity generating plants in the U.S.</td>
<td></td>
<td>J. Sarkis, Clark Univ. (USA)</td>
</tr>
<tr>
<td>193</td>
<td>Web-based expert system for foundry pollution prevention</td>
<td>SESSION 7 ENVIRONMENTAL MODELING</td>
<td>G. P. Moynihan, Univ. of Alabama (USA)</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Methodology to incorporate life cycle analysis and the triple bottom line mechanism for sustainable management of industrial enterprises</td>
<td>L. Wang, L. Lin, Univ. at Buffalo (USA)</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>Development and weighting of a life cycle assessment screening model</td>
<td>W. E. Bates, Town of Blackstone (USA); J. O’Shaughnessy, S. A. Johnson, R. Sisson, Worcester Polytechnic Institute (USA)</td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>Use of data envelopment analysis for product recovery</td>
<td>E. Kongar, S. M. Gupta, S. M. McGovern, Northeastern Univ. (USA)</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>Solving a layout design problem by analytic hierarchy process (AHP) and data envelopment analysis (DEA) approach and an application</td>
<td>U. R. Tuzkaya, A. Eser, Yildiz Technical Univ. (Turkey); G. Argon, Northeastern Univ. (USA)</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 8 POTPOURRI

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>Knowledge and decision support management in the circular flow economy</td>
<td>V. Blume, Univ. Bremen (Germany); H.-D. Haasis, Institute of Shipping Economics and Logistics (Germany)</td>
</tr>
<tr>
<td>247</td>
<td>Pollution prevention applications in batch manufacturing operations</td>
<td>D. W. Sykes, Capaccio Environmental Engineering, Inc. (USA); J. O’Shaughnessy, Worcester Polytechnic Institute (USA)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Page</th>
<th>Addendum</th>
</tr>
</thead>
<tbody>
<tr>
<td>257</td>
<td>Author Index</td>
</tr>
<tr>
<td>258</td>
<td></td>
</tr>
</tbody>
</table>
Conference Committee

Symposium Chair
Gerard T. McKee, University of Reading (United Kingdom)

Conference Chair
Surendra M. Gupta, Northeastern University (USA)

Program Committee
Belamino Adenso-Díaz, Universidad de Oviedo (Spain)
Hans-Dietrich Haasis, Universität Bremen (Germany)
Karl Inderfurth, Otto-von-Guericke-Universität Magdeburg (Germany)
N. Elif Kongar, Yıldız Technical University (Turkey)
A. J. D. Lambert, Technische Universität Eindhoven (Netherlands)
Kenichi Nakashima, Osaka Institute of Technology (Japan)
Joseph Sarks, Clark University (USA)
Thomas Spengler, Technische Universität Carolo-Wilhelmina zu Braunschweig (Germany)
Rajesh Srivastava, Florida Gulf Coast University (USA)
Ibrahim Zeid, Northeastern University (USA)

Session Chairs
Product Recovery
Surendra M. Gupta, Northeastern University (USA)

Product Recovery and End of Life Management
Rajesh Srivastava, Florida Gulf Coast University (USA)

Disassembly
Ibrahim Zeid, Northeastern University (USA)

Supply Chain
Surendra M. Gupta, Northeastern University (USA)

Green Manufacturing
Seamus M. McGovern, Northeastern University (USA)

Environmental Issues
Surendra M. Gupta, Northeastern University (USA)
Environmental Modeling

Joseph Sarkis, Clark University (USA)

Potpourri

Surendra M. Gupta, Northeastern University (USA)
Introduction

Environmentally Conscious Manufacturing (ECM) is an emerging discipline that is concerned with developing methods for manufacturing new products from conceptual design to final delivery and ultimately to the end-of-life disposal such that all the environmental standards and requirements are satisfied. Industrialized countries all over the world are facing serious aftermath because of the rapid development that has taken place in the last few decades.

In recent years, environmental awareness and recycling regulations have been putting pressure on many manufacturers and consumers, forcing them to produce and dispose of products in an environmentally responsible manner. Government regulations are becoming more persuasive and thus many manufacturers feel the pressure to use recycled materials whenever possible. Sometimes they are even required to take care of their products at the end of their useful lives. This has created a need to design products that are friendly towards the environment, and easy to disassemble and recycle. To that end, there is a need to develop algorithms, models, heuristics and software for addressing recycling and other end-of-life issues (such as the economic viability and the logistic aspects of disassembly, recycling and remanufacturing) for an ever-increasing number of discarded products.

The Third International Conference on Environmentally Conscious Manufacturing (ECM) that took place in Providence, Rhode Island, USA during October 29-30, 2003 tried to do its part in addressing the above mentioned needs. Both academicians and the industrial community in the United States and abroad participated in this very timely conference. The conference provided a forum for the latest developments in the field of ECM.

This volume is a compilation of the papers selected for the conference. The papers included here represent the wide variety of fronts where research activity is taking place in the general area of ECM. Based on the quality and variety of papers included in this volume, it is clear that the conference was a success. It is my hope that this volume will inspire further research in ECM and motivate new researchers to get interested in this all too important field of study.
The conference and this volume would not have been possible without the
devotion and commitment of the authors. They have been very patient in
preparing their manuscripts. I would also like to express my appreciation for
having been given the opportunity to organize and chair this conference. I
especially want to thank the SPIE staff for providing seamless support in unraveling
all of the obstacles that arose in putting the conference and this volume
together.

Dr. Surendra M. Gupta, PE
Professor of Mechanical, Industrial and Manufacturing Engineering and
Director of Laboratory for Responsible Manufacturing
334 SN, Department of MIME
Northeastern University
360 Huntington Avenue
Boston, MA. 02115, U.S.A.

Phone: (617) 373-4846
Fax: (617) 373-2921
E-mail: gupta@neu.edu
URL: http://www.coe.neu.edu/~smgupta/